1. AMD公司的中文名稱是什麼
AMD(=Advanced Micro Devices 超微半導體 ) 成立於 1969 年,總部位於加利福尼亞州桑尼維爾。 AMD 公司專門為計算機、通信和消費電子行業設計和製造各種創新的微處理器、快閃記憶體和低功率處理器解決方案。 AMD 致力為技術用戶——從企業、政府機構到個人消費者——提供基於標準的、以客戶為中心的解決方案。
AMD 在全球各地設有業務機構, 在美國、中國、德國、日本、馬來西亞、新加坡和泰國設有製造工廠,並在全球各大主要城市設有銷售辦事處,擁有超過 1.6萬名員工 。 2004 年, AMD 的銷售額是 50 億美元。
AMD 有超過 70% 的收入都來自於國際市場,是一家真正意義上的跨國公司。公司在美國紐約股票交易所上市,代號為 AMD。
業務發展
在 AMD,我們堅持「客戶為本 推動創新」的理念,這是指導 AMD 所有業務運作的核心准則。
我們與客戶建立了成功的合作關系,以便更加深入地了解他們的需求;我們與技術領袖開展了密切的合作,以開發下一代解決方案,拓展全球市場和推廣 AMD 的品牌;我們還與一些以克服艱巨困難並依靠技術獲得成功的世界級領先者建立了合作關系。
迄今為止,全球已經有超過 2,000 家軟硬體開發商、 OEM 廠商和分銷商宣布支持 AMD64 位技術。 在福布斯全球 2000 強中排名前 100 位的公司中, 75% 以上在使用基於 AMD 皓龍™ 處理器的系統運行企業應用,且性能獲得大幅提高。
AMD 的產品系列
計算產品
對於需要高性能計算和 IT 基礎設施的企業用戶來說, AMD 提供一系列解決方案
• 採用直連架構的 AMD 皓龍™ 處理器可以提供領先的單核和雙核技術。
• AMD 速龍™ 64 處理器可以為企業的台式電腦用戶提供卓越的性能和重要的投資保護。
• AMD 雙核速龍™ 64 處理器可以提供更高的多任務性能,幫助企業在更短的時間內完成更多的任務。
• AMD 炫龍™ 64 移動計算技術可以利用移動計算領域的最新成果,提供最高的移動辦公能力,以及領先的 64 位計算技術。
• AMD 閃龍™ 處理器不僅可以為企業提供出色的性價比,而且可以提高員工的日常工作效率。
對於消費者, AMD 也提供全系列 64 位產品
• AMD 雙核速龍™ 64 處理器可以讓用戶在更短的時間內完成更多的任務(包括業務應用和視頻、照片編輯,內容創建和音頻製作等)。這些強大的功能使其成為那些即將上市的新型媒體中心的最佳選擇。
• AMD 速龍™ 64 處理器具有出色的功能和性能,可以提供栩栩如生的數字媒體效果――包括音樂、視頻、照片和 DVD 等。
• 對於那些希望通過輕薄型筆記本電腦領略 64 位性能的消費者, AMD 炫龍™ 64 移動計算技術可以在不影響性能的情況下提供安全的移動辦公能力。
• 對於那些希望獲得最佳性價比的消費者, AMD 閃龍™ 處理器可以提供從文字處理到照片瀏覽的各種常用功能。
嵌入式解決方案
AMD 的嵌入式解決方案以個人電腦以外的上網設備為目標市場,鎖定的目標產品包括平板電腦、汽車導航及娛樂系統、家庭與小型辦公室網路產品以及通信設備。AMD Geode™ 解決方案系列不僅包括基於x86的嵌入式處理器,還包括多種系統解決方案。AMD 的一系列 Alchemy™ 解決方案有低功率、高性能的 MIPS™ 處理器、無線技術、開發電路板及參考設計套件。隨著這些新的解決方案相繼推出,AMD 的產品將會更加多元化,有助確立 AMD 在新一代產品市場上的領導地位。
研究與開發
