❶ 雲存儲的底層關鍵技術有哪些
一切以客戶的需求為出發點。傳統存儲以文件系統為典型代表,但是隨著數據爆炸性增長,傳統文件系統已經無法滿足對存儲系統的容量、性能等需求,因此,雲存儲應運而生。雲存儲最大的特點是數據被集中存儲在數據中心,公有雲存儲將客戶數據存放在公有雲服務商數據中心,而私有雲存儲則是將公有雲存儲能力私有化部署在客戶自身的數據中心。既然提到了數據中心,可想而知雲存儲最大的特點應該是海量:解決數以PB至EB的數據存儲需求。所有雲存儲技術面對的通用問題有如下幾個:
擴展性:即容量可以通過橫向增加伺服器、磁碟等線性擴展,軟體不應該成為限制擴展性的瓶頸;
可靠性:如何保證數據不丟失,或者丟失概率極低;
可用性:如何保證數據always online;
性能:不同的客戶的不同使用場景對雲存儲性能提出不同需求。
❷ 目前主要三種數據存儲方式
三種存儲方式:DAS、SAN、NAS
三種存儲類型:塊存儲、文件存儲、對象存儲
塊存儲和文件存儲是我們比較熟悉的兩種主流的存儲類型,而對象存儲(Object-based Storage)是一種新的網路存儲架構,基於對象存儲技術的設備就是對象存儲設備(Object-based Storage Device)簡稱OSD。
本質是一樣的,底層都是塊存儲,只是在對外介面上表現不一致,分別應用於不同的業務場景。
分布式存儲的應用場景相對於其存儲介面,現在流行分為三種:
對象存儲: 也就是通常意義的鍵值存儲,其介面就是簡單的GET、PUT、DEL和其他擴展,如七牛、又拍、Swift、S3
塊存儲: 這種介面通常以QEMU Driver或者Kernel Mole的方式存在,這種介面需要實現Linux的Block Device的介面或者QEMU提供的Block Driver介面,如Sheepdog,AWS的EBS,青雲的雲硬碟和阿里雲的盤古系統,還有Ceph的RBD(RBD是Ceph面向塊存儲的介面)
文件存儲: 通常意義是支持POSIX介面,它跟傳統的文件系統如Ext4是一個類型的,但區別在於分布式存儲提供了並行化的能力,如Ceph的CephFS(CephFS是Ceph面向文件存儲的介面),但是有時候又會把GFS,HDFS這種非POSIX介面的類文件存儲介面歸入此類。
❸ 存儲器的原理是什麼
存儲器講述工作原理及作用
介紹
存儲器(Memory)是現代信息技術中用於保存信息的記憶設備。其概念很廣,有很多層次,在數字系統中,只要能保存二進制數據的都可以是存儲器;在集成電路中,一個沒有實物形式的具有存儲功能的電路也叫存儲器,如RAM、FIFO等;在系統中,具有實物形式的存儲設備也叫存儲器,如內存條、TF卡等。計算機中全部信息,包括輸入的原始數據、計算機程序、中間運行結果和最終運行結果都保存在存儲器中。它根據控制器指定的位置存入和取出信息。有了存儲器,計算機才有記憶功能,才能保證正常工作。計算機中的存儲器按用途存儲器可分為主存儲器(內存)和輔助存儲器(外存),也有分為外部存儲器和內部存儲器的分類方法。外存通常是磁性介質或光碟等,能長期保存信息。內存指主板上的存儲部件,用來存放當前正在執行的數據和程序,但僅用於暫時存放程序和數據,關閉電源或斷電,數據會丟失。
2.按存取方式分類
(1)隨機存儲器(RAM):如果存儲器中任何存儲單元的內容都能被隨機存取,且存取時間與存儲單元的物理位置無關,則這種存儲器稱為隨機存儲器(RAM)。RAM主要用來存放各種輸入/輸出的程序、數據、中間運算結果以及存放與外界交換的信息和做堆棧用。隨機存儲器主要充當高速緩沖存儲器和主存儲器。
(2)串列訪問存儲器(SAS):如果存儲器只能按某種順序來存取,也就是說,存取時間與存儲單元的物理位置有關,則這種存儲器稱為串列訪問存儲器。串列存儲器又可分為順序存取存儲器(SAM)和直接存取存儲器(DAM)。順序存取存儲器是完全的串列訪問存儲器,如磁帶,信息以順序的方式從存儲介質的始端開始寫入(或讀出);直接存取存儲器是部分串列訪問存儲器,如磁碟存儲器,它介於順序存取和隨機存取之間。
(3)只讀存儲器(ROM):只讀存儲器是一種對其內容只能讀不能寫入的存儲器,即預先一次寫入的存儲器。通常用來存放固定不變的信息。如經常用作微程序控制存儲器。目前已有可重寫的只讀存儲器。常見的有掩模ROM(MROM),可擦除可編程ROM(EPROM),電可擦除可編程ROM(EEPROM).ROM的電路比RAM的簡單、集成度高,成本低,且是一種非易失性存儲器,計算機常把一些管理、監控程序、成熟的用戶程序放在ROM中。
3.按信息的可保存性分類
非永久記憶的存儲器:斷電後信息就消失的存儲器,如半導體讀/寫存儲器RAM。
永久性記憶的存儲器:斷電後仍能保存信息的存儲器,如磁性材料做成的存儲器以及半導體ROM。
4.按在計算機系統中的作用分
根據存儲器在計算機系統中所起的作用,可分為主存儲器、輔助存儲器、高速緩沖存儲器、控制存儲器等。為了解決對存儲器要求容量大,速度快,成本低三者之間的矛盾,目前通常採用多級存儲器體系結構,即使用高速緩沖存儲器、主存儲器和外存儲器。
能力影響
從寫命令轉換到讀命令,在某個時間訪問某個地址,以及刷新數據等操作都要求數據匯流排在一定時間內保持休止狀態,這樣就不能充分利用存儲器通道。此外,寬並行匯流排和DRAM內核預取都經常導致不必要的大數據量存取。在指定的時間段內,存儲器控制器能存取的有用數據稱為有效數據速率,這很大程度上取決於系統的特定應用。有效數據速率隨著時間而變化,常低於峰值數據速率。在某些系統中,有效數據速率可下降到峰值速率的10%以下。
通常,這些系統受益於那些能產生更高有效數據速率的存儲器技術的變化。在CPU方面存在類似的現象,最近幾年諸如AMD和 TRANSMETA等公司已經指出,在測量基於CPU的系統的性能時,時鍾頻率不是唯一的要素。存儲器技術已經很成熟,峰值速率和有效數據速率或許並不比以前匹配的更好。盡管峰值速率依然是存儲器技術最重要的參數之一,但其他結構參數也可以極大地影響存儲器系統的性能。
影響有效數據速率的參數
有幾類影響有效數據速率的參數,其一是導致數據匯流排進入若干周期的停止狀態。在這類參數中,匯流排轉換、行周期時間、CAS延時以及RAS到CAS的延時(tRCD)引發系統結構中的大部分延遲問題。
匯流排轉換本身會在數據通道上產生非常長的停止時間。以GDDR3系統為例,該系統對存儲器的開放頁不斷寫入數據。在這期間,存儲器系統的有效數據速率與其峰值速率相當。不過,假設100個時鍾周期中,存儲器控制器從讀轉換到寫。由於這個轉換需要6個時鍾周期,有效的數據速率下降到峰值速率的 94%。在這100個時鍾周期中,如果存儲器控制器將匯流排從寫轉換到讀的話,將會丟失更多的時鍾周期。這種存儲器技術在從寫轉換到讀時需要15個空閑周期,這會將有效數據速率進一步降低到峰值速率的79%。表1顯示出針幾種高性能存儲器技術類似的計算結果。
