『壹』 計算機組成原理,CPU與存儲器的連接
因為有16根地址線,8根數據線對應8位。所以內存地址是從0000 0000 0000 0000開始,8K就是2的13次方。所以A(12)對應就是1。所以最小系統程序區就是0000 0000 0000 0000~0001 1111 1111 1111。取到A(14)是因為用了兩片RAM。這里最重要要理解一點:二進制
加1的情況。例如:0011 1111的下一個內存地址是0100 0000。
最大4K位是先取16根地址線的最後一位。用二進製表示就是1111 1111 1111 1111,然後向前4K
『貳』 計算機組成原理。存儲器與CPU的連接
1k×8位就是1k位元組
2片就是2k位元組,增加一倍
『叄』 如何解決存儲器和CPU之間的時序配合問題,述說其詳細過程
http://blog.21ic.com/user1/3794/archives/2007/40244.html
分享】存儲器與CPU的連接2007-7-19 16:46:00
存儲器與CPU的連接
存儲器與CPU或系統匯流排的連接,這個題目很大。注意到以位元組為單位組織的存儲器是16位寬度、乃至32位寬度的存儲器的基礎,本著由易到難、由淺入深的原則,這里先考慮以位元組為單位組織的存儲器與8位CPU的連接,在下一節介紹16位寬度的存儲器與16位CPU(以8086為例)的連接,在後面的章節再討論32位CPU(以80386為例)的存儲器組織。
在考慮存儲晶元類型時,也是先考慮與CPU連接較為方便的SRAM和ROM,然後再指出DRAM與CPU連接時要特別考慮的地方。
在存儲器與CPU連接時一般要考慮以下幾個問題:
·CPU匯流排的負載能力。
·CPU與存儲器速度的配合問題。
·存儲器的地址空間分配。
·讀/寫控制信號的連接。
·數據線的連接。
·地址線的連接與存儲晶元片選信號的產生。
1.CPU匯流排的負載能力
CPU匯流排的驅動能力有限,通常為一到數個,TTL負載,因此,在較大的系統中需要考慮匯流排驅動。一般做法是,對單向傳送的地址和控制匯流排,可採用三態鎖存器(如74LS373、8282等)和三態單向驅動器(如74LS244)等來加以鎖存和驅動;對雙向傳送的數據匯流排,可採用三態雙向驅動器(如74LS245、8286等)來加以驅動。三態雙向驅動器也稱匯流排收發器或數據收發器。
2.CPU與存儲器速度的配合問題
每一種存儲晶元都有自己固有的時序特性,這在前面已多次講到。在和cPu相連時必須處理好時序的配合問題。處理這個問題應以CPU的時序為基準,從CPU的角度提要求。
例如,存儲晶元讀取時間應小於CPU從發出地址到要求數據穩定的時間間隔;存儲晶元從片選有效到輸出穩定的時間應小於系統自片選有效到cPu要求數據穩定的時間間隔。如果沒有滿足要求的存儲晶元,或者出於價格因素而選用速度較慢的存儲晶元時,則應提供外部電路,以產生READY信號,迫使CPU插入等待時鍾Tw。看一個具體的例子,2114-2的讀取時間最大為200 ns,而cPu要求的從地址有效到數據穩定的時間間隔為150 ns,則不能使用2114—2,可選用比它快的晶元。如果出於價格因素,一定要用2114—2,則需要設計READY產生電路,以便插入Tw。
3.存儲器的地址空間分配
內存通常分為RAM和ROM兩大部分,而RAM又分為操作系統佔用區和用戶區。另外,目前生產的存儲器晶元,單片的容量仍然是有限的,即它的定址空間是有限的,一般要由若干晶元組成一個存儲器。所以,在和CPU連接時需進行存儲器的地址空間分配,即需要事先確定每個晶元(或由「×l位」或「×4位」晶元組成的晶元組)所佔用的地址空間。
4.讀/寫控制信號的連接
總的原則是CPU的讀/寫控制信號分別和存儲器晶元的讀/寫信號輸入端相連。實際上,一般存儲器晶元沒有讀輸入端,是用寫無效時的片選信號兼作讀信號。有的存儲器晶元設有輸出允許()引腳,一般將該引腳和CPU的讀信號相連,以便該片被選中且讀信號有效時將片內數據輸出三態門打開。對於不需要在線編程的ROM晶元,不存在寫信號的連接。
