㈠ 散列查找堆積現象為什麼不影響存儲效率
一般的線性表、樹中,記錄在結構中的相對位置是隨機的即和記錄的關鍵字之間不存在確定的關系,在結構中查找記錄時需進行一系列和關鍵字的比較。這一類查找方法建立在「比較」的基礎上,查找的效率與比較次數密切相關。理想的情況是能直接找到需要的記錄,因此必須在記錄的存儲位置和它的關鍵字之間建立一確定的對應關系f,使每個關鍵字和結構中一個唯一的存儲位置相對應。因而查找時,只需根據這個對應關系f找到給定值K的像f(K)。若結構中存在關鍵字和K相等的記錄,則必定在f(K)的存儲位置上,由此不需要進行比較便可直接取得所查記錄。在此,稱這個對應關系f為哈希函數,按這個思想建立的表為哈希表(又稱為雜湊法或散列表)。
哈希表不可避免沖突(collision)現象:對不同的關鍵字可能得到同一哈希地址 即key1≠key2,而f(key1)=f(key2)。具有相同函數值的關鍵字對該哈希函數來說稱為同義詞(synonym)。 因此,在建造哈希表時不僅要設定一個好的哈希函數,而且要設定一種處理沖突的方法。可如下描述哈希表:根據設定的哈希函數H(key)和所選中的處理沖突的方法,將一組關鍵字映象到一個有限的、地址連續的地址集(區間)上並以關鍵字在地址集中的「象」作為相應記錄在表中的存儲位置,這種表被稱為哈希表。
註:這個函數f(key)為哈希函數。(注意:這個函數並不一定是數學函數) 哈希函數是一個映象,即:將關鍵字的集合映射到某個地址集合上,它的設置很靈活,只要這個地址集合的大小不超出允許范圍即可。 現實中哈希函數是需要構造的,並且構造的好才能使用的好。
對於動態查找表而言,1) 表長不確定;2)在設計查找表時,只知道關鍵字所屬范圍,而不知道確切的關鍵字。因此,一般情況需建立一個函數關系,以f(key)作為關鍵字為key的錄在表中的位置,通常稱這個函數f(key)為哈希函數。(注意:這個函數並不一定是數學函數)
哈希函數是一個映象,即:將關鍵字的集合映射到某個地址集合上,它的設置很靈活,只要這個地址集合的大小不超出允許范圍即可。
現實中哈希函數是需要構造的,並且構造的好才能使用的好。
用途:加密,解決沖突問題。。。。
用途很廣,比特精靈中就使用了哈希函數,你可 以自己看看。
具體可以學習一下數據結構和演算法的書。
字元串哈希函數(著名的ELFhash演算法)
int ELFhash(char *key)
{ unsigned long h=0;
while(*key)
{ h=(h<<4)+*key++;
unsigned long g=h&0Xf0000000L;
if(g) h^=g>>24;
h&=~g;
}
return h%MOD;
}
㈡ python中List,Queue等數據結構存儲效率哪個更優
如果你是打算使用Python解決問題,那麼你本身就沒有把效率放到第一位,因為Python是一個腳本語言。 當然如果脫離python語言來說這個問題就是數據結構的問題,關於鏈表和隊列的效率問題,其實這也是和不同的數據結構面向的不同問題域表現出不同的效率,於是不能一概而論。
㈢ 存儲性能和空間利用率哪個重要
最大限度地挖掘存儲系統的性能潛力是用戶永遠的追求,但是,面對眾多性能優化技術,還必須考慮到底是性能重要還是空間利用率重要。
在當前經濟形勢低迷的大背景下,挖掘現有存儲系統的性能潛力成為用戶的必然選擇,不過追求性能只是一個方面。
看到的現象是大多數存儲系統的空間利用率還不到50%,而且存儲控制器的處理能力也只用到一小部分,這些都是讓用戶不可接受的事實。
在數據中心應用領域,通過伺服器整合以及虛擬化技術,物理伺服器的資源已經被最大化的利用起來,與此相反的是,存儲效率低下的問題卻成為用戶的痛點。
若要實現伺服器虛擬化的高效率,存儲系統就必須跟得上,這是一個必要的前提,因此伺服器虛擬化應用推動著存儲技術向更高效的方向發展。
在虛擬化環境中,當前端伺服器數量不斷增加,後端存儲陣列的不足便暴露出來,尤其表現在缺乏細粒度的分配和調動空間資源的能力方面。
因此,如果用戶希望對數據中心進行高度整合,那麼伺服器虛擬化技術和高效的存儲技術二者缺一不可。
