㈠ 前端匯流排 ht匯流排 QPI匯流排
前端匯流排(Front SIDE Bus,簡稱FSB),CPU與北橋芯在片之間的數據傳輸速率。
QPI匯流排(Quick Path Interconnect),intel的全新架構,譯為快速通道互聯。
作為取代FSB,成為新一代CPU和CPU,CPU與晶元組之間的連接匯流排。
HT匯流排(HyperTransport),是AMD為K8平台專門設計的高速串列匯流排。
因此,QPI和FSB是前後關系,FSB表示的是頻率,而QPI比的是數據傳輸速率,
而HT匯流排則是AMD的設計標准!
㈡ 誰知道「QPI」是什麼意思
它是新一代前端匯流排標准,是用來替代上一代匯流排標准FSB的,擁有更大的帶寬,能接收傳送更大的數據流。是目前市場的主流。
㈢ 前端匯流排是什麼意思
什麼是匯流排?
微機中匯流排一般有內部匯流排、系統匯流排和外部匯流排。內部匯流排是微機內部各外圍晶元與處理器之間的匯流排,用於晶元一級的互連;而系統匯流排是微機中各插件板與系統板之間的匯流排,用於插件板一級的互連;外部匯流排則是微機和外部設備之間的匯流排,微機作為一種設備,通過該匯流排和其他設備進行信息與數據交換,它用於設備一級的互連。
什麼是前端匯流排:「前端匯流排」這個名稱是由AMD在推出K7 CPU時提出的概念,但是一直以來都被大家誤認為這個名詞不過是外頻的另一個名稱。我們所說的外頻指的是CPU與主板連接的速度,這個概念是建立在數字脈沖信號震盪速度基礎之上的,而前端匯流排的速度指的是數據傳輸的速度,由於數據傳輸最大帶寬取決於所有同時傳輸的數據的寬度和傳輸頻率,即數據帶寬=(匯流排頻率×數據位寬)÷8。目前PC機上所能達到的前端匯流排頻率有266MHz、333MHz、400MHz、533MHz、800MHz、1066MHz、1333MHz幾種,前端匯流排頻率越大,代表著CPU與內存之間的數據傳輸量越大,更能充分發揮出CPU的功能。現在的CPU技術發展很快,運算速度提高很快,而足夠大的前端匯流排可以保障有足夠的數據供給給CPU。較低的前端匯流排將無法供給足夠的數據給CPU,這樣就限制了CPU性能得發揮,成為系統瓶頸。
前端匯流排的英文名字是Front Side Bus,通常用FSB表示,是將CPU連接到北橋晶元的匯流排。選購主板和CPU時,要注意兩者搭配問題,一般來說,如果CPU不超頻,那麼前端匯流排是由CPU決定的,如果主板不支持CPU所需要的前端匯流排,系統就無法工作。也就是說,需要主板和CPU都支持某個前端匯流排,系統才能工作,只不過一個CPU默認的前端匯流排是唯一的,因此看一個系統的前端匯流排主要看CPU就可以。
北橋晶元負責聯系內存、顯卡等數據吞吐量最大的部件,並和南橋晶元連接。CPU就是通過前端匯流排(FSB)連接到北橋晶元,進而通過北橋晶元和內存、顯卡交換數據。前端匯流排是CPU和外界交換數據的最主要通道,因此前端匯流排的數據傳輸能力對計算機整體性能作用很大,如果沒足夠快的前端匯流排,再強的CPU也不能明顯提高計算機整體速度。數據傳輸最大帶寬取決於所有同時傳輸的數據的寬度和傳輸頻率,即數據帶寬=(匯流排頻率×數據位寬)÷8。目前PC機上所能達到的前端匯流排頻率有266MHz、333MHz、400MHz、533MHz、800MHz幾種,前端匯流排頻率越大,代表著CPU與北橋晶元之間的數據傳輸能力越大,更能充分發揮出CPU的功能。現在的CPU技術發展很快,運算速度提高很快,而足夠大的前端匯流排可以保障有足夠的數據供給給CPU,較低的前端匯流排將無法供給足夠的數據給CPU,這樣就限制了CPU性能得發揮,成為系統瓶頸。顯然同等條件下,前端匯流排越快,系統性能越好。