5.數據線的連接
這個問題與存儲器的讀/寫寬度有關,而存儲器讀/寫的最大寬度一般為CPU對外數據匯流排的位數。在考慮存儲器與CPU的數據線連接時,總的原則是:如果選用晶元的晶元字和所要設計的存儲器的讀/寫寬度相同,則直接將它的數據線分別和CPU的數據線相連;如果晶元字的位數小於所要設計的存儲器的讀/寫寬度,則需進行「位擴展」,即用幾片組合在一起,使它們的晶元字位數的總和等於存儲器的讀/寫寬度,將它們的數據線分別和CPU的數據線按對應關系相連。
這里以8位CPU配8位寬度的存儲器為例。若選用「×8位」存儲晶元,則將它的8根數據線分別和CPU的8根數據線相連即可;而選用晶元字不足8位的存儲晶元,則需要用幾片(「×1位」晶元需8片,「×4位」位晶元需2片)才能構成一個8位寬度的存儲器,這時,需將這些晶元的數據線按位的對應關系分別和CPU的8根數據線相連。
有些存儲晶元,數據的輸入和輸出分別緩沖,一位數據設置DIN和DOUT兩個數據線引腳。對於這種晶元,需將一位的DIN和DOUT引腳連起來,再和CPU的一根數據線相連。
6.地址線的連接及存儲晶元片選信號的產生
一個存儲器系統通常需要若干個存儲晶元。為了能正確實現定址,一般的做法是,將cPu或系統的一部分地址線(通常是低位地址線,位數取決於存儲晶元的容量)連到所有存儲晶元,以進行片內定址(存儲晶元內均設有地址解碼器);而用另一部分地址線(高位地址線)進行晶元選擇。存儲器系統設計的關鍵在於如何進行晶元選擇,即如何對高位地址解碼以產生晶元的片選信號,常用以下三種方法:
(1)線選法
用一根地址線直接作一個存儲晶元的片選信號。例如,一台8位微機,有16根地址線,現要配2 KB RAM和2 KB ROM,均選用2 K×8位的晶元,則各需一片。這時可採用一種最簡單的地址選擇方法,如圖3.24所示。將CPU的地址線的低11位(A10~A0)和兩個晶元的地址線分別相連,晶元的片選直接和其他的高位地址線中的一根相連,圖中A15反相後接RAM的,A14反相後接ROM的。這樣,A15、A14為1 0時選中RAM片,為0 1時選中ROM片。
這里分析一下RAM晶元佔用地址空間的情況。未用的地址位(這里是A13~A11)通常取0,即RAM晶元的設計地址空間為8000H~87FFH。將A15、A14固定為1 0,A10一AO作片內定址,當A13~A11取不同的組合時,可形成包括上述設計空間在內的8個區域。除去設計空間外,其他區域是:8800H~8FFFH,9000H~97FFH,…,B800H~BFFFH。由於A13~A11沒有參加解碼,訪問這7個區域中的任何一個單元都會影響到設計空間中相應的單元,因此,這7個區域不得他用。可以認為這些區域也被該RAM晶元所佔用著,稱這些區域為設計空間的重疊區。對於該例中的ROM晶元,同樣也存在7個重疊區,讀者可自行分析。
線選法的優點是簡單、無需外加選擇電路;缺點是不能有效地利用地址空間,也不便於系統的擴充。該方法可用在存儲容量需求小,且不要求擴充的場合,例如單片機應用系統。
(2)全解碼
全部地址線參加解碼,除去進行片內定址的低位地址線外,其餘地址線均參加解碼,以進行片選。例如,一台8位微機,現要求配8 KB RAM,選用2 K×8位的晶元,安排在64 KB地址空間低端的8 KB位置。圖3.25所示為該8 KB RAM與CPU(或系統匯流排)的連接。圖中74Lsl38是3線一8線解碼器。它有3個代碼輸入端c、B、A(A為低位)和8個解碼輸出端Y0~Y7。74LSl38還有3個使能端(或叫允許端)G1、和,第一個為高電平有效,後兩個為低電平有效。只有當它們為l 0 0時,解碼器才進行正常解碼;否則,解碼器不工作,所有的輸出均無效(為高)。表3.5是74LSl38的真值表。此外,常用的3線一8線解碼器還有8205,其輸入/輸出特性和74LS138完全一樣,只是使用了另一組信號名稱。
