當前位置:首頁 » 服務存儲 » 高密度自動化存儲系統
擴展閱讀
webinf下怎麼引入js 2023-08-31 21:54:13
堡壘機怎麼打開web 2023-08-31 21:54:11

高密度自動化存儲系統

發布時間: 2022-01-16 08:20:26

❶ 高存儲密度硬碟的基本組成和原理

磁碟存儲器磁碟存儲器利用磁記錄技術在旋轉的圓盤介質上進行數據存儲的輔助存儲器。這是一種應用廣泛的直接存取存儲器。其容量較主存儲器大千百倍,在各種規模的計算機系統中,常用作存放操作系統、程序和數據,是對主存儲器的擴充。磁碟存儲器存入的數據可長期保存,與其他輔助存儲器比較,磁碟存儲器具有較大的存儲容量和較快的數據傳輸速率。典型的磁碟驅動器包括碟片主軸旋轉機構與驅動電機、頭臂與頭臂支架、頭臂驅動電機、凈化盤腔與空氣凈化機構、寫入讀出電路、伺服定位電路和控制邏輯電路等。

磁碟以恆定轉速旋轉。懸掛在頭臂上具有浮動面的頭塊(浮動磁頭),靠載入彈簧的力量壓向盤面,碟片表面帶動的氣流將頭塊浮起。頭塊與碟片間保持穩定的微小間隙。經濾塵器過濾的空氣不斷送入盤腔,保持碟片和頭塊處於高度凈化的環境內,以防頭塊與盤面劃傷。根據控制器送來的磁軌地址(即圓柱面地址)和尋道命令,定位電路驅動直線電機將頭臂移至目標磁軌上。伺服磁頭讀出伺服磁軌信號並反饋到定位電路,使頭臂跟隨伺服磁軌穩定在目標磁軌上。讀寫與選頭電路根據控制器送來的磁頭地址接通應選的磁頭,將控制器送來的數據以串列方式逐位記錄在目標磁軌上;或反之,從選定的磁軌讀出數據並送往控制器。頭臂裝在梳形架小車上,在尋道時所有頭臂一同移動。所有數據面上相同直徑的同心圓磁軌總稱圓柱面,即頭臂定位一次所能存取的全部磁軌。每個磁軌都按固定的格式記錄。在標志磁軌起始位置的索引之後,記錄該道的地址(圓柱面號和頭號)、磁軌的狀況和其他參考信息。在每一記錄段的尾部附記有該段的糾錯碼,對連續少數幾位的永久缺陷所造成的錯誤靠糾錯碼糾正,對有多位永久缺陷的磁軌須用備分磁軌代替。寫讀操作是以記錄段為單位進行的。記錄段的長度有固定段長和可變段長兩種。

❷ 什麼是自動化倉庫系統

自動化技術在倉儲領域(包括主體倉庫)中的發展可分為五個階段:人工倉儲階段、機械化倉儲階段、自動化倉儲階段、集成化倉儲階段和智能自動化倉儲階段。在90年代後期及21世紀的若干年內,智能自動化倉儲將是自動化技術的主要發展方向。
主要組成

概述
自動化倉庫主要由貨物存取機、儲存機構、輸送設備和控制裝置四個部分組成。

貨物存取機
在自動化倉庫中,視需要存放零件的數量建立若干高層貨架。每兩個貨架之間稱為巷道,巷道內設有堆垛機。它可在軌道上水平方向移動,也可以在本身的立柱上沿垂直方向移動,藉以完成貨物的存取操作。為了適應立體存取,要求操作安全、准確並可進行遙控;為了適應各種貨物的裝載特點和不同的儲存量,要求存取機具有各種相應的尺寸和構造。存取機有各種不同的速度,這取決於該系統單位時間內的貨物吞吐量。

儲存機構
一般又稱貨架系統。從結構上看有兩種不同的貨架:一種是貨架與建築物沒有聯系,獨立地建在建築物內部。這種貨架可以拆除,靈活方便,適用於高度不高的自動化倉庫;另一種是貨架與建築物緊密相連,它除了儲存貨物以外,尚用作支撐建築物的牆體或屋頂,成為建築物的一部分,通常稱為整體結構。這種貨架建築周期短、費用低,適用於高型的自動化倉庫。