外頻與前端匯流排頻率的區別:前端匯流排的速度指的是數據傳輸的速度,外頻是CPU與主板之間同步運行的速度。也就是說,100MHz外頻特指數字脈沖信號在每秒鍾震盪一千萬次;而100MHz前端匯流排指的是每秒鍾CPU可接受的數據傳輸量是100MHz×64bit=6400Mbit/s=800MByte/s(1Byte=8bit)。
總的來說倍頻就是CPU與外部的交流能力,而主頻就是CPU的處理能力
所以在購買時兩者都看,不過重點是主頻
㈣ 電腦配置中前端匯流排是什麼意思
前端匯流排是處理器與主板北橋晶元或內存控制集線器之間的數據通道,其頻率高低直接影響CPU訪問內存的速度;BIOS可看作是一個記憶電腦相關設定的軟體,可以通過它調整相關設定。BIOS存儲於板卡上一塊晶元中,這塊晶元的名字叫COMS
RAM。但就像ATA與IDE一樣,大多人都將它們混為一談。
因為主板直接影響到整個系統的性能、穩定、功能與擴展性,其重要性不言而喻。主板的選購看似簡單,其實要注意的東西很多。選購時當留意產品的晶元組、做工用料、功能介面甚至使用簡便性,這就要求對主板具備透徹的認識,才能選擇到滿意的產品。
匯流排是將信息以一個或多個源部件傳送到一個或多個目的部件的一組傳輸線。通俗的說,就是多個部件間的公共連線,用於在各個部件之間傳輸信息。人們常常以MHz表示的速度來描述匯流排頻率。匯流排的種類很多,前端匯流排的英文名字是Front
Side
Bus,通常用FSB表示,是將CPU連接到北橋晶元的匯流排。計算機的前端匯流排頻率是由CPU和北橋晶元共同決定的。
CPU就是通過前端匯流排(FSB)連接到北橋晶元,進而通過北橋晶元和內存、顯卡交換數據。前端匯流排是CPU和外界交換數據的最主要通道,因此前端匯流排的數據傳輸能力對計算機整體性能作用很大,如果沒足夠快的前端匯流排,再強的CPU也不能明顯提高計算機整體速度。數據傳輸最大帶寬取決於所有同時傳輸的數據的寬度和傳輸頻率,即數據帶寬=(匯流排頻率×數據位寬)÷8。目前PC機上所能達到的前端匯流排頻率有266MHz、333MHz、400MHz、533MHz、800MHz幾種,前端匯流排頻率越大,代表著CPU與北橋晶元之間的數據傳輸能力越大,更能充分發揮出CPU的功能。現在的CPU技術發展很快,運算速度提高很快,而足夠大的前端匯流排可以保障有足夠的數據供給給CPU,較低的前端匯流排將無法供給足夠的數據給CPU,這樣就限制了CPU性能得發揮,成為系統瓶頸。
CPU和北橋晶元間匯流排的速度,更實質性的表示了CPU和外界數據傳輸的速度。而外頻的概念是建立在數字脈沖信號震盪速度基礎之上的,也就是說,100MHz外頻特指數字脈沖信號在每秒鍾震盪一萬萬次,它更多的影響了PIC及其他匯流排的頻率。之所以前端匯流排與外頻這兩個概念容易混淆,主要的原因是在以前的很長一段時間里(主要是在Pentium4出現之前和剛出現Pentium
4時),前端匯流排頻率與外頻是相同的,因此往往直接稱前端匯流排為外頻,最終造成這樣的誤會。隨著計算機技術的發展,人們發現前端匯流排頻率需要高於外頻,因此採用了QDR(Quad
Date
Rate)技術,或者其他類似的技術實現這個目前。這些技術的原理類似於AGP的2X或者4X,它們使得前端匯流排的頻率成為外頻的2倍、4倍甚至更高,從此之後前端匯流排和外頻的區別才開始被人們重視起來。
㈤ cpu 系統前端匯流排是什麼意思