從圖3.25中可以看到,除片內定址的低位地址線外,高位地址都參與了解碼。根據圖中的接法,當A15~A1l為00000時,YO有效,選中左起第一片;為00001時,Y1有效,選中左起第二片,其他依此類推。
全解碼的優點是可利用全部地址空間,可擴充性好;缺點是解碼電路開銷大。
(3)部分解碼
它是前兩種方法的綜合,即除進行片內定址的低位地址線外,其餘地址線有一部分參加解碼以進行片選。以圖3.26所示為例,這里最高位A15沒有參加解碼。因為A15沒有參加解碼,所以也存在重疊區問題。
部分解碼是界於線選法和全解碼之間的一種方法,其性能也界於二者之間:可定址空間比線選法大,比全解碼小;而解碼電路比線選法復雜,比全解碼簡單。
上面圍繞存儲晶元片選信號的產生,說明了三種解碼方法。這些方法也適用於後面要介紹的I/O埠的定址。
『肆』 給我一篇計算機組成原理的論文
計算機組成原理存儲器(期末論文)
綿陽師范學院
計算機組成原理(期末論文)
題 目 微型計算機的存儲器
作 者 ***
單 位 數計學院07級7班(07084207**)
指 導教 師 ***
論文工作時間 2009年5月
摘要
隨著微型計算機的迅速普及和發展,人們對計算機的功能要求已不再是限於單純的計算和數據處理了,而是向著融合圖像、聲音、文字為一體的多媒體機和大型娛樂型機發展,在這一發展過程中,存儲器逐漸成為了人們關注的熱點,這里,我們將對存儲器的有關知識做進一步詳細的介紹。
關鍵字
微型計算機 存儲器 分類 性能指標
存儲器是計算機系統內最主要的記憶裝置,能夠把大量計算機程序和數據存儲起來,既能接收計算機內的信息(數據和程序),又能保存信息,還可以根據命令讀取已保存的信息。
存儲器按功能可分為主存儲器和輔助存儲器,按存放位置又可分為內存儲器和外存儲器。
存儲器的性能指標主要由容量、存取速度、可靠性和性能/性價比決定。
存儲器的分類
存儲器按功能可分為主存儲器(簡稱主存)和輔助存儲器(簡稱輔存)。主存是相對存取速度快而容量小的一類存儲器,輔存則是相對存取速度慢而容量很大的一類存儲器。
主存儲器,也稱為內存儲器(簡稱內存),內存直接與CPU相連接,是計算機中主要的工作存儲器,當前運行的程序與數據存放在內存中。
輔助存儲器也稱為外存儲器(簡稱外存),計算機執行程序和加工處理數據時,外存中的信息按信息塊或信息組先送入內存後才能使用,即計算機通過外存與內存不斷交換數據的方式使用外存中的信息。
一個存儲器中所包含的位元組數稱為該存儲器的容量,簡稱存儲容量。存儲容量通常用KB、MB或GB表示,其中B是位元組(Byte),並且1KB=1024B,1MB=1024KB,1GB=1024MB。例如,640KB就表示640×1024=655360個位元組。
(1)內存儲器
現代的內存儲器多半是半導體存儲器,採用大規模集成電路或超大規模集成電路器件。內存儲器按其工作方式的不同,可以分為隨機存取存儲器(簡稱隨機存儲器或RAM)和只讀存儲器(簡稱ROM)。
隨機存儲器。隨機存儲器允許隨機的按任意指定地址向內存單元存入或從該單元取出信息,對任一地址的存取時間都是相同的。由於信息是通過電信號寫入存儲器的,所以斷電時RAM中的信息就會消失。計算機工作時使用的程序和數據等都存儲在RAM中,如果對程序或數據進行了修改之後,應該將它存儲到外存儲器中,否則關機後信息將丟失。通常所說的內存大小就是指RAM的大小,一般以KB或MB為單位。
只讀存儲器。只讀存儲器是只能讀出而不能隨意寫入信息的存儲器。ROM中的內容是由廠家製造時用特殊方法寫入的,或者要利用特殊的寫入器才能寫入。當計算機斷電後,ROM中的信息不會丟失。當計算機重新被加電後,其中的信息保持原來的不變,仍可被讀出。ROM適宜存放計算機啟動的引導程序、啟動後的檢測程序、系統最基本的輸入輸出程序、時鍾控製程序以及計算機的系統配置和磁碟參數等重要信息。