為了確保公司產品繼續保持其競爭優勢, AMD 多年來一直致力投資開發未來一代的先進技術。目前 AMD 已著手開發未來 5 至 10 年都可適用的高性能技術。
目前 AMD 設於美國加州桑尼維爾 (Sunnyvale) 及德國德累斯頓 (Dresden) 的先進技術研發中心分別負責多個研發項目。 此外, AMD 也與 IBM 合作開發新一代的工藝技術。
AMD 的自動化精確生產 (APM) 技術
為了在當今競爭異常激烈的市場中獲得成功,跨國電子公司需要值得信賴的供應商和合作夥伴來為他們按時按量地提供他們所需要的解決方案。因此, AMD 採用了一種高效的、基於合作夥伴的研發模式,確保它的產品和解決方案可以始終在性能和功率方面保持領先。藉助於行業夥伴的技術和資源, AMD 為它的產品集成了先進的亞微米技術。它的產品通常領先於行業總體水平,而且成本遠低於平均成本。
為了在批量生產過程中無縫地採用這些先進的技術, AMD 開發和採用了數百種旨在自動確定最復雜的製造決策的專利技術。這些業界獨一無二的功能現在被統稱為自動化精確生產( APM )。它們為 AMD 提供了前所未有的生產速度、准確性和靈活性。
AMD 中國簡介
作為全球經濟發展速度最快的國家之一,中國日益成為 AMD 全球戰略重點之一。 2004 年 9 月, AMD 公司大中華區在京正式成立, AMD 全球副總裁 郭可尊女士任 AMD 大中華區總裁兼總經理,統轄 AMD 在中國大陸、香港和台灣地區的所有業務,進一步 把握「中國機會」。
AMD 首開先河推出了高性能和無縫移植 32 位、 64 位計算優勢的技術;在合作夥伴的支持下, AMD 率先在中國市場推出 64 位計算。 2005 年, AMD 再開行業之先河,推出了雙核處理器。
AMD 的客戶及業務夥伴已遍布中國,覆蓋科研、教育、電信、氣象、石油勘探等行業, AMD 的產品受到了中國市場與用戶的廣泛肯定 。
在中國, AMD 已與眾多 OEM 廠商建立聯盟,其中包括聯想、清華紫光、曙光、 方佳、中科夢蘭 等中國公司,以及 HP 、 IBM 、 Sun 等全球領先的計算機製造商。
為了實現美好的遠景,把握「中國機會」, AMD 創造著一個又一個輝煌。
AMD發展歷史
自成立以來,AMD就不斷地開發新產品,並逐漸形成了一套與眾不同的企業文化,而眾多員工也在事業上取得了很大的成就。下面將簡單介紹AMD近三十年來的發展歷程,從中我們可以預見公司的燦爛前景。
AMD的歷史悠久,業績顯赫。這個傳統已經成為一股凝聚力,將AMD的全球員工緊密地團結在一起。AMD創辦於1969年,當時公司的規模很小,甚至總部就設在一位創始人的家中。但是從那時起到現在,AMD一直在不斷地發展,目前已經成為一家年收入高達24億美元的跨國公司。下面將介紹決定AMD發展方向的重要事件、推動AMD向前發展的主要力量,並按時間順序回顧AMD各年大事。
1969-74 - 尋找機會
對Jerry Sanders來說,1969年5月1日是一個非常重要的日子。在此之前的幾個月里,他與其它七個合作夥伴一直為創建一家新公司而埋頭苦幹。Jerry已經在上一年辭去了Fairchild Semiconctor公司全球行銷總監的職務。此刻,他正帶領一個團隊努力工作,這個團隊的目標非常明確--通過為生產計算機、通信設備和儀表等電子產品的廠商提供日益精密的構成模塊,創建一家成功的半導體公司。
雖然在公司剛成立時,所有員工只能在創始人之一的JohnCarey的起居室中辦公,但不久他們便遷往美國加州聖克拉拉,租用一家地毯店鋪後面的兩個房間作為辦公地點。到當年9月份,AMD已經籌得所需的資金,可以開始生產,並遷往加州森尼韋爾的901 Thompson Place,這是AMD的第一個永久性辦公地點。