前端匯流排頻率指的是CPU和北橋晶元之間交換數據的頻率。 前端匯流排的英文名字是Front Side Bus,通常用FSB表示,是將CPU連接到北橋晶元的匯流排。計算機的前端匯流排頻率是由CPU和北橋晶元共同決定的。 北橋晶元負責聯系內存、顯卡等數據吞吐量最大的部件,並和南橋晶元連接。CPU就是通過前端匯流排(FSB)連接到北橋晶元,進而通過北橋晶元和內存、顯卡交換數據。前端匯流排是CPU和外界交換數據的最主要通道,因此前端匯流排的數據傳輸能力對計算機整體性能作用很大,如果沒足夠快的前端匯流排,再強的CPU也不能明顯提高計算機整體速度。數據傳輸最大帶寬取決於所有同時傳輸的數據的寬度和傳輸頻率,即數據帶寬=(匯流排頻率×數據位寬)÷8。目前PC機上所能達到的前端匯流排頻率有266MHz、333MHz、400MHz、533MHz、800MHz幾種,前端匯流排頻率越大,代表著CPU與北橋晶元之間的數據傳輸能力越大,更能充分發揮出CPU的功能。現在的CPU技術發展很快,運算速度提高很快,而足夠大的前端匯流排可以保障有足夠的數據供給給CPU,較低的前端匯流排將無法供給足夠的數據給CPU,這樣就限制了CPU性能得發揮,成為系統瓶頸。 主板的前端匯流排頻率和CPU的前端匯流排頻率一致的時候才能發揮最佳性能. 而CPU和內存都具有相應的速率和帶寬。在配置電腦過程中,根據CPU的速率和帶寬,來搭配相應速率和帶寬的內存,會直接影響整機的性能. 如果選擇的是賽揚4系列CPU,則應該要配置DDR333/DDR400內存,DDR266隻適合賽揚3和採用AMD的新品毒龍、基於Thorton核心的Athlon XP系列產品的CPU。而Barton 3200+型號和Athlon 64系列的產品則應該搭配DDR400內存。同理,如果購買的是P4系列處理器,則應該採用DDR400甚至雙通道的DDR333或DDR400內存來匹配,以免出現CPU帶寬浪費過多,而影響電腦的整體性能的情況
㈥ 帶寬 前端匯流排 QPI匯流排都有啥區別
帶寬(band width)又叫頻寬,是指在固定的的時間可傳輸的資料數量,亦即在傳輸管道中可以傳遞數據的能力。在數字設備中,頻寬通常以bps表示,即每秒可傳輸之位數。在模擬設備中,頻寬通常以每秒傳送周期或赫茲 (Hz)來表示。
頻寬對基本輸出入系統 (BIOS ) 設備尤其重要,如快速磁碟驅動器會受低頻寬的匯流排所阻礙。
對於帶寬的概念,比較形象的一個比喻是高速公路。單位時間內能夠在線路上傳送的數據量,常用的單位是bps(bit per second)。計算機網路的帶寬是指網路可通過的最高數據率,即每秒多少比特。
嚴格來說,數字網路的帶寬應使用波特率來表示(baud),表示每秒的脈沖數。而比特是信息單位,由於數字設備使用二進制,則每位電平所承載的信息量是1(以2為底2的對數,如果是四進制,則是以2為底的4的對數,每位電平所承載的信息量為2)。因此,在數值上,波特與比特是相同的。由於人們對這兩個概念分的並不是很清楚,因此常使用比特率來表示速率,也正是用比特的人太多,所以比特率也就成了一個帶寬事實的標准叫法了。
描述帶寬時常常把「比特/秒」省略。
例如,帶寬是10M,實際上是10Mb/s。
這里的M 是10^6。
「帶寬」有以下兩種不同的意義:
1.指信號具有的頻帶寬度。信號的帶寬是指該信號所包含的各種不同頻率成分所佔據的頻率范圍。
2.在計算機網路中,帶寬用來表示網路的通信線路所能傳送數據的能力,因此網路帶寬表示在單位時間內從網路中的某一點到另一點所能通過的「最高數據率」。
在網路中有兩種不同的速率:
信號(即電磁波)在傳輸媒體上的傳播速率(米/秒,或公里/秒)
計算機向網路發送比特的速率(比特/秒)
這兩種速率的意義和單位完全不同。
在理解帶寬這個概念之前,我們首先來看一個公式:帶寬=時鍾頻率x匯流排位數/8,從公式中我們可以看到,帶寬和時鍾頻率、匯流排位數是有著非常密切的關系的。其實在一個計算機系統中,不僅顯示器、內存有帶寬的概念,在一塊板卡上,帶寬的概念就更多了,完全可以說是帶寬無處不在。