輸送設備
通常是指貨物存取機作業范圍以外的輸送設備,用以將貨物存取機與其他長距離的運輸裝置聯系起來。輸送設備類型很多,主要根據作業量多少、貨物類型和作業之間的配合情況而選定。常用的輸送設備有鏟車、引導車、地面有軌流動車、穿梭車和輥筒鏈條輸送機等。

控制裝置
控制裝置把自動化倉庫的一切設備有機地聯系在一起,使其按照預定的程序和要求動作,形成一個自動控制系統。較先進的控制裝置一般都用幾台小型計算機構成,採取分級控制。這種計算機分級控制系統能快速地對信息進行實時處理。當一台計算機有故障時操作仍不中斷。整個系統便於測試、檢查和維修。電子計算機還能對倉庫的訂貨與發送、倉庫物資儲備、倉庫作業定額管理提供信息,能對倉庫作業人員、作業手段、作業組織進行指揮和監督。 自動化倉庫面臨的主要問題是降低生產成本,提高機械自動化水平,節約能源,減少環境污染,提高經濟效益。

主要優點
1、自動化倉庫可以節省勞動力,節約佔地。由於自動化倉庫採用了電子計算機等先進的控制手段,採用高效率的巷道堆垛起重機,使倉庫的生產效益得到了較大的提高,往往一個很大的倉庫只需要幾個工作人員,節省大量勞動力。同時,倉庫的勞動也大大地減輕,勞動條件得到改善。自動化倉庫的高層貨架能合理地使用空間,使單位土地面積存放貨物的數量得到提高。在相同的土地面積上,建設自動化倉庫比建設普通倉庫儲存能力高達幾倍,甚至十幾倍。這樣在相同儲存量的情況下,自動化倉庫節約了大量土地。
2、自動化倉庫出入庫作業迅速、准確、縮短了作業時間。現代化的商品流通要求快速、准確。自動化倉庫由於採用了先進的控制手段和作業機械,採用最快的速度,最短的距離送取貨物,使商品出入庫的時間大大的縮短。同時,倉庫作業准確率高,倉庫與供貨單位、用戶能夠有機地協調,這有利於縮短商品流通時間。
3、提高倉庫的管理水平。由於電子計算機控制的自動化倉庫結束丁普通繁雜的台帳手工管理辦法,使倉庫的帳目管理以及大量資料數據通過計算機貯存,隨時需要,隨時調出,既准確無誤,又便於情報分析。從庫存量上,自動化倉庫可以將庫存量控制在最經濟的水平上,在完成相同的商品周轉量的情況下,自動化倉庫的庫存量可以達到最小。
4、自動化倉庫有利於商品的保管。在自動化倉庫中,存放的商品多、數量大,品種多樣。由於採用貨架--托盤系統,商品在托盤或貨箱中,使搬運作業安全可靠,避免了商品包裝破損、散包等現象。自動化倉庫有很好的密封性能,為調節庫內溫度,搞好商品的保管養護提供了良好的條件。在自動化倉庫中配備報警裝置和排水系統,倉庫可以預防和及時撲滅火災。

❸ 提高揀貨效率的方法

摘要 提高倉儲揀選效率的10大策略,希望能對大家有一點其實與幫助。

❹ 希捷高密度系統跟4U36存儲伺服器相比優點是什麼

希捷高密度系統跟4U36存儲服

❺ 自動化立體存儲和立體倉庫是什麼關系

立體倉庫是用來做自動化立體存儲的

❻ 存儲器的發展史

存儲器設備發展

1.存儲器設備發展之汞延遲線

汞延遲線是基於汞在室溫時是液體,同時又是導體,每比特數據用機械波的波峰(1)和波谷(0)表示。機械波從汞柱的一端開始,一定厚度的熔融態金屬汞通過一振動膜片沿著縱向從一端傳到另一端,這樣就得名「汞延遲線」。在管的另一端,一感測器得到每一比特的信息,並反饋到起點。設想是汞獲取並延遲這些數據,這樣它們便能存儲了。這個過程是機械和電子的奇妙結合。缺點是由於環境條件的限制,這種存儲器方式會受各種環境因素影響而不精確。