在創辦初期,AMD的主要業務是為其它公司重新設計產品,提高它們的速度和效率,並以"第二供應商"的方式向市場提供這些產品。AMD當時的口號是"更卓越的參數表現"。為了加強產品的銷售優勢,該公司提供了業內前所未有的品質保證--所有產品均按照嚴格的MIL-STD-883標准進行生產及測試,有關保證適用於所有客戶,並且不會加收任何費用。
在AMD創立五周年時,AMD已經擁有1500名員工,生產200多種不同的產品--其中很多都是AMD自行開發的,年銷售額將近2650萬美元。
歷史回顧
1969年5月1日--AMD公司以10萬美元的啟動資金正式成立。
1969年9月--AMD公司遷往位於901 Thompson Place,Sunnyvale 的新總部。
1969年11月--Fab 1產出第一個優良晶元--Am9300,這是一款4位MSI移位寄存器。
1970年5月--AMD成立一周年。這時AMD已經擁有53名員工和18種產品,但是還沒有銷售額。
1970--推出一個自行開發的產品--Am2501。
1972年11月--開始在新落成的902 Thompson Place 廠房中生產晶圓。
1972年9月--AMD上市,以每股15美元的價格發行了52.5萬股。
1973年1月--AMD在馬來西亞檳榔嶼設立了第一個海外生產基地,以進行大批量生產。
1973--進行利潤分紅。
1974--AMD以2650萬美元的銷售額結束第五個財年。
1974-79 - 定義未來
AMD在第二個五年的發展讓全世界體會到了它最持久的優點--堅忍不拔。盡管美國經濟在1974到75年之間經歷了一場嚴重的衰退,AMD公司的銷售額也受到了一定的影響,但是仍然在此期間增長到了1.68億美元,這意味著平均年綜合增長率超過60%。
在AMD成立五周年之際,AMD舉辦了一項後來發展成為公司著名傳統的活動--它舉辦了一場盛大的慶祝會,即一個由員工及其親屬參加的游園會。
這也是AMD大幅度擴建生產設施的階段,這包括在森尼韋爾建造915 DeGuigne,在菲律賓馬尼拉設立一個組裝生產基地,以及擴建在馬來西亞檳榔嶼的廠房。
歷史回顧
1974年5月--為了慶祝公司創建五周年,AMD舉辦了一次員工游園會,向員工贈送了一台電視、多輛10速自行車和豐盛的燒烤野餐。
1974--位於森尼韋爾的915 DeGuigne建成。
1974-75--經濟衰退迫使AMD規定專業人員每周工作44小時。
1975--AMD通過AM9102進入RAM市場。
1975--Jerry Sanders提出:"以人為本,產品和利潤將會隨之而來。"
1975--AMD的產品線加入8080A標准處理器和AM2900系列。
1976--AMD在位於帕洛阿爾托的Rickey's Hyatt House 舉辦了第一次盛大的聖誕節聚會。
1976--AMD和Intel簽署專利相互授權協議。
1977--西門子和AMD創建Advanced Micro Computers (AMC) 公司。
1978--AMD在馬尼拉設立一個組裝生產基地。
1978--AMD的銷售額達到了一個重要的里程碑:年度總營業額達到1億美元。
1978--奧斯丁生產基地開始動工。
1979--奧斯丁生產基地投入使用。
1979--AMD在紐約股票交易所上市。
1980 - 1983 - 尋求卓越