顯然,所有的存儲器技術並不相同。需要很多匯流排轉換的系統設計師可以選用諸如XDR、RDRAM或者DDR2這些更高效的技術來提升性能。另一方面,如果系統能將處理事務分組成非常長的讀寫序列,那麼匯流排轉換對有效帶寬的影響最小。不過,其他的增加延遲現象,例如庫(bank)沖突會降低有效帶寬,對性能產生負面影響。
DRAM技術要求庫的頁或行在存取之前開放。一旦開放,在一個最小周期時間,即行周期時間(tRC)結束之前,同一個庫中的不同頁不能開放。對存儲器開放庫的不同頁存取被稱為分頁遺漏,這會導致與任何tRC間隔未滿足部分相關的延遲。對於還沒有開放足夠周期以滿足tRC間隙的庫而言,分頁遺漏被稱為庫沖突。而tRC決定了庫沖突延遲時間的長短,在給定的DRAM上可用的庫數量直接影響庫沖突產生的頻率。
大多數存儲器技術有4個或者8個庫,在數十個時鍾周期具有tRC值。在隨機負載情況下,那些具有8個庫的內核比具有4個庫的內核所發生的庫沖突更少。盡管tRC與庫數量之間的相互影響很復雜,但是其累計影響可用多種方法量化。
存儲器讀事務處理
考慮三種簡單的存儲器讀事務處理情況。第一種情況,存儲器控制器發出每個事務處理,該事務處理與前一個事務處理產生一個庫沖突。控制器必須在打開一個頁和打開後續頁之間等待一個tRC時間,這樣增加了與頁循環相關的最大延遲時間。在這種情況下的有效數據速率很大程度上決定於I/O,並主要受限於DRAM內核電路。最大的庫沖突頻率將有效帶寬削減到當前最高端存儲器技術峰值的20%到30%。
在第二種情況下,每個事務處理都以隨機產生的地址為目標。此時,產生庫沖突的機會取決於很多因素,包括tRC和存儲器內核中庫數量之間的相互作用。tRC值越小,開放頁循環地越快,導致庫沖突的損失越小。此外,存儲器技術具有的庫越多,隨機地址存取庫沖突的機率就越小。
第三種情況,每個事務處理就是一次頁命中,在開放頁中定址不同的列地址。控制器不必訪問關閉頁,允許完全利用匯流排,這樣就得到一種理想的情況,即有效數據速率等於峰值速率。
第一種和第三種情況都涉及到簡單的計算,隨機情況受其他的特性影響,這些特性沒有包括在DRAM或者存儲器介面中。存儲器控制器仲裁和排隊會極大地改善庫沖突頻率,因為更有可能出現不產生沖突的事務處理,而不是那些導致庫沖突的事務處理。
然而,增加存儲器隊列深度未必增加不同存儲器技術之間的相對有效數據速率。例如,即使增加存儲器控制隊列深度,XDR的有效數據速率也比 GDDR3高20%。存在這種增量主要是因為XDR具有更高的庫數量以及更低的tRC值。一般而言,更短的tRC間隔、更多的庫數量以及更大的控制器隊列能產生更高的有效帶寬。
實際上,很多效率限制現象是與行存取粒度相關的問題。tRC約束本質上要求存儲器控制器從新開放的行中存取一定量的數據,以確保數據管線保持充滿。事實上,為保持數據匯流排無中斷地運行,在開放一個行之後,只須讀取很少量的數據,即使不需要額外的數據。
另外一種減少存儲器系統有效帶寬的主要特性被歸類到列存取粒度范疇,它規定了每次讀寫操作必須傳輸的數據量。與之相反,行存取粒度規定每個行激活(一般指每個RAS的CAS操作)需要多少單獨的讀寫操作。列存取粒度對有效數據速率具有不易於量化的巨大影響。因為它規定一個讀或寫操作中需要傳輸的最小數據量,列存取粒度給那些一次只需要很少數據量的系統帶來了問題。例如,一個需要來自兩列各8位元組的16位元組存取粒度系統,必須讀取總共32位元組以存取兩個位置。因為只需要32個位元組中的16個位元組,系統的有效數據速率降低到峰值速率的50%。匯流排帶寬和脈沖時間長度這兩個結構參數規定了存儲器系統的存取粒度。
匯流排帶寬是指連接存儲器控制器和存儲器件之間的數據線數量。它設定最小的存取粒度,因為對於一個指定的存儲器事務處理,每條數據線必須至少傳遞一個數據位。而脈沖時間長度則規定對於指定的事務處理,每條數據線必須傳遞的位數量。每個事務處理中的每條數據線只傳一個數據位的存儲技術,其脈沖時間長度為1。總的列存取粒度很簡單:列存取粒度=匯流排寬度×脈沖時間長度。
很多系統架構僅僅通過增加DRAM器件和存儲匯流排帶寬就能增加存儲系統的可用帶寬。畢竟,如果4個400MHz數據速率的連接可實現 1.6GHz的總峰值帶寬,那麼8個連接將得到3.2GHz。增加一個DRAM器件,電路板上的連線以及ASIC的管腳就會增多,總峰值帶寬相應地倍增。
首要的是,架構師希望完全利用峰值帶寬,這已經達到他們通過物理設計存儲器匯流排所能達到的最大值。具有256位甚或512位存儲匯流排的圖形控制器已並不鮮見,這種控制器需要1,000個,甚至更多的管腳。封裝設計師、ASIC底層規劃工程師以及電路板設計工程師不能找到採用便宜的、商業上可行的方法來對這么多信號進行布線的矽片區域。僅僅增加匯流排寬度來獲得更高的峰值數據速率,會導致因為列存取粒度限制而降低有效帶寬。
假設某個特定存儲技術的脈沖時間長度等於1,對於一個存儲器處理,512位寬系統的存取粒度為512位(或者64位元組)。如果控制器只需要一小段數據,那麼剩下的數據就被浪費掉,這就降低了系統的有效數據速率。例如,只需要存儲系統32位元組數據的控制器將浪費剩餘的32位元組,進而導致有效的數據速率等於50%的峰值速率。這些計算都假定脈沖時間長度為1。隨著存儲器介面數據速率增加的趨勢,大多數新技術的最低脈沖時間長度都大於1。
選擇技巧
存儲器的類型將決定整個嵌入式系統的操作和性能,因此存儲器的選擇是一個非常重要的決策。無論系統是採用電池供電還是由市電供電,應用需求將決定存儲器的類型(易失性或非易失性)以及使用目的(存儲代碼、數據或者兩者兼有)。另外,在選擇過程中,存儲器的尺寸和成本也是需要考慮的重要因素。對於較小的系統,微控制器自帶的存儲器就有可能滿足系統要求,而較大的系統可能要求增加外部存儲器。為嵌入式系統選擇存儲器類型時,需要考慮一些設計參數,包括微控制器的選擇、電壓范圍、電池壽命、讀寫速度、存儲器尺寸、存儲器的特性、擦除/寫入的耐久性以及系統總成本。
選擇存儲器時應遵循的基本原則
1、內部存儲器與外部存儲器
一般情況下,當確定了存儲程序代碼和數據所需要的存儲空間之後,設計工程師將決定是採用內部存儲器還是外部存儲器。通常情況下,內部存儲器的性價比最高但靈活性最低,因此設計工程師必須確定對存儲的需求將來是否會增長,以及是否有某種途徑可以升級到代碼空間更大的微控制器。基於成本考慮,人們通常選擇能滿足應用要求的存儲器容量最小的微控制器,因此在預測代碼規模的時候要必須特別小心,因為代碼規模增大可能要求更換微控制器。目前市場上存在各種規模的外部存儲器器件,我們很容易通過增加存儲器來適應代碼規模的增加。有時這意味著以封裝尺寸相同但容量更大的存儲器替代現有的存儲器,或者在匯流排上增加存儲器。即使微控制器帶有內部存儲器,也可以通過增加外部串列EEPROM或快閃記憶體來滿足系統對非易失性存儲器的需求。