那到底什麼是帶寬呢?帶寬的意義又是什麼?簡單的說,帶寬就是傳輸速率,是指每秒鍾傳輸的最大位元組數(MB/S),即每秒處理多少兆位元組,高帶寬則意味著系統的高處理能力。為了更形象地理解帶寬、位寬、時鍾頻率的關系,我們舉個比較形象的例子,工人加工零件,如果一個人干,在大家單個加工速度相同的情況下,肯定不如兩個人乾的多,帶寬就像是加工零件的總數量,位寬彷彿工人數量,時鍾工作頻率相當於加工單個零件的速度,位寬越寬,時鍾頻率越高則匯流排帶寬越大,其好處也是顯而易見的。
主板上通常會有兩塊比較大的晶元,一般將靠近CPU的那塊稱為北橋,遠離CPU的稱為南橋。北橋的作用是在CPU與內存、顯卡之間建立通信介面,它們與北橋連接的帶寬大小很大程度上決定著內存與顯卡效能的大小。南橋是負責計算機的I/O設備、PCI設備和硬碟,對帶寬的要求,相比較北橋而言,是要小一些的。而南北橋之間的連接帶寬一般就稱為南北橋帶寬。隨著計算機越來越向多媒體方向發展,南橋的功能也日益強大,對於南北橋間的連接匯流排帶寬也是提出了新的要求,在INTEL的9X5系列主板上,南北橋的帶寬將從以前一直為人所詬病的266MB/S發展到空前的2GB/S,一舉解決了南北橋間的帶寬瓶頸。
帶寬是顯示器非常重要的一個參數,能夠決定顯示器性能的好壞。所謂帶寬是顯示器視頻放大器通頻帶寬度的簡稱,一個電路的帶寬實際上是反映該電路對輸入信號的響應速度。帶寬越寬,慣性越小,響應速度越快,允許通過的信號頻率越高,信號失真越小,它反映了顯示器的解像能力。該數字越大越好。
帶寬是代表顯示器顯示能力的一個綜合指標,指每秒鍾所掃描的圖素個數,即單位時間內每條掃描線上顯示的頻點數總和,以MHz為單位。帶寬越大表明顯示控制能力越強,顯示效果越佳。
帶寬的詳細計算公式如下:理論上帶寬 B=r(x) ×r(y) ×V
r(x)表示每條水平掃描線上的圖素個數
r(y)表示每楨畫面的水平掃描線數
V 表示每秒畫面刷新率(即場頻)
B 表示帶寬
再來說說顯卡,玩游戲的朋友都曉得,當玩一些大製作游戲的時候,畫面有時候會卡的比較厲害。其實這就是顯卡帶寬不足的問題,再具體點說,這是顯存帶寬不足。眾所周知,目前當道的AGP介面是AGP 8X,而AGP匯流排的頻率是PCI匯流排的兩倍,也就是66MHz,很容易就可以換算出它的帶寬是2.1GB/S,在目前的環境下,這樣的帶寬就顯得很微不足道了,因為連最普通的ATI R9000的顯存帶寬都要達到400MHZ X 128Bit/8=6.4GB/s,其餘的高端顯卡更是不用說了。正因為如此,INTEL在最新的9X5晶元組中,採用了PCI-Express匯流排來替代老態龍鍾的AGP匯流排,與傳統PCI以及更早期的計算機匯流排的共享並行架構相比,PCI Express最大的特點是在設備間採用點對點串列連接,如此一來即允許每個設備都有自己的專用連接,不需要向整個匯流排請求帶寬,同時利用串列的連接特點將能輕松將數據傳輸速度提到一個很高的頻率。在傳輸速度上,由於PCI Express支持雙向傳輸模式,因此連接的每個裝置都可以使用最大帶寬。AGP所遇到的帶寬瓶頸也迎刃而解。
為了在實際使用計算機的過程中得到更多匯流排帶寬,根據帶寬的計算公式,一般會採取兩種辦法,一是增加匯流排速度,比如INTEL的P4 CPU和賽揚CPU就是最好的例子,一個是400匯流排,一個是533/800匯流排,在實際應用的效能就有了很大的區別(當然,二級緩存也是一個重要的因素)。另外一個常用的方法是增加匯流排的寬度,如果當它的時鍾速度一樣時,匯流排的寬度增加一倍,那麼盡管時鍾下降沿同未改變之前是相同而此時每次下降沿所傳輸的數據量卻是以前的兩倍,這一點在相同核心,但是顯存位寬卻不一樣的顯卡上表現特別明顯。