存儲效率是一個綜合性的指標,實現最佳的存儲效率意味著要在有效存儲空間以及可用處理資源兩方面都有出色表現,通常也是各產品之間相互競爭的重點。
StorageIO高級分析師GregSchulz說,「為了達到應用所需的IOPS能力,有些存儲系統被設計得很大,通過大量磁碟的並發來提升IOPS,可是空間利用率卻非常低,反之,追求空間利用率的最大化往往需要藉助存儲精簡技術,比如壓縮和重復數據刪除等等,但是這些功能會對系統性能帶來負面的影響「。
因此,達成高效的存儲就需要在容量和性能之間尋找一個平衡點,根據應用需求的不同,對容量、處理能力、性能以及成本進行控制和優化。
保證存儲效率有哪些基本條件優化存儲系統的性能,本質上就是要盡可能地提高存儲處理資源的利用率,同時盡量消除系統的瓶頸或阻塞。
隨著處理資源利用率的增加,剩餘的處理資源以及響應額外處理請求的能力相應的就會降低。
而且如果緩沖區太小,那麼系統達到性能上限(瓶頸)的可能性就非常大。
舉個例子來說,一個平均處理資源利用率在50%的磁碟陣列不太可能觸及性能上限(瓶頸),而對於一個利用率達到80%的系統來說,這個可能性就要大得多。
高效存儲技術及其對性能、容量和成本的影響由存儲廠商或第三方公司提供的內嵌在存儲系統內部或在外部附加的運行報告、監控以及存儲分析功能是十分重要的,它們可以幫助用戶更好的了解系統的運行情況,避免系統過度(過高)配置,並減少很多後期維護工作。
尤其是當用戶需要優化性能或者按需增加處理資源時,這些組件的作用就會體現的非常明顯。
對此,StorageIO高級分析師GregSchulz評價道:「無論是性能問題還是容量問題,好好利用存儲廠商或第三方公司提供的工具都是十分重要的。
」這些工具不僅能夠幫助用戶定位性能的問題,更重要的方面在於它們可以幫助用戶選擇出最恰當的解決方案。
衡量一套存儲系統的性能並不能依賴某個單一指標,而要考慮多種組合因素,它們每一項都對應用程序訪問數據的速度有所影響。
其中,IOPS、吞吐帶寬和訪問延遲這三項指標是最關鍵的。
不過,指標數據究竟是好是壞還要考慮應用環境的差異,包括工作負載的類型(隨機請求或者順序請求)、數據塊的大小、交易類型(讀或是寫),以及其他相關的能夠影響性能的因素都依賴於應用程序本身的特點。
比方說,如果是流媒體視頻應用,那麼大文件快速順序讀性能和大數據塊是最重要的;
而如果是虛擬化應用環境,那麼隨機讀性能通常是最主要的考察指標。
下面的部分,將縱覽那些可以優化性能並且提高存儲資源利用率的技術,這里沒有獨門秘籍,因為每一種方法都有其優點和缺點。
通過堆砌磁碟數量來提高性能磁碟驅動器是一種機械裝置,讀寫磁頭通過在高速旋轉碟片的內道和外道之間往復移動來尋找並讀寫數據。
即使是轉速最快的15000轉磁碟,其磁頭機械臂的重定位時間延遲都會有數毫秒之多,因此每個磁碟的IOPS值最多隻有幾百個,吞吐帶寬則局限在100MB/秒以內。
通過將數據分布在多個磁碟上,然後對多個磁碟同步進行讀寫訪問是一種常見的擴展性能的方法。
通過增加磁碟的個數,系統整體的IOPS和帶寬值也會等比例提升。
加之,有些存儲廠商還提供shortstr好ing這樣的可以縮短磁頭機械臂移動距離的技術。
此類技術可以將數據集中放置在磁碟碟片的外道區域,結果是磁頭移動的距離大大縮短,對數據訪問的性能具有十分明顯的提升作用。
可是,當通過利用大量的磁碟並發以及short-str好ing磁頭短距離移動技術達成既定的性能目標之後,會發現其代價是非常高昂的,此外,由於僅僅使用了碟片的外道空間,所以存儲的空間利用率會非常差。
早在SSD固態盤技術出現之前,利用大量的磁碟並發以及short-str好ing磁頭短距離移動技術來滿足應用的性能要求是最普遍的辦法,即使在今天,這種方案依然被大量使用,原因是SSD固態盤的成本太高,所以用戶依然青睞磁碟而不是SSD。
NatApp技術和戰略總監MikeRiley就說:「對於順序訪問大數據塊和大文件這樣的應用,使用磁碟通常性價比更高。
」RAID及wide-striping技術對效率的影響很多用戶容易忽視一點,即RAID和RAID級別其實都會對性能和容量產生影響。
通過改變RAID級別來提升存儲性能或者空間的利用率是一種很現實的選擇。