(2)外存儲器
PC常用的外存是軟磁碟(簡稱軟盤)和硬磁碟(簡稱硬碟),目前,光碟的使用也越來越普及。下面介紹常用的三種外存:
軟盤:目前計算機常用的軟盤按尺寸劃分有5.25英寸盤(簡稱5寸盤)和3.5英寸盤(簡稱3寸盤)。
二者之間的主要區別是:3.5英寸盤的尺寸比5.25英寸盤小,由硬塑料製成,不易彎曲和損壞;3.5英寸盤的邊緣有一個可移動的金屬滑片,對碟片起保護作用,讀寫槽位於金屬滑片下,平時被蓋住:3.5英寸盤無索引孔;3.5英寸盤的防寫裝置是盤角上的一個正方形的孔和一個滑塊,當滑塊封住小孔時,可以對碟片進行讀寫操作,當小孔打開時,則處於防寫狀態。
軟盤記錄信息的格式是:將碟片分成許多同心圓,稱為磁軌,磁軌由外向內順序編號,信息記錄在磁軌上。另外,從同心圓放射出來的若干條線將每條磁軌分割成若干個扇區,順序編號。這樣,就可以通過磁軌號和扇區號查找到信息在軟盤上存儲的位置,一個完整的軟盤存儲系統是由軟盤、軟盤驅動器和軟碟機適配卡組成。
軟盤只能存儲數據,如果要對它進行讀出或寫入數據的操作,還必須有軟盤驅動器。軟盤驅動器位於主機箱內,由磁頭和驅動裝置兩部分組成。磁頭用來定位磁軌,驅動裝置的作用是使磁碟高速旋轉,以便對磁碟進行讀寫操作。軟碟機適配卡是連接軟盤驅動器與主板的專用介面板,通過34芯扁平電纜與軟盤驅動器連接。
硬碟:從數據存儲原理和存儲格式上看,硬碟與軟盤完全相同。但硬碟的磁性材料是塗在金屬、陶瓷或玻璃製成的硬碟基片上,而軟盤的基片是塑料的。硬碟相對軟盤來說,主要是存儲空間比較大,現在的硬碟容量已在160GB以上。硬碟大多由多個碟片組成,此時,除了每個碟片要分為若干個磁軌和扇區以外,多個碟片表面的相應磁軌將在空間上形成多個同心圓柱面。
通常情況下,硬碟安裝在計算機的主機箱中,但現在已出現多種移動硬碟。這種移動硬碟通過USB介面和計算機連接,方便用戶攜帶大容量的數據。
光碟:隨著多媒體技術的推廣,光碟以其容量大、壽命長、成本低的特點,很快受到人們的歡迎,普及相當迅速。與磁碟相比,光碟的讀寫是通過光碟驅動器中的光學頭用激光束來讀寫的。目前,用於計算機系統的光碟有三類:只讀光碟(CD-ROM)、一次寫入光碟(CD-R)和可擦寫光碟(CD-RW)。
存儲器的性能指標
1、存儲器容量存儲器容量是指存儲器可以容納的二進制信息總量,即存儲信息的總位(Bit)數。設微機的地址線和數據線位數分別是p和q,則該存儲器晶元的地址單元總數為2p,該存儲器晶元的位容量為2p × q。例如:存儲器晶元6116,地址線有11根,數據線有8根,則該晶元的位容量是:位容量=211 ×8 = 2048 ×8 = 16384位存儲器通常是以位元組為單位編址的,一個位元組有8位,所以有時也用位元組容量表示存儲器容量,例如上面講的6116晶元的容量為2KB,記作2K ×8,其中:1KB = 1024B(Byte)=1024 ×8 =8192位存儲器容量越大,則存儲的信息越多。目前存儲器晶元的容量越來越大,價格在不斷地降低,這主要得益於大規模集成電路的發展。
2、存取速度存儲器的速度直接影響計算機的速度。存取速度可用存取時間和存儲周期這兩個時間參數來衡量。存取時間是指CPU發出有效存儲器地址從而啟動一次存儲器讀寫操作,到該讀寫操作完成所經歷的時間,這個時間越小,則存取速度越快。目前,高速緩沖存儲器的存取時間已小於5ns。存儲周期是連續啟動兩次獨立的存儲器操作所需要的最小時間間隔,這個時間一般略大於存取時間。
3、可靠性
存儲器的可靠性用MTBF(Mean Time Between Failures)平均故障間隔時間來衡量, MTBF越長,可靠性越高,內存儲器常採用糾錯編碼技術來延長MTBF以提高可靠性。
4、性能/價格比