2、引導存儲器
在較大的微控制器系統或基於處理器的系統中,設計工程師可以利用引導代碼進行初始化。應用本身通常決定了是否需要引導代碼,以及是否需要專門的引導存儲器。例如,如果沒有外部的定址匯流排或串列引導介面,通常使用內部存儲器,而不需要專門的引導器件。但在一些沒有內部程序存儲器的系統中,初始化是操作代碼的一部分,因此所有代碼都將駐留在同一個外部程序存儲器中。某些微控制器既有內部存儲器也有外部定址匯流排,在這種情況下,引導代碼將駐留在內部存儲器中,而操作代碼在外部存儲器中。這很可能是最安全的方法,因為改變操作代碼時不會出現意外地修改引導代碼。在所有情況下,引導存儲器都必須是非易失性存儲器。
可以使用任何類型的存儲器來滿足嵌入式系統的要求,但終端應用和總成本要求通常是影響我們做出決策的主要因素。有時,把幾個類型的存儲器結合起來使用能更好地滿足應用系統的要求。例如,一些PDA設計同時使用易失性存儲器和非易失性存儲器作為程序存儲器和數據存儲器。把永久的程序保存在非易失性ROM中,而把由用戶下載的程序和數據存儲在有電池支持的易失性DRAM中。不管選擇哪種存儲器類型,在確定將被用於最終應用系統的存儲器之前,設計工程師必須仔細折中考慮各種設計因素。
❹ 分層次的存儲器結構與多級存儲體系是一樣的嗎
肯定不一樣啊。多級存儲是一種拓撲結構 ,為了緩解主存儲器讀寫速度慢,不能滿足CPU運行速度需要的矛盾,另一方面又要解決主存儲器容量小,存不下更多的程序和數據的難題,當前計算機系統中,廣泛採用了多級結構的存儲器系統。它的應用是建立在程序運行的局部性原理之上的。
分級存儲是將數據採取不同的存儲方式分別存儲在不同性能的存儲設備上,減少非重要性數據在一級本地磁碟所佔用的空間,還可加快整個系統的存儲性能。分級存儲是根據數據的重要性、訪問頻率、保留時間、容量、性能等指標,將數據採取不同的存儲方式分別存儲在不同性能的存儲設備上,通過分級存儲管理實現數據客體在存儲設備之間的自動遷移。數據分級存儲的工作原理是基於數據訪問的局部性。通過將不經常訪問的數據自動移到存儲層次中較低的層次,釋放出較高成本的存儲空間給更頻繁訪問的數據,可以獲得更好的性價比。這樣,一方面可大大減少非重要性數據在一級本地磁碟所佔用的空間,還可加快整個系統的存儲性能
❺ 存儲器的工作原理 [RAM,ROM,EEPROM存儲器工作原理]
一.基本工作原理 基本工作原理
1、存儲器構造 、 存儲器就是用來存放數據的地方。它是利用電平的高低來存放數據的,也就是說,它存 放的實際上是電平的高、低,而不是我們所習慣認為的 1234 這樣的數字,這樣,我們的一 個謎團就解開了,計算機也沒什麼神秘的嗎。
圖1
圖2 讓我們看圖 1。這是一個存儲器的示意圖:一個存儲器就像一個個的小抽屜,一個小抽 屜里有八個小格子,每個小格子就是用來存放「電荷」的,電荷通過與它相連的電線傳進來 或釋放掉, 至於電荷在小格子里是怎樣存的, 就不用我們操心了, 你可以把電線想像成水管, 小格子里的電荷就像是水,那就好理解了。存儲器中的每個小抽屜就是一個放數據的地方, 我們稱之為一個「單元」 。 有了這么一個構造,我們就可以開始存放數據了,想要放進一個數據 12,也就是
00001100, 我們只要把第二號和第三號小格子里存滿電荷, 而其它小格子里的電荷給放掉就 行了(看圖 2) 。可是問題出來了,看圖 1,一個存儲器有好多單元,線是並聯的,在放入電 荷的時候, 會將電荷放入所有的單元中, 而釋放電荷的時候, 會把每個單元中的電荷都放掉, 這樣的話, 不管存儲器有多少個單元, 都只能放同一個數, 這當然不是我們所希望的, 因此, 要在結構上稍作變化,看圖 1,在每個單元上有個控制線,我想要把數據放進哪個單元,就 給一個信號這個單元的控制線,這個控制線就把開關打開,這樣電荷就可以自由流動了,而 其它單元控制線上沒有信號,所以開關不打開,不會受到影響,這樣,只要控制不同單元的 控制線,就可以向各單元寫入不同的數據了,同樣,如果要某個單元中取數據,也只要打開 相應的控制開關就行了。 2、存儲器解碼 、 那麼, 我們怎樣來控制各個單元的控制線呢?這個還不簡單, 把每個單元的控制線都引 到集成電路的外面不就行了嗎?事情可沒那麼簡單,一片 27512 存儲器中有 65536 個單元, 把每根線都引出來, 這個集成電路就得有 6 萬多個腳?不行, 怎麼辦?要想法減少線的數量。 我們有一種方法稱這為解碼,簡單介紹一下:一根線可以代表 2 種狀態,2 根線可以代表 4 種狀態,3 根線可以代表幾種,256 種狀態又需要幾根線代表?8 種,8 根線,所以 65536 種狀態我們只需要 16 根線就可以代表了。 3、存儲器的選片及匯流排的概念 、 至此,解碼的問題解決了,讓我們再來關注另外一個問題。送入每個單元的八根線是用 從什麼地方來的呢?它就是從計算機上接過來的, 一般地, 這八根線除了接一個存儲器之外, 還要接其它的器件
。這樣問題就出來了,這八根線既然不是存儲器和計算機之間專用的,如 果總是將某個單元接在這八根線上,就不好了,比如這個存儲器單元中的數值是 0FFH 另一 個存儲器的單元是 00H,那麼這根線到底是處於高電平,基閉還是低電平?豈非要打架看誰歷害 了?所以我們要讓它們分離。辦法當然很簡單,當外面的線接到集成電路的引腳進來後,不 直接接到各單元去,中間再加一組開關就行了。平時我們讓開關打開著,如果確實是要向這 個存儲器中寫入數據,或要從存儲器中慧鋒念讀出數據,再讓開關接通就行了。這組開關由三根引 線選擇:讀控制端、寫控制端和片選端。要將數據寫入片中,先選中該片, 然後發出寫信號, 開關就合上了,並將傳過來的數據(電荷)寫入片中。如果要讀,先選中該片,然後發出讀 信號,開關合上,數據就被送出去了。讀前困和寫信號同時還接入到另一個存儲器,但是由於片 選端不同, 所以雖有讀或寫信號,但沒有片選信號, 所以另一個存儲器不會「誤會」 而開門, 造成沖突。 那麼會不同時選中兩片晶元呢?只要是設計好的系統就不會, 因為它是由計算控
制的,而不是我們人來控制的,如果真的出現同時出現選中兩片的情況,那就是電路出了故 障了,這不在我們的討論之列。 從上面的介紹中我們已經看到,用來傳遞數據的八根線並不是專用的,而是很多器件 大家共用的,所以我們稱之為數據匯流排,匯流排英文名為 BUS,總即公交車道,誰者可以走。 而十六根地址線也是連在一起的,稱之為地址匯流排。
二.存儲器的種類及原理: 存儲器的種類及原理: 及原理 1.RAM / ROM 存儲器 1.