校驗盤的數量、條帶的大小、RAID組的尺寸以及RAID組內數據塊大小都會影響性能和容量。
RAID技術對性能和容量的影響都熟悉那些常見的RAID級別及其特點,但還有一些不常見的技術趨勢值得關注,這些都與討論的存儲效率有關。
首先,RAID組的尺寸會影響性能、可用性以及容量。
通常,大的RAID組包含的磁碟數量更多,速度也更快,但是,當出現磁碟故障後,大RAID組也需要更多的時間用來重建。
每隔幾年,磁碟的容量都會翻一番,其結果是RAID重建的時間也相應變的更長,在數據重建期間出現其他磁碟故障的風險也變得更大。
即使是帶有雙校驗機制,允許兩塊磁碟同時出現故障的RAID6也存在風險增加的問題,況且,RAID6對性能的影響還比較大。
有一個更好的辦法是完全打破傳統RAID組和私有校驗盤的概念,比如,NetApp的DynamicDiskPools(DDP)技術,該技術將數據、校驗信息以及閑置空間塊分散放置在一個磁碟池中,池中所有的磁碟會並發處理RAID重建工作。
另一個有代表性的產品是HP的3PAR存儲系統,3PAR採用了一種叫做widestriping的技術,將數據條塊化之後散布在一大堆磁碟上,同時磁碟自身的裸容量又細分成若干小的存儲塊(chunklet)。
3PAR的卷管理器將這些小的chunklet組織起來形成若干個micro-RAID(微型RAID組),每個微型RAID組都有自己的校驗塊。
對於每一個單獨的微型RAID組來說,其成員塊(chunklet)都分布在不同的磁碟上,而且chunklet的尺寸也很小,因此數據重建時對性能的沖擊和風險都是最小的。
固態存儲毫無疑問,SSD固態存儲的出現是一件劃時代的「大事兒「,對於存儲廠商來說,在優化性能和容量這兩個方面,SSD技術都是一種全新的選擇。
與傳統的磁碟技術相比,SSD固態盤在延遲指標方面有數量級上的優勢(微秒對毫秒),而在IOPS性能上,SSD的優勢甚至達到了多個數量級(10000以上對數百)。
Flash技術(更多的時候是磁碟與flash的結合)為存儲管理員提供了一種更具性價比的解決方案,不必像過去那樣,為了滿足應用對性能的高要求而不得不部署大批量的磁碟,然後再將數據分散在磁碟上並發處理。
SSD固態盤最佳的適用場景是大量數據的隨機讀操作,比如虛擬化hypervisor,但如果是大數據塊和大文件的連續訪問請求,SSD的優勢就沒有那麼明顯了。
EMC統一存儲部門負責產品管理與市場的高級副總裁EricHerzog說:「Flash的價格仍然10倍於最高端的磁碟,因此,用戶只能酌情使用,而且要用在刀刃上。
」目前,固態存儲有三種不同的使用方式:第一種方式,用SSD固態盤完全代替機械磁碟。
用SSD替換傳統的磁碟是最簡單的提升存儲系統性能的方法。
如果選擇這個方案,關鍵的一點是用戶要協同存儲廠商來驗證SSD固態盤的效果,並且遵循廠商提供的建議。
如果存儲系統自身的處理能力無法承載固態存儲的高性能,那麼SSD有可能會將整個系統拖垮。
因為,如果SSD的速度超出了存儲控制器的承受范圍,那麼很容易出現性能(I/O阻塞)問題,而且會越來越糟。
另一個問題涉及到數據移動的機制,即的數據在什麼時候、以何種方式遷移到固態存儲上,或從固態存儲上移走。
最簡單但也最不可取的方法是人工指定,比如通過手動設定將資料庫的日誌文件固定存放在SSD固態存儲空間,對於比較老的存儲系統來說,這也許是唯一的方式。
在這里推薦用戶使用那些自動化的數據分層移動技術,比如EMC的FAST(FullyAutomatedStorageTiering)。
第二種方式,用Flash(固態存儲晶元)作為存儲系統的緩存。
傳統意義上的DRAM高速緩存容量太小,因此可以用Flash作為DRAM的外圍擴展,而這種利用Flash的方式較之第一種可能更容易實現一些。
Flash緩存本身是系統架構的一個組成部分,即使容量再大,也是由存儲控制器直接管理。
而用Flash作緩存的設計也很容易解決數據分層的難題,根據一般的定義,最活躍的數據會一直放置在高速緩存里,而過期的數據則駐留在機械磁碟上。