什麼是前端匯流排:「前端匯流排」這個名稱是由AMD在推出K7 CPU時提出的概念,但是一直以來都被大家誤認為這個名詞不過是外頻的另一個名稱。我們所說的外頻指的是CPU與主板連接的速度,這個概念是建立在數字脈沖信號震盪速度基礎之上的,而前端匯流排的速度指的是數據傳輸的速度,由於數據傳輸最大帶寬取決於所有同時傳輸的數據的寬度和傳輸頻率,即數據帶寬=(匯流排頻率×數據位寬)÷8。目前PC機上所能達到的前端匯流排頻率有266MHz、333MHz、400MHz、533MHz、800MHz、1066MHz、1333MHz幾種,前端匯流排頻率越大,代表著CPU與內存之間的數據傳輸量越大,更能充分發揮出CPU的功能。現在的CPU技術發展很快,運算速度提高很快,而足夠大的前端匯流排可以保障有足夠的數據供給給CPU。較低的前端匯流排將無法供給足夠的數據給CPU,這樣就限制了CPU性能得發揮,成為系統瓶頸。
前端匯流排的英文名字是Front Side Bus,通常用FSB表示,是將CPU連接到北橋晶元的匯流排。選購主板和CPU時,要注意兩者搭配問題,一般來說,如果CPU不超頻,那麼前端匯流排是由CPU決定的,如果主板不支持CPU所需要的前端匯流排,系統就無法工作。也就是說,需要主板和CPU都支持某個前端匯流排,系統才能工作,只不過一個CPU默認的前端匯流排是唯一的,因此看一個系統的前端匯流排主要看CPU就可以。
北橋晶元負責聯系內存、顯卡等數據吞吐量最大的部件,並和南橋晶元連接。CPU就是通過前端匯流排(FSB)連接到北橋晶元,進而通過北橋晶元和內存、顯卡交換數據。前端匯流排是CPU和外界交換數據的最主要通道,因此前端匯流排的數據傳輸能力對計算機整體性能作用很大,如果沒足夠快的前端匯流排,再強的CPU也不能明顯提高計算機整體速度。數據傳輸最大帶寬取決於所有同時傳輸的數據的寬度和傳輸頻率,即數據帶寬=(匯流排頻率×數據位寬)÷8。目前PC機上所能達到的前端匯流排頻率有266MHz、333MHz、400MHz、533MHz、800MHz幾種,前端匯流排頻率越大,代表著CPU與北橋晶元之間的數據傳輸能力越大,更能充分發揮出CPU的功能。現在的CPU技術發展很快,運算速度提高很快,而足夠大的前端匯流排可以保障有足夠的數據供給給CPU,較低的前端匯流排將無法供給足夠的數據給CPU,這樣就限制了CPU性能得發揮,成為系統瓶頸。顯然同等條件下,前端匯流排越快,系統性能越好。
QPI <Quick Path Interconnect>
intel的全新架構,Bloomfield將採用全新的LGA 1366 Socket,Package Size為42.5 x 45mm,散熱器設計雖然和LGA 775類似,但Mounting Holes為80mm,相較LGA775的72mm2更大,因此散熱器不能另相兼容,VRM採用全新的11.1版本,最高TDP為130W 。
利用雙向串聯點對點傳輸,它可提供與FSB相近的Latency,可讓軟體及操作系統管理,並且針對部份Streams(Threading、ISOC、LT/VT)及out of order requests作出了優化,單向最高速度暫 定為6.4GT/s,雙向最高速合共10.8GT/s,相比AMD採用的Hyper-Transport 3.0的速度更高。
Intel的QuickPath Interconnect技術縮寫為QPI,譯為快速通道互聯。事實上它的官方名字叫做CSI,Common System Interface公共系統界面,用來實現晶元之間的直接互聯,而不是在通過FSB連接到北橋,矛頭直指AMD的HT匯流排。無論是速度、帶寬、每個針腳的帶寬、功耗等一切規格都要超越HT匯流排。