1950年,世界上第一台具有存儲程序功能的計算機EDVAC由馮.諾依曼博士領導設計。它的主要特點是採用二進制,使用汞延遲線作存儲器,指令和程序可存入計算機中。

1951年3月,由ENIAC的主要設計者莫克利和埃克特設計的第一台通用自動計算機UNIVAC-I交付使用。它不僅能作科學計算,而且能作數據處理。

2.存儲器設備發展之磁帶

UNIVAC-I第一次採用磁帶機作外存儲器,首先用奇偶校驗方法和雙重運算線路來提高系統的可靠性,並最先進行了自動編程的試驗。

磁帶是所有存儲器設備發展中單位存儲信息成本最低、容量最大、標准化程度最高的常用存儲介質之一。它互換性好、易於保存,近年來,由於採用了具有高糾錯能力的編碼技術和即寫即讀的通道技術,大大提高了磁帶存儲的可靠性和讀寫速度。根據讀寫磁帶的工作原理可分為螺旋掃描技術、線性記錄(數據流)技術、DLT技術以及比較先進的LTO技術。

根據讀寫磁帶的工作原理,磁帶機可以分為六種規格。其中兩種採用螺旋掃描讀寫方式的是面向工作組級的DAT(4mm)磁帶機和面向部門級的8mm磁帶機,另外四種則是選用數據流存儲技術設計的設備,它們分別是採用單磁頭讀寫方式、磁帶寬度為1/4英寸、面向低端應用的Travan和DC系列,以及採用多磁頭讀寫方式、磁帶寬度均為1/2英寸、面向高端應用的DLT和IBM的3480/3490/3590系列等。

磁帶庫是基於磁帶的備份系統,它能夠提供同樣的基本自動備份和數據恢復功能,但同時具有更先進的技術特點。它的存儲容量可達到數百PB,可以實現連續備份、自動搜索磁帶,也可以在驅動管理軟體控制下實現智能恢復、實時監控和統計,整個數據存儲備份過程完全擺脫了人工干涉。

磁帶庫不僅數據存儲量大得多,而且在備份效率和人工佔用方面擁有無可比擬的優勢。在網路系統中,磁帶庫通過SAN(Storage Area Network,存儲區域網路)系統可形成網路存儲系統,為企業存儲提供有力保障,很容易完成遠程數據訪問、數據存儲備份或通過磁帶鏡像技術實現多磁帶庫備份,無疑是數據倉庫、ERP等大型網路應用的良好存儲設備。

3.存儲器設備發展之磁鼓

1953年,隨著存儲器設備發展,第一台磁鼓應用於IBM 701,它是作為內存儲器使用的。磁鼓是利用鋁鼓筒表面塗覆的磁性材料來存儲數據的。鼓筒旋轉速度很高,因此存取速度快。它採用飽和磁記錄,從固定式磁頭發展到浮動式磁頭,從採用磁膠發展到採用電鍍的連續磁介質。這些都為後來的磁碟存儲器打下了基礎。

磁鼓最大的缺點是利用率不高, 一個大圓柱體只有表面一層用於存儲,而磁碟的兩面都利用來存儲,顯然利用率要高得多。 因此,當磁碟出現後,磁鼓就被淘汰了。

4.存儲器設備發展之磁芯

美國物理學家王安1950年提出了利用磁性材料製造存儲器的思想。福雷斯特則將這一思想變成了現實。

為了實現磁芯存儲,福雷斯特需要一種物質,這種物質應該有一個非常明確的磁化閾值。他找到在新澤西生產電視機用鐵氧體變換器的一家公司的德國老陶瓷專家,利用熔化鐵礦和氧化物獲取了特定的磁性質。

對磁化有明確閾值是設計的關鍵。這種電線的網格和芯子織在電線網上,被人稱為芯子存儲,它的有關專利對發展計算機非常關鍵。這個方案可靠並且穩定。磁化相對來說是永久的,所以在系統的電源關閉後,存儲的數據仍然保留著。既然磁場能以電子的速度來閱讀,這使互動式計算有了可能。更進一步,因為是電線網格,存儲陣列的任何部分都能訪問,也就是說,不同的數據可以存儲在電線網的不同位置,並且閱讀所在位置的一束比特就能立即存取。這稱為隨機存取存儲器(RAM),在存儲器設備發展歷程中它是互動式計算的革新概念。福雷斯特把這些專利轉讓給麻省理工學院,學院每年靠這些專利收到1500萬~2000萬美元。

最先獲得這些專利許可證的是IBM,IBM最終獲得了在北美防衛軍事基地安裝「旋風」的商業合同。更重要的是,自20世紀50年代以來,所有大型和中型計算機也採用了這一系統。磁芯存儲從20世紀50年代、60年代,直至70年代初,一直是計算機主存的標准方式。