與第一種方式比較,存儲系統里所有的數據都有可能藉助Flash高速緩存來提升訪問性能,而第一種方式下,只有存放在SSD固態盤中的數據才能獲得高性能。
初看起來,用Flash做高速緩存的方案幾乎沒有缺陷,可問題是只有新型的存儲系統才支持這種特性,而且是選件,因此這種模式的發展受到一定的制約。
與此相反,看到用Flash做大容量磁碟的高速緩存(而不是系統的高速緩存)反而成為更普遍的存儲架構設計選擇,因為它可以將高容量和高性能更好的融合。
IBM存儲軟體業務經理RonRiffe說:「在一套磁碟陣列中,只需要增加2-3%的固態存儲空間,幾乎就可以讓吞吐帶寬提高一倍。
」在伺服器中使用Flash存儲卡。
數據的位置離CPU和內存越近,存儲性能也就越好。
在伺服器中插入PCIeFlash存儲卡,比如Fusion-IO,就可以獲得最佳的存儲性能。
不太有利的一面是,內置的Flash存儲卡無法在多台伺服器之間共享,只有單台伺服器上的應用程序才能享受這一好處,而且價格非常昂貴。
盡管如此,仍然有兩個廠商對此比較熱衷,都希望將自己的存儲系統功能向伺服器內部擴展。
一個是NetApp,正在使其核心軟體DataOntap能夠在虛擬機hypervisor上運行;
另一個是EMC,推出的功能叫做VFCache(原名叫ProjectLightning)。
顯而易見,這兩家公司的目標是通過提供伺服器端的Flash存儲分級獲得高性能,而這種方式又能讓用戶的伺服器與提供的外部存儲系統無縫集成。
存儲加速裝置存儲加速裝置一般部署在伺服器和存儲系統之間,既可以提高存儲訪問性能,又可以提供附加的存儲功能服務,比如存儲虛擬化等等。
多數情況下,存儲加速裝置後端連接的都是用戶已有的異構存儲系統,包括各種各樣的型號和品牌。
異構環境的問題是當面臨存儲效率低下或者性能不佳的困擾時,分析與評估的過程就比較復雜。
然而,存儲加速裝置能夠幫助已有磁碟陣列改善性能,並將各種異構的存儲系統納入一個統一的存儲池,這不但可以提升整個存儲環境的整體性能、降低存儲成本,而且還可以延長已有存儲的服役時間。
最近由IBM發布的是此類產品的代表,它將IBM的存儲虛擬化軟體SVC(SANVolumeController)以及存儲分析和管理工具集成在一個單獨的產品中。
可以將各種異構的物理存儲陣列納入到一個虛擬存儲池中,在這個池之上創建的卷還支持自動精簡配置。
該裝置不但可以管理連接在其後的存儲陣列中的Flash固態存儲空間,而且自身內部也可以安裝Flash固態存儲組件。
通過實時存儲分析功能,能夠識別出I/O訪問頻繁的數據以及熱點區域,並能夠自動地將數據從磁碟遷移到Flash固態存儲上,反向亦然。
用戶可以藉助的這些功能大幅度的提高現有的異構混合存儲系統環境的性能和空間利用率。
與IBM類似的產品還有Alacritech和Avere,它們都是基於塊或基於文件的存儲加速設備。
日益增加的存儲空間利用率利用存儲精簡技術,可以最大化的利用起可用的磁碟空間,存儲精簡技術包括自動精簡配置、瘦克隆、壓縮以及重復數據刪除等等。
這些技術都有一個共同的目標,即最大程度的引用已經存在的數據塊,消除或避免存儲重復的數據。
然而存儲精簡技術對系統的性能稍有影響,所以對於用戶來說,只有在明確了性能影響程度並且能夠接受這種影響的前提下,才應該啟動重復數據刪除或數據壓縮的功能。
性能和容量:密不可分存儲系統的性能和空間利用率是緊密相關的一對參數,提升或改進其中的一個,往往會給另一個帶來負面的影響。
因此,只有好好的利用存儲分析和報表工具,才能了解存儲的真實性能表現,進而發現系統瓶頸並採取適當的補救措施,這是必要的前提。
總之,提高存儲效率的工作其實就是在性能需求和存儲成本之間不斷的尋找平衡。
㈣ C#里什麼集合存儲效率最好
泛型集合 有List<T>
因為在使用的時候不需要類型轉換,也就是在堆棧中避免的裝箱和拆箱操作。這樣系統的速率會快很多。。
所謂裝箱 就是 string abc= (string)object
拆箱就是反過來。
㈤ mysql數據比較多應該怎麼存儲效率會高些
有很多類型,但是數據欄位都是一樣的,存在一個表好還是分表存,分表存單個分類查詢比較快,但是要查所有分類的查多個表是不是會慢一些數據量比較大的有1000多萬條數據!