ROM 和 RAM 指的都是半導體存儲器,ROM 是 Read Only Memory 的縮寫,RAM 是 Random Access Memory 的縮寫。ROM 在系統停止供電的時候仍然可以保持數據,而 RAM 通常都是在 掉電之後就丟失數據,典型的 RAM 就是計算機的內存。
2. RAM
隨機存取存儲器(RAM)是計算機存儲器中最為人熟知的一種。之所以 RAM 被稱為「隨機 存儲」,是因為您可以直接訪問任一個存儲單元,只要您知道該單元所在記憶行和記憶列的 地址即可。 RAM 有兩大類: 1) 靜態 RAM(Static RAM / SRAM),SRAM 速度非常快,是目前讀寫最快的存儲設 備了,但是它也非常昂貴,所以只在要求很苛刻的地方使用,譬如 CPU 的一級緩沖,二級 緩沖。 2) 動態 RAM (Dynamic RAM / DRAM) DRAM 保留數據的時間很短, , 速度也比 SRAM 慢,不過它還是比任何的 ROM 都要快,但從價格上來說 DRAM 相比 SRAM 要便宜很多, 計算機內存就是 DRAM 的。 類似於微處理器, 存儲器晶元也是一種由數以百萬計的晶體管和電容器
構成的集成電路 (IC)。計算機存儲器中最為常見的一種是動態隨機存取存儲器(DRAM),在 DRAM 中晶體 管和電容器合在一起就構成一個存儲單元,代表一個數據位元。電容器保存信息位——0 或 1(有關位的信息,請參見位和位元組)。晶體管起到了開關的作用,它能讓內存晶元上的控 制線路讀取電容上的數據,或改變其狀態。 電容器就像一個能夠儲存電子的小桶。要在存儲單元中寫入 1,小桶內就充滿電子。要 寫入 0,小桶就被清空。電容器桶的問題在於它會泄漏。只需大約幾毫秒的時間,一個充滿 電子的小桶就會漏得一干二凈。因此,為了確保動態存儲器能正常工作,必須由 CPU 或是由 內存控制器對所有電容不斷地進行充電,使它們在電子流失殆盡之前能保持 1 值。為此,內
存控制器會先行讀取存儲器中的數據, 然後再把數據寫回去。 這種刷新操作每秒鍾要自動進 行數千次如(圖 3 所示)
圖 3 動態 RAM 存儲單元中的電容器就像是一個漏水的小桶。
它需要定時刷新,否則電子泄漏會使它變為 0 值。
動態 RAM 正是得名於這種刷新操作。 動態 RAM 需要不間斷地進行刷新, 否則就會丟失它 所保存的數據。這一刷新動作的缺點就是費時,並且會降低內存速度。
存儲單元由硅晶片蝕刻而成,位於由記憶列(位線) 和記憶行(字線) 組成的陣列之中。 位線和字線相交,就形成了存儲單元的地址。
圖 4 將位元排列在二維柵格中,就構成了內存。 在上圖中,紅色的存儲單元代表 1 值,而白色的存儲單元代表 0 值。 在演示動畫片中,先選出一個記憶列,然後對記憶行進行充電以將數據寫入指定的記憶列中。
DRAM 工作時會向選定的記憶列(CAS)發送電荷,以激活該記憶列上每個位元處的晶體 管。寫入數據時,記憶行線路會使電容保持應有狀態。讀取數據時,由靈敏放大器測定電容 器中的電量水平。如果電量水平大於 50%,就讀取 1 值;否則讀取 0 值。計數器會跟蹤刷新 序列,即記錄下哪些行被訪問過,以及訪問的次序。完成全部工作所需的時間極短,需要以 納秒(十億分之一秒)計算。存儲器晶元被列為 70 納秒級的意思是,該晶元讀取單個存儲 單元並完成再充電總共需要 70 納秒。 如果沒有讀寫信息的策略作為支持, 存儲單元本身是毫無價值的。 所以存儲單元擁有一 整套由其他類型的專用電路構成的底層設施。這些電路具有下列功能: 判別記憶行和記憶列的地址(行選址和列選址) 記錄刷新序列(計數器) 從存儲單元中讀取、恢復數據(靈敏放大器) 告知存儲單元是否接受電荷(防寫) 內存控制器要執行其他一些任務, 包
括識別存儲器的類型、 速度和容量, 以及檢錯等等。
靜態 RAM 使用了截然不同的技術。 靜態 RAM 使用某種觸發器來儲存每一位內存信息 (有 關觸發器的詳細信息,請查見布爾邏輯的應用) 。存儲單元使用的觸發器是由引線將 4-6 個 晶體管連接而成, 但無須刷新。 這使得靜態 RAM 要比動態 RAM 快得多。 但由於構造比較復雜, 靜態 RAM 單元要比動態 RAM 占據更多的晶元空間。 所以單個靜態 RAM 晶元的存儲量會小一些, 這也使得靜態 RAM 的價格要貴得多。靜態 RAM 速度快但價格貴,動態 RAM 要便宜一些,但速 度更慢。因此,靜態 RAM 常用來組成 CPU 中的高速緩存,而動態 RAM 能組成容量更大的系統 內存空間。
3. ROM
ROM 也分為很多種: 1) 掩膜式 ROM 晶元生產廠家在製造晶元過程中把程序一並做在晶元內部,這就是二次光刻版圖形(掩 膜)。存儲陣列中的基本存儲單元僅由一隻 MOS 管構成,或預設,凡有 MOS 管處表示存儲 0, 反之為 1. 工廠在生產時,根據客戶提供的內容,決定是否布下只 MOS 管. 用戶在生產好後,
是不能改寫的( 難道撬開晶元,加個 MOS 管上去?) 由於集成電路生產的特點, 要求一個批次的掩膜 ROM 必須達到一定的數量 (若十個晶圓) 才能生產,否則將極不經濟。掩膜 ROM 既可用雙極性工藝實現,也可以用 CMOS 工藝實現。 掩膜 ROM 的電路簡單,集成度高,大批量生產時價格便宜。 2) 一次性可編程 ROM(PROM= ROM(PROM=Programmable ROM) ) 允許一次編程 存儲陣列除了三極體之外,還有熔點較低的連線(熔斷絲)串接在每隻存儲三極體的某 一電極上,例如發射極. 編程之前,存儲信息全為 0,或全為 1,編程寫入時,外加比工作 電壓高的編程電壓,根據需要使某些存儲三極體通電,由於此時電流比正常工作電流大,於 是熔斷絲熔斷開路,一旦開路之後就無法恢復連通狀態,所以只能編程一次。如果把開路的 三極體存儲的信息當作 0,反之,存儲的信息就為 1 3) 紫外線擦除可編程 ROM(EPROM= 紫外線擦除可編程 ROM(EPROM=Erasable PROM) ) 用紫外線擦除後編程,並可多次擦除多次編程 FAMOS 管與 MOS 管結構相似,它是在 N 型半導體基片上生長出兩個高濃度的 P 型區,通 過歐姆接觸分別引出漏極 D 和源極 S,在漏源之間的 SiO2 絕緣層中,包圍了一多晶硅材料, 與四周無直接電氣連接,稱之為浮置柵極,在對其編程時,在漏源之間加上編程電壓(高於 工作電壓)時,會產生雪崩擊穿現象,獲得能量的電子會穿過 SiO2 注入到多晶硅中,編程 結束後, 在漏源之間相對感應出的正電荷導電溝道將會保持下來, 如果將漏源之間感應出正 電荷導電溝道的 MOS 管表示存
入 0,反之,浮置柵不帶負電,即漏源之間無正電荷導電溝道 的 MOS 管表示存入 1 狀態 在 EPROM 晶元的上方, 有一圓形石英窗, 從而允許紫外線穿過透明的圓形石英窗而照射 到半導體晶元上,將它放在紫外線光源下一般照射 10 分鍾左右,EPROM 中的內容就被抹掉, 即所有浮置柵 MOS 管的漏源處於斷開狀態,然後,才能對它進行編程輸入 出廠未編程前,每個基本存儲單元都是信息 1, 編程就是將某些單元寫入信息 0 EPROM 是採用浮柵技術生產的可編程存儲器,它的存儲單元多採用 N 溝道疊柵 MOS 管 (SIMOS) ,其結構及符號如圖 12.2.1(a)所示。除控制柵外,還有一個無外引線的柵極,稱 為浮柵。當浮柵上無電荷時,給控制柵(接在行選擇線上)加上控制電壓,MOS 管導通; 而當浮柵上帶有負電荷時,則襯底表面感應的是正電荷,使得 MOS 管的開啟電壓變高,如 圖 12.1.3(b)所示,如果給控制柵加上同樣的控制電壓,MOS 管仍處於截止狀態。由此可見, SIMOS 管可以利用浮柵是否積累有負電荷來存儲二值數據。