5.存儲器設備發展之磁碟

世界第一台硬碟存儲器是由IBM公司在1956年發明的,其型號為IBM 350 RAMAC(Random Access Method of Accounting and Control)。這套系統的總容量只有5MB,共使用了50個直徑為24英寸的磁碟。1968年,IBM公司提出「溫徹斯特/Winchester」技術,其要點是將高速旋轉的磁碟、磁頭及其尋道機構等全部密封在一個無塵的封閉體中,形成一個頭盤組合件(HDA),與外界環境隔絕,避免了灰塵的污染,並採用小型化輕浮力的磁頭浮動塊,碟片表面塗潤滑劑,實行接觸起停,這是現代絕大多數硬碟的原型。1979年,IBM發明了薄膜磁頭,進一步減輕了磁頭重量,使更快的存取速度、更高的存儲密度成為可能。20世紀80年代末期,IBM公司又對存儲器設備發展作出一項重大貢獻,發明了MR(Magneto Resistive)磁阻磁頭,這種磁頭在讀取數據時對信號變化相當敏感,使得碟片的存儲密度比以往提高了數十倍。1991年,IBM生產的3.5英寸硬碟使用了MR磁頭,使硬碟的容量首次達到了1GB,從此,硬碟容量開始進入了GB數量級。IBM還發明了PRML(Partial Response Maximum Likelihood)的信號讀取技術,使信號檢測的靈敏度大幅度提高,從而可以大幅度提高記錄密度。

目前,硬碟的面密度已經達到每平方英寸100Gb以上,是容量、性價比最大的一種存儲設備。因而,在計算機的外存儲設備中,還沒有一種其他的存儲設備能夠在最近幾年中對其統治地位產生挑戰。硬碟不僅用於各種計算機和伺服器中,在磁碟陣列和各種網路存儲系統中,它也是基本的存儲單元。值得注意的是,近年來微硬碟的出現和快速發展為移動存儲提供了一種較為理想的存儲介質。在快閃記憶體晶元難以承擔的大容量移動存儲領域,微硬碟可大顯身手。目前尺寸為1英寸的硬碟,存儲容量已達4GB,10GB容量的1英寸硬碟不久也會面世。微硬碟廣泛應用於數碼相機、MP3設備和各種手持電子類設備。

另一種磁碟存儲設備是軟盤,從早期的8英寸軟盤、5.25英寸軟盤到3.5英寸軟盤,主要為數據交換和小容量備份之用。其中,3.5英寸1.44MB軟盤占據計算機的標准配置地位近20年之久,之後出現過24MB、100MB、200MB的高密度過渡性軟盤和軟碟機產品。然而,由於USB介面的快閃記憶體出現,軟盤作為數據交換和小容量備份的統治地位已經動搖,不久會退出存儲器設備發展歷史舞台。

6. 存儲器設備發展之光碟

光碟主要分為只讀型光碟和讀寫型光碟。只讀型指光碟上的內容是固定的,不能寫入、修改,只能讀取其中的內容。讀寫型則允許人們對光碟內容進行修改,可以抹去原來的內容,寫入新的內容。用於微型計算機的光碟主要有CD-ROM、CD-R/W和DVD-ROM等幾種。

上世紀60年代,荷蘭飛利浦公司的研究人員開始使用激光光束進行記錄和重放信息的研究。1972年,他們的研究獲得了成功,1978年投放市場。最初的產品就是大家所熟知的激光視盤(LD,Laser Vision Disc)系統。

從LD的誕生至計算機用的CD-ROM,經歷了三個階段,即LD-激光視盤、CD-DA激光唱盤、CD-ROM。下面簡單介紹這三個存儲器設備發展階段性的產品特點。

LD-激光視盤,就是通常所說的LCD,直徑較大,為12英寸,兩面都可以記錄信息,但是它記錄的信號是模擬信號。模擬信號的處理機制是指,模擬的電視圖像信號和模擬的聲音信號都要經過FM(Frequency Molation)頻率調制、線性疊加,然後進行限幅放大。限幅後的信號以0.5微米寬的凹坑長短來表示。