在20世紀80年代早期,兩個著名的標志代表了AMD的處境。第一個是所謂的"蘆筍時代",它代表了該公司力求增加它向市場提供的專利產品數量的決心。與這種高利潤的農作物一樣,專利產品的開發需要相當長的時間,但是最終會給前期投資帶來滿意的回報。第二個標志是一個巨大的海浪。AMD將它作為"追趕潮流"招募活動的核心標志,並用這股浪潮表示集成電路領域的一種不可阻擋的力量。
我們的確是不可阻擋的。AMD的研發投資一直領先於業內其他廠商。在1981財年結束時,該公司的銷售額比1979財年增長了一倍以上。在此期間,AMD擴建了它的廠房和生產基地,並著重在得克薩斯州建造新的生產設施。AMD在聖安東尼奧建起了新的生產基地,並擴建了奧斯丁的廠房。AMD迅速地成為了全球半導體市場中的一個重要競爭者。
歷史回顧
1980--Josie Lleno在AMD在聖何塞會議中心舉辦的"五月聖誕節"聚會中贏得了連續20年、每月1000美元的獎勵。
1981--AMD的晶元被用於建造哥倫比亞號太空梭。
1981--聖安東尼奧生產基地建成。
1981--AMD和Intel決定延續並擴大他們原先的專利相互授權協議。
1982--奧斯丁的第一條只需4名員工的生產線(MMP)開始投入使用。
1982--AMD和Intel簽署圍繞iAPX86微處理器和周邊設備的技術交換協議。
1983--AMD推出當時業內最高的質量標准INT.STD.1000。
1983--AMD新加坡分公司成立。
1984-1989 --經受嚴峻考驗
AMD以公司有史以來最佳的年度銷售業績迎來了它的第十五周年。在AMD慶祝完周年紀念之後的幾個月里,員工們收到了創紀錄的利潤分紅支票,並與來自洛杉磯的Chicago樂隊和來自得克薩斯州的Joe King Carrasco 、Crowns等樂隊一同歡慶聖誕節。
但是在1986年,變革大潮開始席捲整個行業。日本半導體廠商逐漸在內存市場中占據了主導地位,而這個市場一直是AMD業務的主要支柱。同時,一場嚴重的經濟衰退沖擊了整個計算機市場,限制了人們對於各種晶元的需求。AMD和半導體行業的其他公司都致力於在日益艱難的市場環境中尋找新的競爭手段。
到了1989,Jerry Sanders開始考慮改革:改組整個公司,以求在新的市場中贏得競爭優勢。AMD開始通過設立亞微米研發中心,加強自己的亞微米製造能力。
歷史回顧
1984--曼谷生產基地開始動工。
1984--奧斯丁的第二個廠房開始動工。
1984--AMD被列入《美國100家最適宜工作的公司》一書。
1985--AMD首次進入財富500強。
1985--位於奧斯丁的Fabs 14 和15投入使用。
1985--AMD啟動自由晶元計劃。
1986--AMD推出29300系列32位晶元。
1986--AMD推出業界第一款1M比特的EPROM。
1986年10月--由於長時間的經濟衰退,AMD宣布了10多年來的首次裁員計劃。
1986年9月--Tony Holbrook被任命為公司總裁。
1987--AMD與Sony公司共同設立了一家CMOS技術公司。
1987年4月--AMD向Intel公司提起法律訴訟。
1987年4月--AMD和 Monolithic Memories公司達成並購協議。
1988年10月--SDC開始動工。
1989-94 - 展開變革
為了尋找新的競爭手段,AMD提出了"影響范圍"的概念。對於改革AMD而言,這些范圍指的是兼容IBM計算機的微處理器、網路和通信晶元、可編程邏輯設備和高性能內存。此外,該公司的持久生命力還來自於它在亞微米處理技術開發方面取得的成功。這種技術將可以滿足該公司在下一個世紀的生產需求。