(a) 疊柵 MOS 管的結構及符號圖
(b) 疊柵 MOS 管浮柵上積累電子與開啟電壓的關系
圖 6 疊柵 MOS 管
在寫入數據前,浮柵是不帶電的,要使浮柵帶負電荷,必須在 SIMOS 管的漏、柵極 加上足夠高的電壓(如 25V) ,使漏極及襯底之間的 PN 結反向擊穿,產生大量的高能電子。 這些電子穿過很薄的氧化絕緣層堆積在浮柵上, 從而使浮柵帶有負電荷。 當移去外加電壓後, 浮柵上的電子沒有放電迴路,能夠長期保存。當用紫外線或 X 射線照射時,浮柵上的電子形 成光電流而泄放, 從而恢復寫入前的狀態。 照射一般需要 15 至 20 分鍾。 為了便於照射擦除, 晶元的封裝外殼裝有透明的石英蓋板。EPROM 的擦除為一次全部擦除,數據寫入需要通用或 專用的編程器。 ROM( EPROM) 4) 電擦除可編程 ROM(EEPROM = Electrically EPROM) 加電擦除,也可以多次擦除, 可以按位元組編程。 在 EPROM 基本存儲單元電路的浮置柵 MOS 管 T1 上面再生成一個浮置柵 MOS 管 T2, T2 將 浮置柵引出一個電極,使該電極接某一電壓 VG2,若 VG2 為正電壓,T1 浮置柵極與漏極之間 產生一個隧道效應,使電子注入 T1 浮置柵極,於是 T1 的漏源接通,便實現了對該位的寫入 編程。 用加電方法,進行在線(無需拔下,直接在電路中)擦寫(擦除和編程一次完成)有字
節擦寫、 塊擦寫和整片擦寫方法, 按位元組為單位進行擦除和寫入, 擦除和寫入是同一種操作, 即都是寫入,只不過擦除是固定寫「1」而已,在擦除時,輸入的數據是 TTL 高電平。 EEPROM 在進行位元組改寫之前自動對所要寫入的位元組單元進行
擦除, 只需要像寫普通 CPU RAM 一樣寫其中某一位元組, 但一定要等到 5ms 之後, CPU 才能接著對 EEPROM 進行下一次寫入 操作,因而,以位元組為單元寫入是常用的一種簡便方式。 寫入操作時,首先把待寫入數據寫入到頁緩沖器中,然後,在內部定時電路的控制下把 頁緩沖器中的所有數據寫入到 EEPROM 中所指定的存儲單元,顯然,相對位元組寫入方式,第 二種方式的效率高,寫入速度快。 EEPROM 也是採用浮柵技術生產的可編程存儲器,構成存儲單元的 MOS 管的結構如圖 12.2.2 所示。它與疊柵 MOS 管的不同之處在於浮柵延長區與漏區之間的交疊處有一個厚度 約為 80 埃的薄絕緣層,當漏極接地,控制柵加上足夠高的電壓時,交疊區將產生一個很強 的電場, 在強電場的作用下, 電子通過絕緣層到達浮柵, 使浮柵帶負電荷。 這一現象稱為「隧 道效應」,因此,該 MOS 管也稱為隧道 MOS 管。相反,當控制柵接地漏極加一正電壓,則產 生與上述相反的過程,即浮柵放電。與 SIMOS 管相比,隧道 MOS 管也是利用浮柵是否積累 有負電荷來存儲二值數據的, 不同的是隧道 MOS 管是利用電擦除的, 並且擦除的速度要快得 多。 EEPROM 電擦除的過程就是改寫過程,它是以字為單位進行的。EEPROM 具有 ROM 的非易 失性, 又具備類似 RAM 的功能, 可以隨時改寫 (可重復擦寫 1 萬次以上) 目前, 。 大多數 EEPROM 晶元內部都備有升壓電路。因此,只需提供單電源供電,便可進行讀、擦除/寫操作,為數 字系統的設計和在線調試提供了極大的方便。
圖 7 隧道 MOS 管剖面結構示意圖
圖 8 快閃記憶體存儲單元 MOS 管剖面結構示意圖
5) Flash 快閃記憶體 快速擦寫,但只能按塊編程 快閃記憶體存儲單元的 MOS 管結構與 SIMOS 管類似, 如圖 12.2.3 所示。 但有兩點不同, 一是快閃記憶體存儲單元 MOS 管的源極 N+區大於漏極 N+區, SIMOS 管的源極 N+區和漏極 而 N+區是對稱的;二是浮柵到 P 型襯底間的氧化絕緣層比 SIMOS 管的更薄。這樣,可以通過 在源極上加一正電壓,使浮柵放電,從而擦除寫入的數據。由於快閃記憶體中存儲單元 MOS 管的源極是連接在一起的,所以不能象 E2PROM 那樣按字擦除,而是類似 EPROM 那樣整片擦 除或分塊擦除。整片擦除只需要幾秒鍾,不像 EPROM 那樣需要照射 15 到 20 分鍾。快快閃記憶體儲 器中數據的擦除和寫入是分開進行的, 數據寫入方式與 EPROM 相同, 需輸入一個較高的電壓, 因此要為晶元提供兩組電源。一個字的寫入時間約為 200 微秒,一般可以擦除/寫入 100 次 以上。 新型的 FLASH,例如 320C3B 等,在常規存儲區域後面還有 128Bit 的特殊加密,其中前 64Bit(8 位元組)是唯一
器件碼(64BitUniqueDeviceIdentifier),每一片 Flash 在出廠時 已經帶有,並且同一種 Flash 型號不會有相同的編碼,哪怕這個字型檔是全新空白的字型檔。後 來 64Bit 為用戶可編程 OTP 單元 (64BitUserProgrammableOTPCells) ,可以由用戶自用設定, 單只能寫入,不能擦除。
❻ 數據存儲的三種方式
數據存儲的三種方式包括內存存儲器、外存儲器和高速緩存存儲器。
雙字寬存儲器是指存儲鬧畝器的數據線寬攜和度為兩個字(word)寬度,即可以同時傳輸兩個字辯彎盯節的數據。這種存儲器通常用於需要高速訪問和傳輸大量數據的應用中,比如視頻和圖像處理等領域。
❼ 傳統大數據存儲的架構有哪些各有什麼特點
數據時代,移動互聯、社交網路、數據分析、雲服務等應用的迅速普及,對數據中心提出革命性的需求,存儲基礎架構已經成為IT核心之一。政府、軍隊軍工、科研院所、航空航天、大型商業連鎖、醫療、金融、新媒體、廣電等各個領域新興應用層出不窮。數據的價值日益凸顯,數據已經成為不可或缺的資產。作為數據載體和驅動力量,存儲系統成為大數據基礎架構中最為關鍵的核心。
傳統的數據中心無論是在性能、效率,還是在投資收益、安全,已經遠遠不能滿足新興應用的需求,數據中心業務急需新型大數據處理中心來支撐。除了傳統的高可靠、高冗餘、綠色節能之外,新型的大數據中心還需具備虛擬化、模塊化、彈性擴展、自動化等一系列特徵,才能滿足具備大數據特徵的應用需求。這些史無前例的需求,讓存儲系統的架構和功能都發生了前所未有的變化。
基於大數據應用需求,「應用定義存儲」概念被提出。存儲系統作為數據中心最核心的數據基礎,不再僅是傳統分散的、單一的底層設備。除了要具備高性能、高安全、高可靠等特徵之外,還要有虛擬化、並行分布、自動分層、彈性擴展、異構資源整合、全局緩存加速等多方面的特點,才能滿足具備大數據特徵的業務應用需求。
尤其在雲安防概念被熱炒的時代,隨著高清技術的普及,720P、1080P隨處可見,智能和高清的雙向需求、動輒500W、800W甚至上千萬更高解析度的攝像機面市,大數據對存儲設備的容量、讀寫性能、可靠性、擴展性等都提出了更高的要求,需要充分考慮功能集成度、數據安全性、數據穩定性,系統可擴展性、性能及成本各方面因素。