QPI最大的改進是採用單條點對點模式下,QPI的輸出傳輸能力非常驚人,在4.8至6.4GT/s之間。一個連接的每個方向的位寬可以是5、10、20bit。因此每一個方向的QPI全寬度鏈接可以提供12至16BG/s的帶寬,那麼每一個QPI鏈接的帶寬為24至32GB/s。(不過,這仍是遜色於AMD的Hypertransport3---單條連接最大傳輸帶寬可以達到45GB/s,但我們相信未來英特爾仍會對QPI進行進一步提速改進。)在早期的Nehalem處理器中,Intel預計使用20bit的鏈接位寬,大約能提供25.6GB/s的數據傳輸能力。這個數字是Intel在上一季IDF中公布的。舉例來說,在X48晶元組中,FSB的速度為1600MHz,這是目前為止規格最高的FSB匯流排了。不過最初的QPI匯流排具備25.6GB/s的吞吐量,這個值相當於1600MHz FSB帶寬的2倍。
QPI技術特點——效率更高
此外,QPI另一個亮點就是支持多條系統匯流排連接,Intel稱之為multi-FSB。系統匯流排將會被分成多條連接,並且頻率不再是單一固定的,也無須如以前那樣還要再經過FSB進行連接。根據系統各個子系統對數據吞吐量的需求,每條系統匯流排連接的速度也可不同,這種特性無疑要比AMD目前的Hypertransport匯流排更具彈性。
例如,針對伺服器的Nehalem處理器將擁有至少4組QPI傳輸,可至少組成包括4枚處理器的4路高端伺服器系統(也就是16枚運算內核至少32線程並行運作)。而且在多處理器作業下,每顆處理器可以互相傳送資料,並不需經過晶元組,從而大幅提升整體系統性能。隨著未來Nehalem架構的處理器集成內存控制器、PCI-E 2.0圖形介面乃至圖形核心,QPI架構的優勢將進一步發揮出來。
為了降低QPI匯流排的延遲,Intel打算在4路處理器以上的系統中使用一種叫做粘貼緩存的技術。它主要是倚靠更大容量的二級高速緩存來存儲南橋和北橋的數據,使處理器不必反復通過QPI匯流排來讀取南北橋信息。同時,為了更高提升數據處理效率,英特爾還將在處理器內部集成內存控制器(IMC)。QPI和IMC結合,可以讓Intel更輕松地擴展多路系統和高性能計算(HPC)應用,而Intel現有的處理器架構更關注於指令執行引擎和緩存架構,以便在單線程應用中提高性能,導致雙路伺服器平台性能受限,也無法在對內存帶寬需求甚高的HPC中發揮作用。對於第一代採用QPI匯流排的Nehalem Xeon來說,集成了3通道的DDR3內存控制器,這樣在搭配DDR3 1066的情況下,每個處理器自己就能得到25.6GB/s的內存帶寬,大概是現在Tigerton系統的5倍,並且這個帶寬數量隨著處理器插座的增長而增長,對於四插座系統,總的帶寬將增長到恐怖的102.4GB/s。強大的內存性能將保證即使每個插座上邊採用8核心的處理器,內存帶寬也不會成為性能發揮的瓶頸。需要說明的是在QPI中,對於四路系統來說,任何兩個處理器之間都可以直接通信,這樣,一個處理器可以很方便的訪問到其他處理器控制的內存,這可以大大提升效率。另外,由於在QPI系統下不同處理器可以直接通信,同步緩存稱為很方便的事情,再也不用通過北橋的內存讀寫來進行了。
結語:
隨著QPI的正式推出,英特爾主導的QPI及AMD的HT 兩大未來匯流排系統將會正面沖突。為了讓多核心的系統更高效的工作,我們相信今後的晶元組會更加復雜,多條系統匯流排連接才是今後系統匯流排發展的王道。需要說明的是,英特爾在季秋IDF是已經在展示了可以工作的、首個採用QPI互聯架構的Nehalem平台。我們有理由相信,QPI將沖破內存性能帶來的樊籬,實現性能的新飛躍。