在AMD創立25周年時,AMD已經動用了它所擁有的所有優勢來實現這些目標。目前,AMD在它所參與的所有市場中都名列第一或者第二,其中包括Microsoft Windows? 兼容市場。該公司在這方面已經成功地克服了法律障礙,可以生產自行開發的、被廣泛採用的Am386? 和 Am486? 微處理器。AMD已經成為快閃記憶體、EPROM、網路、電信和可編程邏輯晶元的重要供應商,而且正在致力於建立另外一個專門生產亞微米設備的大批量生產基地。在過去三年中,該公司獲得了創紀錄的銷售額和運營收入。
盡管AMD的形象與25年前相比已經有了很大的不同,但是它仍然像過去一樣,是一個頑強、堅決的競爭對手,並可以通過它的員工的不懈努力,戰勝任何挑戰。
歷史回顧
1989年5月--AMD設立高層領導辦公室,其中包括公司的三位高層主管。
1990年5月--Rich Previte成為公司的總裁兼首席執行官。Tony Holbrook繼續擔任首席技術官,並成為董事會主席。
1990年9月--SDC開始使用硅技術。
1991年3月--AMD推出AM386微處理器系列,成功打破了Intel對市場的壟斷。
1991年10月--AMD售出它的第一百萬個Am386。
1992年2月--AMD對Intel的長達五年的法律訴訟結束,AMD獲得了製造和銷售全部Am386系列處理器的權力。
1993年4月--AMD和富士建立合資公司,共同生產快閃記憶體產品。
1993年4月--AMD推出Am486微處理器系列的第一批成員。
1993年7月--Fab 25在奧斯丁開始動工。
1993--AMD宣布AMD-K5項目開發計劃。
1994年1月--康柏計算機公司和AMD建立長期合作關系。根據合作協議,康柏計算機將採用Am485微處理器。
1994年2月--AMD員工開始遷往AMD在森尼韋爾的另外一個辦公地點。
1994年2月--Digital Equipment 公司成為Am486微處理器的組裝合作夥伴。
1994年3月10日--聯邦法院陪審團裁決AMD擁有對287數學協處理器中的Intel微碼的所有權。
1994年5月1日--AMD慶祝創立25周年,並在森尼韋爾和奧斯丁分別邀請了Rod Stewart和Bruce Hornsby獻藝。
1995-1999 --從變革到超越
AMD在這段時期的發展主要是通過提供越來越具競爭力的產品,不斷地開發出對於大批量生產至關重要的製造和處理技術,以及加強與戰略性合作夥伴的合作關系而實現的。在這段時期,與基礎設施、軟體、技術和OEM合作夥伴的合作關系非常重要,它使得AMD能夠帶領整個行業向創新的平台和產品發展,在市場中再次引入競爭。
1995年,AMD和NexGen兩家公司的高層主管首次會面,探討了一個共同的夢想:創建一種能夠在市場中再次引入競爭的微處理器系列。這些會談促使AMD在1996年收購了NexGen公司,並成功地推出了AMD-K6? 處理器。AMD-K6處理器不僅實現了這些起點很高的目標, 而且可以充當一座橋梁,幫助AMD推出它的下一代AMD 速龍? 處理器系列。這標志著該公司的真正成功。
AMD速龍 處理器在1999年的成功推出標志著AMD終於實現了自己的目標:設計和生產一款業界領先、自行開發、兼容Microsoft Windows的處理器。AMD首次推出了一款能夠採用針對AMD處理器進行了專門優化的晶元組和主板、業界領先的處理器。AMD速龍 處理器將繼續為該公司和整個行業創造很多新的記錄,其中包括第一款達到歷史性的1GHz(1000MHz)主頻的處理器,這使得它成為了行業發展歷史上最著名的處理器產品之一。AMD速龍 處理器和基於AMD速龍 處理器的系統已經獲得了全球很多獨立刊物和組織頒發的100多項著名大獎。