目前市場上的存儲架構如下:
(1)基於嵌入式架構的存儲系統
節點NVR架構主要面向小型高清監控系統,高清前端數量一般在幾十路以內。系統建設中沒有大型的存儲監控中心機房,存儲容量相對較小,用戶體驗度、系統功能集成度要求較高。在市場應用層面,超市、店鋪、小型企業、政法行業中基本管理單元等應用較為廣泛。
(2)基於X86架構的存儲系統
平台SAN架構主要面向中大型高清監控系統,前端路數成百上千甚至上萬。一般多採用IPSAN或FCSAN搭建高清視頻存儲系統。作為監控平台的重要組成部分,前端監控數據通過錄像存儲管理模塊存儲到SAN中。
此種架構接入高清前端路數相對節點NVR有了較高提升,具備快捷便利的可擴展性,技術成熟。對於IPSAN而言,雖然在ISCSI環節數據並發讀寫傳輸速率有所消耗,但其憑借擴展性良好、硬體平台通用、海量數據可充分共享等優點,仍然得到很多客戶的青睞。FCSAN在行業用戶、封閉存儲系統中應用較多,比如縣級或地級市高清監控項目,大數據量的並發讀寫對千兆網路交換提出了較大的挑戰,但應用FCSAN構建相對獨立的存儲子系統,可以有效解決上述問題。
面對視頻監控系統大文件、隨機讀寫的特點,平台SAN架構系統不同存儲單元之間的數據共享冗餘方面還有待提高;從高性能伺服器轉發視頻數據到存儲空間的策略,從系統架構而言也增加了隱患故障點、ISCSI帶寬瓶頸導致無法充分利用硬體數據並發性能、接入前端數據較少。上述問題催生了平台NVR架構解決方案。
該方案在系統架構上省去了存儲伺服器,消除了上文提到的性能瓶頸和單點故障隱患。大幅度提高存儲系統的寫入和檢索速度;同時也徹底消除了傳統文件系統由於供電和網路的不穩定帶來的文件系統損壞等問題。
平台NVR中存儲的數據可同時供多個客戶端隨時查詢,點播,當用戶需要查看多個已保存的視頻監控數據時,可通過授權的視頻監控客戶端直接查詢並點播相應位置的視頻監控數據進行歷史圖像的查看。由於數據管理伺服器具有監控系統所有監控點的錄像文件的索引,因此通過平台CMS授權,視頻監控客戶端可以查詢並點播整個監控系統上所有監控點的數據,這個過程對用戶而言也是透明的。
(3)基於雲技術的存儲方案
當前,安防行業可謂「雲」山「物」罩。隨著視頻監控的高清化和網路化,存儲和管理的視頻數據量已有海量之勢,雲存儲技術是突破IP高清監控存儲瓶頸的重要手段。雲存儲作為一種服務,在未來安防監控行業有著可觀的應用前景。
與傳統存儲設備不同,雲存儲不僅是一個硬體,而是一個由網路設備、存儲設備、伺服器、軟體、接入網路、用戶訪問介面以及客戶端程序等多個部分構成的復雜系統。該系統以存儲設備為核心,通過應用層軟體對外提供數據存儲和業務服務。
一般分為存儲層、基礎管理層、應用介面層以及訪問層。存儲層是雲存儲系統的基礎,由存儲設備(滿足FC協議、iSCSI協議、NAS協議等)構成。基礎管理層是雲存儲系統的核心,其擔負著存儲設備間協同工作,數據加密,分發以及容災備份等工作。應用介面層是系統中根據用戶需求來開發的部分,根據不同的業務類型,可以開發出不同的應用服務介面。訪問層指授權用戶通過應用介面來登錄、享受雲服務。其主要優勢在於:硬體冗餘、節能環保、系統升級不會影響存儲服務、海量並行擴容、強大的負載均衡功能、統一管理、統一向外提供服務,管理效率高,雲存儲系統從系統架構、文件結構、高速緩存等方面入手,針對監控應用進行了優化設計。數據傳輸可採用流方式,底層採用突破傳統文件系統限制的流媒體數據結構,大幅提高了系統性能。
高清監控存儲是一種大碼流多並發寫為主的存儲應用,對性能、並發性和穩定性等方面有很高的要求。該存儲解決方案採用獨特的大緩存順序化演算法,把多路隨機並發訪問變為順序訪問,解決了硬碟磁頭因頻繁尋道而導致的性能迅速下降和硬碟壽命縮短的問題。
針對系統中會產生PB級海量監控數據,存儲設備的數量達數十台上百台,因此管理方式的科學高效顯得十分重要。雲存儲可提供基於集群管理技術的多設備集中管理工具,具有設備集中監控、集群管理、系統軟硬體運行狀態的監控、主動報警,圖像化系統檢測等功能。在海量視頻存儲檢索應用中,檢索性能尤為重要。傳統文件系統中,文件檢索採用的是「目錄-》子目錄-》文件-》定位」的檢索步驟,在海量數據的高清視頻監控,目錄和文件數量十分可觀,這種檢索模式的效率就會大打折扣。採用序號文件定位可以有效解決該問題。
雲存儲可以提供非常高的的系統冗餘和安全性。當在線存儲系統出現故障後,熱備機可以立即接替服務,當故障恢復時,服務和數據回遷;若故障機數據需要調用,可以將故障機的磁碟插入到冷備機中,實現所有數據的立即可用。
對於高清監控系統,隨著監控前端的增加和存儲時間的延長,擴展能力十分重要。市場中已有友商可提供單純針對容量的擴展櫃擴展模式和性能容量同步線性擴展的堆疊擴展模式。
雲存儲系統除上述優點之外,在平台對接整合、業務流程梳理、視頻數據智能分析深度挖掘及成本方面都將面臨挑戰。承建大型系統、構建雲存儲的商業模式也亟待創新。受限於寬頻網路、web2.0技術、應用存儲技術、文件系統、P2P、數據壓縮、CDN技術、虛擬化技術等的發展,未來雲存儲還有很長的路要走。
❽ 雲存儲架構分哪些層次,各自實現了什麼功能_雲存儲架構包含哪些內容
(1)存儲層
雲存儲系統對外提供多種不同的存儲服務,各種服務的數據統一存放在雲存儲系統中,形成一個海量數據池。從大多數網路服務後台數據組織方式來看,傳統基於單伺服器的數據組織難以滿足廣域網多用戶條件下的吞吐性能和存儲容量需求;基於P2P架構的數據組織需要龐大的節點數量和復雜編碼演算法保證數據可靠性。相比而言,基於多存儲伺服器的數據組織方法能夠更好滿足在線存儲服務的應用需求,在用戶規模較大時,構建分布式數據中心能夠為不同地理區域的用戶提供更好的服務質量。
雲存儲的存儲層將不同類型的存儲設備互連起來,實現海量數據的統一管理,同時實現對存儲設備的集中管理、狀態監控以及容量的動態擴展,實質是一種面向服務的分布式存儲系統。
(2)基礎管理層
雲存儲系統架構中的基礎管理層為上層提供不同服務間公共管理的統一視圖。通過設計統一的用戶管理、安全管理、副本管理及策略管理等公共數據管理功能,將底層存儲與上層應用無縫銜接起來,實現多存儲設備之間的協悔早同工作,以更好的性能對外提供多種服務。
(3)應用介面層
應用介面層是雲存儲平台中可以靈活擴展的、直接面向用戶的部分。根據用戶需求,可以開發出不同的應用介面,提供相應的服務。比如數據存儲服務、空間租賃服務、公共資源服務、多用戶數據共享服務、數據備份服務等。
(4)訪問層
通過訪問層,任何一個授權用戶都可以在任何地方,使用一台聯網的終端設備,按照標準的公用應用介面來登錄雲存儲平台,享受雲存儲服務。
2雲存儲技術的優勢
作為新興的存儲技術,與傳統的購買存儲設備和部署存儲軟體相比,雲存儲方式存在以下優點:
(1)成本低、見效快
傳統的購買存儲設備或軟體定製方式下,企業根據信息化管理的需求,一次性投入大量資金購置硬體設備首飢、搭建平台。軟體開發則經過漫長的可行性分析、需求調研、軟體設計、編碼、測試這一過程。往往在軟體開發完成以後,業務需求發生變化,不得不對軟體進行返工,不僅影響質量,提高成本,更是延誤了企業信息化進程,同時造成了企業之間的低水平重復投資以及企業內部周期性、高成本的技術升級。在雲存儲方式下,企業除了配置必要的終端設備接收存儲服務外,不需要投入額外的資金來搭建平台。企業只需按用戶數分期租用服務,規避了一次性投資的風險,降低了使用成本,而且對於選定的服務,可以立即投入使用,既方便又快捷。