這是一個綜合性指標,性能主要包括上述三項指標—存儲容量、存儲速度和可靠性。對不同用途的存儲器有不同的要求。例如,有的存儲器要求存儲容量,則就以存儲容量為主;有的存儲器如高速緩沖器,則以存儲速度為主。
現在普遍通用的存儲器
一、半導體存儲器的特點分類
1、半導體存儲器的特點
⑴ 速度快,存取時間可到ns級;
⑵ 集成度高,不僅存儲單元所佔的空間小,而且解碼
電路和緩沖寄存器、讀出寫入電路等都製作在同一晶元中。目前已達到單片1024Mb(相當於128M位元組)。
⑶ 非破壞性讀出,即信息讀出後存儲單元中的信息還在,特別是靜態RAM,讀出後不需要再生。
⑷ 信息的易失性(對RAM),即斷電後信息丟失。
⑸ 信息的揮發性(對DRAM),即存儲的信息過一定時間要丟失,所以要周期地再生(刷新)。
⑹ 功耗低,特別是CMOS存儲器。
⑺ 體積小,價格在不斷地下降。
2、半導體存儲器的分類
主要分為兩大類,可讀寫存儲器RAM和只讀存儲器ROM。
RAM分為靜態RAM(SRAM)和動態RAM(DRAM)兩種。目前計算機內的主存儲器都是DRAM,它的集成度高、功耗很低,缺點是需要再生。SRAM是非揮發的,所以不需要再生,但集成度比DRAM要低,計算機中的高速緩沖存儲器大多用SRAM.現在有一些新的RAM,如組合RAM(IRAM),將刷新電路與DRAM集成在一起;非易失RAM(NVRAM),實際上是由SRAM和EEPROM共同構成。正常情況下,它和一般SRAM一樣,而在系統掉電瞬間它把SRAM中的信息保存在EEPROM中,從而使信息不丟失。只讀存儲器ROM的特點是用戶在使用時只能讀出其中的信息,不能修改和寫入信息。近幾年出現了一中新的存儲器叫Flash存儲器(閃爍存儲器),這是一種電可擦除的非易失性只讀存儲器。
二、半導體存儲器的組成
它一般由存儲體、地址選擇電路、輸入輸出電路和控制電路組成。
1、存儲體
存儲體是存儲1和0信息的電路實體,它由許多個存儲單元組成,每個存儲單元一般由若干位(8位)組成,每一位需要一個存儲元件,每個存儲單元有一個編號,稱為地址。存儲器的地址用一組二進制數表示,其地址線的根數n與存儲單元的數量N之間的關系為:2n = N
2、地址選擇電路
地址選擇電路包括地址解碼器和地址碼寄存器。地址解碼器用來對地址解碼。設其輸入端的地址線有n根,輸出線數為N,則它分別對應2n個不同的地址碼,作為對地址單元的選擇線。這些輸出的選擇線又叫做字線。地址解碼的方式有兩種:
⑴ 單解碼方式
它的全部地址碼只用一個電路解碼,解碼輸出的字選擇線直接選中對應的存儲單元。這一方式需要的選擇線數較多,只適用於容量較小的存儲器。
⑵ 雙解碼方式(或稱矩陣解碼)
它將地址碼分為X與Y兩部分,用兩個解碼電路分別解碼。X向解碼稱為行解碼,其輸出線稱為行選擇線,它選中存儲矩陣中一行的所有存儲單元。Y向解碼又稱為列解碼,其輸出線稱為列選擇線,它選中一列的所有單元。只有X向和Y向的選擇線同時選中的那一位存儲單元,才能進行讀寫操作。由圖可見,具有1024個基本單元的存儲體排列成32×32的矩陣,它的 X向和Y向解碼器各有32根解碼輸出線,共64根。若採用單解碼方式,則要1024根解碼輸出線。因此,雙解碼方式所需要的選擇線數目較少 ,也簡化了存儲器的結構,故它適用於大容量的存儲器。
3、讀寫控制電路
讀寫控制電路包括讀寫放大器、數據寄存器(三態雙向緩沖器)等。它是數據信息輸入輸出的通道。外界對存儲器的控制信號有讀信號RD、寫信號WR和片選信號CS。
參考文獻
1、《計算機組成原理》第二版,唐朔飛 編著,高等教育出版社,2008.1
2、《微型計算機原理與應用》肖金立 編著,電子工業出版社,2003-1
3、計算機組成原理實驗指導書與習題集》(王成,周繼群,蔡月茹著)清華大學出版社出版
4、《計算機組成原理學習指導訓練》(曠海蘭,劉彥,蔣翰洋等編著)中國水利水電出版社出版