在推出這款創新的產品系列的同時,該公司還具備了足夠的生產能力,可以滿足市場對於其產品的不斷增長的需求。1995年,位於得克薩斯州奧斯丁的Fab 25順利建成。在Fab 25建成之前,AMD已經為在德國德累斯頓建設它的下一個大型生產基地做好了充分的准備。與Motorola的戰略性合作讓AMD可以開發出基於銅互連、面向未來的處理器技術,從而讓AMD成為了第一個能夠利用銅互連技術開發兼容Microsoft Windows的處理器的公司。這種共同開發的處理技術將能夠幫助AMD在Fab 30穩定地生產大批的AMD速龍 處理器。
通過提供針對雙運行快閃記憶體設備的行業標准,AMD繼續保持著它在快閃記憶體技術領域的領先地位。快閃記憶體已經成為推動當時的技術繁榮的眾多技術的重要組件。手提電話和互聯網加大了市場對於快閃記憶體的需求,而且它的應用正在變得日益普遍。AMD范圍廣泛的快閃記憶體設備產品線當時已經能夠滿足手提電話、汽車導航系統、互聯網設備、有線電視機頂盒、有線電纜數據機和很多其他應用的內存要求。
通過多種可以為客戶提供顯著競爭優勢的快閃記憶體和微處理器產品,能穩定生產大量產品、業界領先的全球性生產基地,以及面向未來、富有競爭力的產品和製造計劃,AMD得以在成功地渡過一個繁榮時期之後,順利地進入新世紀。
歷史回顧
1995--富士-AMD半導體有限公司(FASL)的聯合生產基地開始動工。
1995--Fab 25建成。
1996--AMD收購NexGen。
1996--AMD在德累斯頓動工修建Fab 30。
1997--AMD推出AMD-K6處理器。
1998--AMD在微處理器論壇上發布AMD速龍處理器(以前的代號為K7)。
1998--AMD和Motorola宣布就開發銅互連技術的開發建立長期的夥伴關系。
1999--AMD慶祝創立30周年。
1999--AMD推出AMD速龍處理器,它是業界第一款支持Microsoft Windows計算的第七代處理器。
2000---
有一件事是毋庸置疑的,那就是AMD將會繼續秉持它過去所堅持的理念:來自競爭的驅動力,對客戶的關注,創新的產品,以及了解和適應變革的能力。最重要的是,該公司的未來將由AMD員工塑造。他們的長期努力已經讓AMD成為了一個成功的、傳奇性的公司。
2000--AMD宣布Hector Ruiz被任命為公司總裁兼COO。
2000--AMD日本分公司慶祝成立25周年。
2000--AMD在第一季度的銷售額首次超過了10億美元,打破了公司的銷售記錄。
2000--AMD的Dresden Fab 30開始首次供貨。
2001--AMD推出AMD 速龍? XP處理器。
2001--AMD推出面向伺服器和工作站的AMD 速龍 MP 雙處理器。
2002--AMD 和 UMC宣布建立全面的夥伴關系,共同擁有和管理一個位於新加坡的300-mm晶圓製造中心,並合作開發先進的處理技術設備。
2002--AMD收購Alchemy Semiconctor,建立個人連接解決方案業務部門。
2002--Hector Ruiz接替Jerry Sanders,擔任AMD的首席執行官。
2002--AMD推出第一款基於MirrorBit™ 架構的快閃記憶體設備。
2003-AMD 推出面向伺服器和工作站的AMD Opteron™(皓龍) 處理器
2003-AMD 推出面向台式電腦 和筆記簿電腦的AMD 速龍™ 64處理器
2003-AMD推出 AMD 速龍™ 64 FX處理器. 使基於AMD 速龍™ 64 FX處理器的系統能提供影院級計算性能.
2005-AMD推出AMD第一款雙核Opteron處理器.