㈥ 存儲過程為什麼效率高
存儲過程的優勢體現在,默認情況下,存儲過程會重用已緩存的執行計劃,節省了分析、解析和優化代碼所需要的CPU資源和時間。縮短了客戶端提交到SQL Server的代碼字元串,網路流量也被降低。客戶端只需要提交存儲過程的名稱和參數,而不是全部的代碼。所有的操作都在伺服器端完成,避免了客戶端和伺服器之間的多次往返。
FROM
CSDN
galenkeny
㈦ java中boolean用於大量變數時,存儲效率不高,一個變數用八位,如何提高其存儲效率
硬碟有那麼不夠嗎?真要摳的話,既然boolean就true/false,那就可以用一個二進制位表示一個boolean,那8位不就能表示8個boolean了
歡迎關注公眾號:JavaHi
㈧ 長度有影響,為什麼對存儲效率沒影響
mysql 的varchar和oracle 的varchar2 一樣,都是可變長的字元類型。也就是說定義的長度過多,不會有太多的影響。它使用的存儲空間,只取決於你實際存放的字元的長度。
㈨ 如何提升存儲使用的效率與性能
需要用索引來解決,索引的創建規則如下:\r\n1、表的主鍵、外鍵必須有索引;\r\n2、數據量超過300的表應該有索引;\r\n3、經常與其他表進行連接的表,在連接欄位上應該建立索引;\r\n4、經常出現在Where子句中的欄位,特別是大表的欄位,應該建立索引;\r\n5、索引應該建在選擇性高的欄位上;\r\n6、索引應該建在小欄位上,對於大的文本欄位甚至超長欄位,不要建索引;\r\n7、復合索引的建立需要進行仔細分析;盡量考慮用單欄位索引代替:\r\nA、正確選擇復合索引中的主列欄位,一般是選擇性較好的欄位;\r\nB、復合索引的幾個欄位是否經常同時以AND方式出現在Where子句中?單欄位查詢是否極少甚至沒有?如果是,則可以建立復合索引;否則考慮單欄位索引;\r\nC、如果復合索引中包含的欄位經常單獨出現在Where子句中,則分解為多個單欄位索引;\r\nD、如果復合索引所包含的欄位超過3個,那麼仔細考慮其必要性,考慮減少復合的欄位;\r\nE、如果既有單欄位索引,又有這幾個欄位上的復合索引,一般可以刪除復合索引;\r\n8、頻繁進行數據操作的表,不要建立太多的索引;\r\n9、刪除無用的索引,避免對執行計劃造成負面影響;\r\n以上是一些普遍的建立索引時的判斷依據。一言以蔽之,索引的建立必須慎重,對每個索引的必要性都應該經過仔細分析,要有建立的依據。因為太多的索引與不充分、不正確的索引對性能都毫無益處:在表上建立的每個索引都會增加存儲開銷,索引對於插入、刪除、更新操作也會增加處理上的開銷。另外,過多的復合索引,在有單欄位索引的情況下,一般都是沒有存在價值的;相反,還會降低數據增加刪除時的性能,特別是對頻繁更新的表來說,負面影響更大。
㈩ 哪種文件系統對數據的存儲效率最高
NTFS