㈦ 請問前端匯流排,HT匯流排,QPI匯流排是怎麼樣的概念
前端匯流排的英文名字是Front Side Bus,通常用FSB表示,是將CPU連接到北橋晶元的匯流排。選購主板和CPU時,要注意兩者搭配問題,一般來說,前端匯流排是由CPU決定的,如果主板不支持CPU所需要的前端匯流排,系統就無法工作。也就是說,需要主板和CPU都支持某個前端匯流排,系統才能工作,只不過一個CPU默認的前端匯流排是唯一的,因此看一個系統的前端匯流排主要看CPU就可以。前端匯流排是處理器與主板北橋晶元或內存控制集線器之間的數據通道,其頻率高低直接影響CPU訪問內存的速度。
HT是HyperTransport的簡稱。HyperTransport本質是一種為主板上的集成電路互連而設計的端到端匯流排技術,目的是加快晶元間的數據傳輸速度。HyperTransport技術在AMD平台上使用後,是指AMD CPU到主板晶元之間的連接匯流排(如果主板晶元組是南北橋架構,則指CPU到北橋),即HT匯流排。
QPI
intel的全新架構,Bloomfield將採用全新的LGA 1366 Socket,Package Size為42.5 x 45mm,散熱器設計雖然和LGA 775類似,但Mounting Holes為80mm,相較LGA775的72mm2更大,因此散熱器不能另相兼容,VRM採用全新的11.1版本,最高TDP為130W 。
利用雙向串聯點對點傳輸,它可提供與FSB相近的Lat
㈧ cpu的前端匯流排是什麼意思啊
前端匯流排
是處理器與
主板
北橋晶元
或
內存
控制
集線器
之間
的數據通道,其
頻率
高低
直接影響CPU訪問內存的速度;BIOS可看作是一個記憶電腦相關設定的
軟體
,可以通過它調整相關設定。BIOS存儲於
板卡
上一塊晶元中,這塊晶元的名字叫COMS
RAM。但就像ATA與IDE一樣,大多人都將它們混為一談。
因為主板直接影響到整個系統的性能、穩定、功能與擴展性,其重要性不言而喻。主板的選購看似簡單,其實要注意的東西很多。選購時當留意產品的
晶元組
、做工用料、功能
介面
甚至使用簡便性,這就要求對主板具備透徹的認識,才能選擇到滿意的產品。
匯流排是將信息以一個或多個源
部件
傳送到一個或多個目的部件的一組
傳輸線
。通俗的說,就是多個部件間的公共連線,用於在各個部件之間傳輸信息。人們常常以MHz表示的速度來描述匯流排頻率。匯流排的種類很多,前端匯流排的英文名字是Front
Side
Bus,通常用FSB表示,是將CPU連接到北橋晶元的匯流排。
計算機
的
前端匯流排頻率
是由CPU和北橋晶元共同決定的。
CPU就是通過前端匯流排(FSB)連接到北橋晶元,進而通過北橋晶元和內存、
顯卡
交換數據。前端匯流排是CPU和外界交換數據的最主要通道,因此前端匯流排的數據傳輸能力對計算機
整體
性能作用很大,如果沒足夠快的前端匯流排,再強的CPU也不能明顯提高計算機整體速度。數據傳輸最大
帶寬
取決於所有同時傳輸的數據的
寬度
和
傳輸頻率
,即數據帶寬=(匯流排頻率×數據
位寬
)÷8。目前PC機上所能達到的前端匯流排頻率有266MHz、333MHz、400MHz、533MHz、800MHz幾種,前端匯流排頻率越大,代表著CPU與北橋晶元之間的數據傳輸能力越大,更能充分發揮出CPU的功能。現在的CPU技術發展很快,
運算速度
提高很快,而足夠大的前端匯流排可以保障有足夠的數據供給給CPU,較低的前端匯流排將無法供給足夠的數據給CPU,這樣就限制了CPU性能得發揮,成為系統瓶頸。