(2)易者前返於管理
傳統方式下,企業需要配備專業的IT人員進行系統的維護,由此帶來技術和資金成本。雲存儲模式下,維護工作以及系統的更新升級都由雲存儲服務提供商完成,企業能夠以最低的成本享受到最新最專業的服務。
(3)方式靈活
傳統的購買和定製模式下,一旦完成資金的一次性投入,系統無法在後續使用中動態調整。隨著設備的更新換代,落後的硬體平台難以處置;隨著業務需求的不斷變化,軟體需要不斷地更新升級甚至重構來與之相適應,導致維護成本高昂,很容易發展到不可控的程度。而雲存儲方式一般按照客戶數、使用時間、服務項目進行收費。企業可以根據業務需求變化、人員增減、資金承受能力,隨時調整其租用服務方式,真正做到「按需使用」。
3雲存儲技術趨勢
隨著寬頻網路的發展,集群技術、網格技術和分布式文件系統的拓展,CDN內容分發、P2P、數據壓縮技術的廣泛運用,以及存儲虛擬化技術的完善,雲存儲在技術上已經趨於成熟,以「用戶創造內容」和「分享」為精神的Web2.0推動了全網域用戶對在線服務的認知
❾ iSCSI存儲春天到了|手機存儲
iSCSI(互聯網小型計算機系統介面)是IP技術和網路快速發展的產物,是FC(光纖通道)最有力的競爭對手。iSCSI結合了業內SCSI和TCP/IP兩個最通用的協議,為其實施和使用帶吵舉沖來了極大的便利,也大大增加了存儲設備的資源利用。目前,存儲廠商紛紛推出iSCSI存儲設備。隨著千兆乙太網的成熟以及萬兆乙太網絡的開發,iSCSI的性能不斷提高,成本逐漸降低,其高性價比、通用性、無地理限制等優勢獲得越來越多用戶的認可,必將開創網路存儲的新局面。
以前,業界人士總認為,iSCSI是生不逢時。在SAN(存儲區域網)架構已成為網路存儲的主流的時候,iSCSI卻因為速度的原因,在與光纖通道的競爭中敗下陣來,只得躋身在中小企業市場。
不過風水輪流轉,該到了iSCSI大展拳腳的時候了。從2006年開始,iSCSI發貨量迅速增加,應用的領域也不僅僅是中小型企業市場。市場分析機構均認為,iSCSI的春天到了。
初生牛犢不怕虎
iSCSI,即internet SCSI,是IETF制訂的一項標准,用於將SCSI(互聯網小型計算機系統介面)數據塊映射成乙太網數據包。從根本上說,iSCSI協議是一種跨過IP網路來傳輸潛伏時間短的SCSI數據塊的方法。
iSCSI使我們可以用已經熟悉和每天都在使用的乙太網來構建IP存儲區域網(SAN)。通過這種方法,iSCSI克服了直接連接存儲的局限性,使我們可以跨不同伺服器共享存儲資源,並可在不停機狀態下擴充存儲容量。
iSCSI是一種網路通信協議,該技術能以乙太網絡取代現有的光纖信道,用做連結伺服器及計算機系統的互聯網通信協議(IP)。它最大的好處是能提供快速的網路環境,雖然速度目前還無法企及光纖網路,但以節省企業30% ~40%的成本而言,效益比非常高。
從目前來看, iSCSI SAN的優勢主要有幾個:一是高可用性,在伺服器和存儲資源之間建立起多條通道,即使一條線路斷開,仍能保持系統升殲連接;二是高可擴展性,SAN採用交換機式的結構,IT管理人員不必中止應用即可完成存儲容量的擴充;三是最大程度地保護存儲資源投入;四是SAN能夠跨平台共享硬碟和磁帶設備;五是採用我們熟悉的乙太網技術。
不過,在前幾年,iSCSI的應用並沒有像人們預期的那樣增長,相反,應用推廣並不理想。雖然iSCSI存儲設備在幾年前就相繼問世,包括了EMC、HP、HDS等存儲設備大廠也推出結合iSCSI/SAN/NAS的雙信道協議產品,借iSCSI低成本優勢,市場可望顯著成長。但是不論從市場報告或者廠商觀察都顯示,由於SAN設備成本持續下滑、iSCSI的頻寬有限、以及前者周邊組件的驅動程序尚未完全到位等因素,相較於FC,iSCSI市場的成長有限。
不過可以肯定,iSCSI必然成為光纖通道(FC)的主要競爭對手,成為SAN存儲區域網的主要應用技術。同時由於iSCSI內置的支持路由,可以讓iSCSIinitiator訪問Internet上任何一台存儲設備,使得存儲共享的概念無限擴大,存儲連接的距離無限擴展。這一技術對於一邊要面對信息高速增長,另一邊卻身處「數據孤島」的眾多中小企業無疑具有巨大的吸引力。
時來運轉
不過,從2006年年底開始,iSCSI就時來運轉。先來看看幾組市場研究公司的分析與數據。
市場研究公司ESG的數據說,目前已經有超過 2萬用戶採用了 iSCSI。ESG統計了500名美國的IT經理,發現其中 17%企業正在企業生產環境應用 iSCSI ,另外20%計劃採用這一技術。
按照IDC的統計,今天 iSCSI在外部磁碟存儲領域所佔的市場份額僅為3%。但是,目前iSCSI市場在以每年近3倍的速度增長,而到2010年,其市場份額將超過20%。IDC公司根據公司的全球磁碟存儲收入的報告,預測在2005年到2010年之間,iSCSI市場的收入將提高75.8%,估計到了2010年,iSCSI收入將超過51億美元,比2005年增加了30.5億美元。
按照分析師的觀點,iSCSI 技術迅速增長並進入網路存儲的主流地位,源於其低成本和簡單管理特性。它能以GB的速度傳輸存儲數據,但是答改成本卻比FC低很多。因為運行在萬兆乙太網上,它在伺服器和光纖交換機上不需要適配器。另外,在部署方面,iSCSI不需要IT管理員需要特別的知識和專業技能。
低成本與易管理是驅動用戶採用iSCSI的眾多因素中的關鍵,不僅針對中小企業,而且針對大型企業。員工超過2萬(含2萬)的大型企業中接近20%已經部署了iSCSI。ESG說,市場發售的iSCSI存儲產品開始增加,專門從事iSCSI領域的公司不斷涌現,如美國Sanrad 公司、LeftHand Networks 公司、 Intransa 公司和EqualLogic公司。
一般認為,iSCSI產品大量上市的最主要驅動力在於兩大軟硬體廠商微軟和英特爾都推出了支持iSCSI的產品。以微軟為例,2004年年底Windows Storage Server 2003加入了對iSCSI技術的支持,2005年4月微軟又宣布Microsoft Exchange Server 2003支持iSCSI。以iSCSI的市場被定位在中小型企業以及部門級產品而言,這些市場原本即是微軟NT平台大宗使用者,iSCSI被微軟無縫融入,使用戶可以不必為新系統的應用和管理付出過多代價。
英特爾於2007年2月5日面向iSCSI推出了配備專用處理器的千兆乙太網用適配器「PRO/1000 T IP Storage Adapter」,能夠實現iSCSI 包卸載,並通過基於Intel Xscale 微架構的板上處理器獲得較低的CPU 利用率,並已開始批量生產。
哪種方案最適合
到現在,不少企業已經將許多應用建立在Internet的架構之上,於是,SAN也將向基於IP網路方向發展。採用iSCSI技術組成的IP SAN可以提供和傳統FC SAN相媲美的存儲解決方案,而且普通伺服器或PC只需要具備網卡,即可共享和使用大容量的存儲空間。
假如你是一個用戶,而你的公司近期打算部署一套備份存儲系統,這時你有了更多的選擇,可以購買數據吞吐量達到2 Gb/s左右的FC-SAN系統,也可以選擇發展迅速的iSCSI SAN,那麼如何選擇最適合自己企業的技術方案呢?