2006-AMD推出了最新的AM2介面.支持DDR2內存的64全系列位處理器。並首次在閃龍中集成了內存控制器。
2006-7月24日,美國紐約 ---- AMD公司與ATI公司宣布將進行合並,交易金額約為54億美元。根據交易條款,AMD將以42億美元現金和5700萬股AMD普通股收購截止2006年7月21日發行的ATI公司全部的普通股。AMD將承受所有ATI公司的未償期權和受限股票(RSUs)。
官方網站: http://www.amd.com/us-en/
2. 英特爾和AMD的前端匯流排有什麼區別
就目前來看,尺虛前Intel和AMD的主流處理器採用的匯流排類型主要包括Intel傳統的前端匯流排(FSB)、QPI匯流排和AMD的HT匯流排。首先,需要說明的是「前端匯流排」是由AMD在K7架構處理器平台中首先提出來的,指的是處理器(CPU)與主板北橋之間的通道。 1.首先,說一下Intel傳統的前端匯流排(FSB)。Intel傳統的前端匯流排布局大體是:前端匯流排與主板北橋相連接,內存控制器集成於主板北橋,內存與主板北橋(內存控制器)之間的通道為內存通道,內存中的數據經由內存通道到達主板北橋(內存控制器),再經由前端匯流排到達處理陵清器內部進行處理。再就是主板南北橋之間的DMI匯流排,將南橋的數據經由主板北橋到達處理器進行處理器。這樣一般就需要各種連接通道的數據帶寬維持在一個穩定的范圍內,主板南北橋之間的DMI匯流排帶寬是固定的,為2GB/s。而前端匯流排帶寬和內存帶寬則是依據使用的處理器和內存的不同而不同,一般要求內存帶寬等於最好大於處理器前端匯流排帶寬。在此,處理器前端匯流排與處理器外頻的關系是,在P4處理器之前,處理的外頻等於前端匯流排頻率,而在P4處理器之後,出現「P4」協議,處理器的前端匯流排頻率為外頻的4倍。如Intel奔騰雙核E530處理器的主頻為2.6GHz(外頻200MHz X倍頻13),外頻為200MHz,則其前端匯流排頻率為200MHz X4=800MHz,則前端匯流排帶寬為800MHz X64Bit/8=6.4GB/s。使用單根DDR2 800MHz內存,是恰好合適的,因為DDR2 800MHz內存的等效頻率(核心頻率)為800MHz/4=200MHz,與處理器外頻相等,內存帶寬為800MHz X64Bit/8=6.4GB/s。由於計算機平台中的個硬體都是依照處理器的外頻為基準運行的,個硬體的等效頻率(核心頻率)與處理器外頻的頻率之間的比值可以大於1也可以小於1,等於1是最合適的。所以前端匯流排為800MHz的處理器,是可以使用DDR2 1066MHz(等效頻率266MHz)等高頻率內存的。 前端匯流排(FSB)計算公式: 處理器前端匯流排帶寬=處理器前端匯流排頻率(MHz,處理器外頻X4)X位寬(Bit)/8 2. AMD處理器的HT匯流排: HT匯流排包括HT1.0、HT2.0、HT3.0及HT3.1協議。 HT1.0協議匯流排的工作頻率在200MHz—800MHz范圍,並允許以100MHz為幅度作步進調節。因採用DDR技術,HyperTransport的實際數據激發頻率為400MHz—1.6GHz,最基本的2bit模式可提供100MB/s—400MB/s的傳輸帶寬。不過,HyperTransport可支持2、4、8、16和32bit等五種通道模式,在400MHz下,雙向4bit模式的匯流排帶寬譽仔為0.8GB/sec,雙向8bit模式的匯流排帶寬為1.6GB/sec;800MHz下,雙向8bit模式的匯流排帶寬為3.2GB/sec,雙向16bit模式的匯流排帶寬為6.4GB/sec,雙向32bit模式的匯流排帶寬為12.8GB/sec,遠遠高於當時任何一種匯流排技術。即HT1.0協議包括200MHz——800MHz的HT匯流排頻率。 2004年2月,HyperTransport技術聯盟(Hyper Transport Technology Consortium)又正式發布了HyperTransport 2.0規格,由於採用了Dual-data技術,使頻率成功提升到了1.0GHz、1.2GHz和1.4GHz,雙向16bit模式的匯流排帶寬提升到了8.0GB/sec、9.6GB/sec和11.2GB/sec。