CPU和北橋晶元間匯流排的速度,更實質性的表示了CPU和外界數據傳輸的速度。而
外頻
的概念是建立在
數字
脈沖信號
震盪速度
基礎
之上的,也就是說,100MHz外頻特指數字脈沖信號在每秒鍾震盪一萬萬次,它更多的影響了PIC及其他匯流排的頻率。之所以前端匯流排與外頻這兩個概念容易混淆,主要的原因是在以前的很長一段
時間里
(主要是在Pentium
4出現之前和剛出現Pentium
4時),前端匯流排頻率與外頻是相同的,因此往往直接稱前端匯流排為外頻,最終造成這樣的誤會。隨著
計算機技術
的發展,人們發現前端匯流排頻率需要高於外頻,因此採用了QDR(Quad
Date
Rate)技術,或者其他類似的技術實現這個目前。這些技術的
原理
類似於AGP的2X或者4X,它們使得前端匯流排的頻率成為外頻的2倍、4倍甚至更高,
從此之後
前端匯流排和外頻的區別才開始被人們重視起來。
㈨ CPU前端匯流排什麼意思
CPU前端匯流排::::: 匯流排是將信息以一個或多個源部件傳送到一個或多個目的部件的一組傳輸線。通俗的說,就是多個部件間的公共連線,用於在各個部件之間傳輸信息。人們常常以MHz表示的速度來描述匯流排頻率。匯流排的種類很多,前端匯流排的英文名字是Front Side Bus,通常用FSB表示,是將CPU連接到北橋晶元的匯流排。計算機的前端匯流排頻率是由CPU和北橋晶元共同決定的。
北橋晶元負責聯系內存、顯卡等數據吞吐量最大的部件,並和南橋晶元連接。CPU就是通過前端匯流排(FSB)連接到北橋晶元,進而通過北橋晶元和內存、顯卡交換數據。前端匯流排是CPU和外界交換數據的最主要通道,因此前端匯流排的數據傳輸能力對計算機整體性能作用很大,如果沒足夠快的前端匯流排,再強的CPU也不能明顯提高計算機整體速度。數據傳輸最大帶寬取決於所有同時傳輸的數據的寬度和傳輸頻率,即數據帶寬=(匯流排頻率×數據位寬)÷8。目前PC機上所能達到的前端匯流排頻率有266MHz、333MHz、400MHz、533MHz、800MHz幾種,最高到1066MHz。前端匯流排頻率越大,代表著CPU與北橋晶元之間的數據傳輸能力越大,更能充分發揮出CPU的功能。現在的CPU技術發展很快,運算速度提高很快,而足夠大的前端匯流排可以保障有足夠的數據供給給CPU,較低的前端匯流排將無法供給足夠的數據給CPU,這樣就限制了CPU性能得發揮,成為系統瓶頸。 區別:::: 打個比方說:CPU匯流排是1000,主板匯流排是800,這樣主板攔了CPU的性能,所以這樣是不行的,反過來CPU800,主板1000,這樣的差距還可以,最好就是幾乎同等的,還有別忽略了內存頻率,假如CPU是1333,內存最好就用800的兩條,這樣加起來就是1600,足夠給CPU發揮,記住,主板\CPU\內存任何一樣都有親密關系. 主板匯流排是電源給主板供電的,cpu接在主板上的線是主板給cpu供電的。電源不直接給cpu供電。
㈩ 英特爾QPI是什麼
QPI是在處理器中集成內存控制器的體系架構,主要用於處理器之間和系統組件之間的互聯通信(諸如I/O)。他拋棄了沿用多年的的FSB,CPU可直接通過內存控制器訪問內存資源,而不是以前繁雜的「前端匯流排——北橋——內存控制器」模式。並且,與AMD在主流的多核微處理器上採用的4HT3(4根傳輸線路,兩根用於數據發送,兩個用於數據接收)連接方式不同,英特爾採用了4+1 QPI互聯方式(4針對處理器,1針對I/O設計),這樣多處理器的每個處理器都能直接與物理內存相連,每個處理器之間也能彼此互聯來充分利用不同的內存,可以讓多處理器的等待時間變短(訪問延遲可以下降50%以上),只用一個內存插槽就能實現與四路皓龍處理器同等帶寬。