CD-DA激光唱盤 LD雖然取得了成功,但由於事先沒有制定統一的標准,使它的開發和製作一開始就陷入昂貴的資金投入中。1982年,由飛利浦公司和索尼公司制定了CD-DA激光唱盤的紅皮書(Red Book)標准。由此,一種新型的激光唱盤誕生了。CD-DA激光唱盤記錄音響的方法與LD系統不同,CD-DA激光唱盤系統首先把模擬的音響信號進行PCM(脈沖編碼調制)數字化處理,再經過EMF(8~14位調制)編碼之後記錄到盤上。數字記錄代替模擬記錄的好處是,對干擾和雜訊不敏感,由於盤本身的缺陷、劃傷或沾污而引起的錯誤可以校正。

CD-DA系統取得成功以後,使飛利浦公司和索尼公司很自然地想到利用CD-DA作為計算機的大容量只讀存儲器。但要把CD-DA作為計算機的存儲器,還必須解決兩個重要問題,即建立適合於計算機讀寫的盤的數據結構,以及CD-DA誤碼率必須從現有的10-9降低到10-12以下,由此就產生了CD-ROM的黃皮書(Yellow Book)標准。這個標準的核心思想是,盤上的數據以數據塊的形式來組織,每塊都要有地址,這樣一來,盤上的數據就能從幾百兆位元組的存儲空間上被迅速找到。為了降低誤碼率,採用增加一種錯誤檢測和錯誤校正的方案。錯誤檢測採用了循環冗餘檢測碼,即所謂CRC,錯誤校正採用里德-索洛蒙(Reed Solomon)碼。黃皮書確立了CD-ROM的物理結構,而為了使其能在計算機上完全兼容,後來又制定了CD-ROM的文件系統標准,即ISO 9660。

在上世紀80年代中期,光碟存儲器設備發展速度非常快,先後推出了WORM光碟、磁光碟(MO)、相變光碟(Phase Change Disk,PCD)等新品種。20世紀90年代,DVD-ROM、CD-R、CD-R/W等開始出現和普及,目前已成為計算機的標准存儲設備。

光碟技術進一步向高密度發展,藍光光碟是不久將推出的下一代高密度光碟。多層多階光碟和全息存儲光碟正在實驗室研究之中,可望在5年之內推向市場。

7.存儲器設備發展之納米存儲

納米是一種長度單位,符號為nm。1納米=1毫微米,約為10個原子的長度。假設一根頭發的直徑為0.05毫米,把它徑向平均剖成5萬根,每根的厚度即約為1納米。與納米存儲有關的主要進展有如下內容。

1998年,美國明尼蘇達大學和普林斯頓大學制備成功量子磁碟,這種磁碟是由磁性納米棒組成的納米陣列體系。一個量子磁碟相當於我們現在的10萬~100萬個磁碟,而能源消耗卻降低了1萬倍。

1988年,法國人首先發現了巨磁電阻效應,到1997年,採用巨磁電阻原理的納米結構器件已在美國問世,它在磁存儲、磁記憶和計算機讀寫磁頭等方面均有廣闊的應用前景。

2002年9月,美國威斯康星州大學的科研小組宣布,他們在室溫條件下通過操縱單個原子,研製出原子級的硅記憶材料,其存儲信息的密度是目前光碟的100萬倍。這是納米存儲材料技術研究的一大進展。該小組發表在《納米技術》雜志上的研究報告稱,新的記憶材料構建在硅材料表面上。研究人員首先使金元素在硅材料表面升華,形成精確的原子軌道;然後再使硅元素升華,使其按上述原子軌道進行排列;最後,藉助於掃瞄隧道顯微鏡的探針,從這些排列整齊的硅原子中間隔抽出硅原子,被抽空的部分代表「0」,餘下的硅原子則代表「1」,這就形成了相當於計算機晶體管功能的原子級記憶材料。整個試驗研究在室溫條件下進行。研究小組負責人赫姆薩爾教授說,在室溫條件下,一次操縱一批原子進行排列並不容易。更為重要的是,記憶材料中硅原子排列線內的間隔是一個原子大小。這保證了記憶材料的原子級水平。赫姆薩爾教授說,新的硅記憶材料與目前硅存儲材料存儲功能相同,而不同之處在於,前者為原子級體積,利用其製造的計算機存儲材料體積更小、密度更大。這可使未來計算機微型化,且存儲信息的功能更為強大。

以上就是本文向大家介紹的存儲器設備發展歷程的7個關鍵時期

❼ 自動化立體倉庫中自動存取貨系統存儲貨物的設備是什麼

堆垛機,全名是有軌巷道堆垛起重機