不過,一般來說,企業在面臨iSCSI SAN存儲解決方案時,多半喜歡將其與傳統的方案FC SAN及NAS與其做一番比較。專家對這三種方案做了一個比較,如下表所示。
無論未來用戶採用光纖通道、iSCSI或者兩者結合,所有存儲系統客戶的共同需求都是相同的,即降低成本,使得額外負擔最小化,管理方式流水化以及存儲系統管理的簡單化。用戶應該根據自己的應用需要,在考慮性能、成本、可擴展性、維護成本等方面基礎上,選擇合適自己的方案。
主要考慮的因素包括以下幾個方面:
第一,適應性。
隨著網路連接技術和信息化應用的不斷發展,存儲連接技術也在快速發展,在某些技術領域也做到了相互融合和借鑒。IP網路發展到今天已經十分成熟和普及,規模已經遍及全球,對於需要遠程互聯存儲設備來說這是最好的現成資源。iSCSI協議就是在這種背景下發展起來的,iSCSI協議很好地結合了IP傳輸技術和SCSI傳輸技術的優點。從這一點看,iSCSI有著更好的發展適應性。
不過,目前存儲的主要連接協議還是FC(光纖通道)協議,它是應用最廣的存儲連接技術。而iSCSI技術的發展前景卻不容置疑。
第二,性能。
目前來看,iSCSI和FC技術都已經成熟,其發展目標主要是提升傳輸速度。
目前來看,FC的主流速度為2Gb/s,也有一些企業推出了4Gb/s的產品,而10Gb/s的標准也一定會推出。FC一定會向更高的傳輸速率邁進。
因為iSCSI協議是在TCP/IP協議之上運行SCSI協議,所以其底層的協議層都是利用現有乙太網的。在硬體上兼容現在的網卡、網線、乙太網交換機等設備。目前乙太網的主流速度是千兆,現在已有一些用戶採用萬兆乙太網。不過,目前其速度還無法超過FC協議。但由於iSCSI協議借鑒了SCSI協議適合大數據量傳輸的優勢,所以在千兆乙太網上的性能表現還不錯。未來iSCSI超過FC是毫無懸念的。
第三,成本。
iSCSI的最大好處是能提供快速的網路環境,雖然目前其性能和帶寬與光纖網路還有一些差距,但能節省企業30%~40%的成本。ISCSI成本優勢的主要體現包括以下幾個方面:
一是硬體購置成本低。構建iSCSI存儲網路,除了存儲設備外,交換機、線纜、介面卡都是標準的乙太網配件,價格相對來說比較低廉。同時,iSCSI還可以在現有的網路上直接安裝,並不需要更改企業的網路體系,這樣可以最大程度地節約投入。
二是維護成本低。對iSCSI存儲網路的管理,實際上就是對乙太網設備的管理,只需花費少量的資金去培訓iSCSI存儲網路管理員。當iSCSI存儲網路出現故障時,問題定位及解決也會因為乙太網的普及而變得容易。
主流企業陸續推出產品
熱衷iSCSI的存儲企業既有存儲領域的龍頭老大,也有初出茅廬的新秀。推出產品涉及iSCSI控制卡、iSCSI交換機/網關、iSCSI存儲伺服器、iSCSI存儲陣列等。
1.iSCSI存儲系統
據 IDC的數據顯示, NetApp 和 EMC在iSCSI市場上分別占據著第一和第二的位置。
IDC的數據顯示,NAS存儲領域的領導廠商NetApp,在2006年銷售的iSCSI系統佔到了市場30%份額。根據IDC 的數據,NetApp在FC網路存儲 (FC SAN)和iSCSI SAN市場,無論在交付容量及營業收入方面,均處於全球領導者的地位。NetApp 是第一個提供 iSCSI 協議支持的存儲系統廠商,已經在其存儲系統中實現了NAS、iSCSI和FC連接的共存。在今年的早些時候,NetApp還推出了針對SMB市場的iSCSI-NAS系統――StoreVault S500。S500是一款2U系統,支持可達12個SATA硬碟驅動器,最大容量6TB,外部介面支持NAS和iSCSI。NetApp將S500定位在那些需要500GB到3TB存儲、每年在存儲上的花費少於2萬美元並且沒有專門的存儲管理員的公司。S500包括NetApp用於其他磁碟系統的Data Ontap 7G操作系統,支持250個快照和RAID-DP。RAID-DP是NetApp版本的RAID 6,可以讓系統承受兩個驅動器故障。
之後,3月NetApp在推出滿足中端市場需求的FAS3070 和 V3070之後,又推出了NetApp FAS3040 和 NetApp V3040系列中端SAN產品。這些產品對於那些不願意將其數據中心與多個設備集群以處理不同的存儲協議的用戶具有一定的吸引力。通過一個FAS系統進行不同的處理,既可以降低成本,又能節省數據中心的空間和能量。最新產品採用了NetApp的多功能一體的架構,支持FC和iSCSI,對於存儲由數據密集型的Oracle、SAP 和Microsoft Exchange產品創建的數據來說,是一個理想的選擇。
EMC公司為其中端Clariion陣列和高端DMX存儲系統增加了iSCSI支持能力。最新產品CLARiiON CX3-10將4Gb/s網路存儲系統推向更低的起點,其容量可以擴展至30TB。在新系統中,同一陣列兼有光纖通道(FC)和iSCSI連接能力,實施更加靈活,可幫助用戶整合存儲系統。入門級用戶可以用iSCSI來滿足Microsoft Exchange等應用的需求,用光纖通道滿足Oracle產品或Microsoft SQL Server數據倉庫等高帶寬應用的需求。
Hitachi則改進了其中端存儲系統的性能。Hitachi的可適應存儲擴展模塊Adaptable Molar Storage――AMS1000,由於採用了新的多處理器技術,從而使性能提高20%。系統提供多種協議,支持iSCSI、NAS和FC SAN,用戶可以混合和配比FC和SATA drives,以及RAID不同標准。
惠普向喜歡簡單化的用戶發布了AIO系列。AIO的全稱是All in One即一體化,指的是該系列通過塊級iSCSI目標、啟動器支持和文件級連接(這一切都藉助微軟Windows存儲伺服器)來提供SAN和NAS功能。該設備基於Proliant DL 100 G2,配備有4個250GB SATA驅動器和1個雙埠乙太網介面。新的HP StorageWorks All-in-One (AiO)存儲系統實現了簡單的、以應用為中心的存儲管理、可靠的數據保護及適中的價格。即使是在存儲領域毫無經驗的中小企業,也可以利用這套系統在靈活的網路存儲環境里存儲、共享、管理、備份和保護應用及文件數據。這款產品統一了NAS與SAN,實現了數據保護,容量從1TB可以擴展到39TB。在數據恢復方面,AiO每個卷最多可以做上百個快照,提升數據恢復的安全性。
2.iSCSI交換機
iSCSI交換機在系統中的作用跟網路中普通的交換機一樣,只是起一個連接iSCSI存儲伺服器和iSCSI存儲設備的作用。Sanrad聲稱,已經有超過600個用戶使用其iSCSI技術。它最近推出的中端iSCSI交換機。Sanrad的 V-Switch 3400 是一款擁有3個iSCSI埠與4個FC埠的交換機。它提供熱插拔電源,可以通過SNMP管理。SNMP是一個通用的圖形化界面,它支持4PB存儲容量,起價263美元。
以色列的一家公司SANRAD 也推出iSCSI交換機――SANRAD ISCSI V Switch 3000。該交換機能夠通過乙太網訪問具有SCSI和光纖通道介面的存儲設備,它配置於伺服器等計算機和具有SCSI或光纖通道介面的存儲設備之間。具有3個連接計算機的千兆位乙太網埠,和4個連接存儲設備的光纖通道介面(數據傳輸速度為2Gb/s)或Wide Ultra3 SCSI(數據傳輸速度為160Mb/s)埠。其特點是具有存儲設備虛擬功能。
3. iSCSI控制卡
存儲設備和主機都通過乙太網線連接到乙太網絡交換機上,通過IP網路來實現SCSI協議的傳輸。主機與iSCSI設備之間有三種連接方式:第一,乙太網卡+軟體方式;第二,硬體TOE網卡實現方式;第三種是iSCSI HBA卡實現方式。
第三種方式使用iSCSI存儲適配器來完成伺服器中的iSCSI層和TCP/IP協議棧功能。這種方式使得伺服器CPU無需考慮iSCSI以及網路配置,對伺服器而言,iSCSI存儲器適配器是一個HBA設備,與伺服器採用何種操作系統無關。目前市場上也有相關的產品,如Adaptec 7211 iSCSI控制卡、Alacritech iSCSI HBA SES 1001、QLogic SANblade 4000系列iSCSI HBA卡等。