即HT2.0協議包括1.0GHz(1000MHz) 、1.2GHz(1200MHz)和1.4GHz(1400MHz)的HT匯流排頻率。K8架構處理器的通道位寬通常為16Bit。 2007年11月19日,AMD正式發布了HyperTransport 3.0 匯流排規范,提供了1.8GHz、2.0GHz、2.4GHz、2.6GHz幾種頻率,最高可以支持32通道。32位通道下,單向帶寬最高可支持20.8GB/s的傳輸效率。考慮到其DDR的特性,其匯流排的傳輸效率可以達到史無前例的41.6GB/s。即HT3.0協議包括1.8GHz(1800MHz)、2.0GHz(2000MHz)、2.4GHz(2400MHz)和2.6GHz(2600MHz)的HT匯流排頻率。K10架構處理器的通道位寬通常為32Bit。 2008年8月19日發布了新版HyperTransport 3.1規范和HTX3規范,將這種點對點、低延遲匯流排技術的速度提升到了3.2GHz。在提速至3.2GHz後,再結合雙倍數據率(DDR),HT 3.1可提供最高每位6.4GB/s(3.2GHz X 2 因為DDR以2倍速傳輸)的數據傳輸率,32-bit帶寬可達51.2GB/s(6.4GB/s X 32bit/8)。實際上,HT 3.1規范一共定義了三種速度,分別是2.8GHz、3.0GHz和3.2GHz,累計帶寬提升23%,同時在核心架構、電源管理與通信協議方面與之前版本保持一致。即HT3.0協議包括2.8GHz(2800MHz)、3.0GHz(3000MHz)和3.2GHz(3200MHz)的HT匯流排頻率。 HT匯流排帶寬計算公式: HT匯流排帶寬=處理器外頻(MHz,默認200MHz)XHT倍頻(HT1.0協議為4;HT2.0協議,1.0GHz為5,1.2GHz為6,1.4GHz為7;HT3.0協議,1.8GHz為9,2.0GHz為10,2.4GHz為12,2.6GHz為13;HT3.1協議,2.8GHz為14,3.0GHz為15,3.2GHz為16)X處理器通道位寬(HT1.0的2Bit、4Bit、8Bit、16Bit及32Bit;K8架構的16Bit;K10架構的32Bit)/8(將Bit轉換為Byte)X2(時鍾上下沿均能傳輸)X2(上下行雙向全雙工) 。 像二樓問友舉例所說的AMD Phenom X4(羿龍一代四核)9550高端四核處理器,「Phenom 9550 的 頻率*2=3600MHz,即上下行同時全速傳輸的理想值, 這時的最大帶寬 3600*4 = 14.4 GB/s ,是比 Intel 的 1333MHz GTL ,帶寬 10.67GB/s 大一些,但並不是差得很多。」的說話是錯誤的!AMD Phenom X4(羿龍一代四核)9550高端四核處理器,為HT3.0匯流排中的2600MHz的頻率,根據公式計算,其帶寬為41.6GB/s,為目前AMD投入使用的HT3.0協議中帶寬最高的! 3.Intel的QPI匯流排: Intel Core i系處理器(包括Core i3、Core i5和Core i7)採用的是區別於傳統前端匯流排(FSB)的QPI匯流排。其布局與AMD平台的HT匯流排有相似之處。將內存控制器集成於處理器內部。內存與處理器(內存控制器)之間的通道為內存通道,內存中的數據經由內存通道直接到達處理器,而不經過QPI匯流排。因而內存帶寬沒必要像Intel傳統的那樣由處理器前端匯流排帶寬來決定內存帶寬,要求內存帶寬等於最好大於前端匯流排帶寬。那麼只要內存帶寬符合主流就可以了,沒必要非要大於QPI匯流排帶寬。 QPI匯流排帶寬計算原理:QPI數據包是80bit的長度,發送需要用4個周期,但只有64bit是用於數據,所以它一次(一個周期)只能傳輸64/4/8=2B位元組,不像FSB一個周期可以傳輸64/8=8B位元組;但是QPI匯流排能夠達到最小4.8GT/S,即每秒處理4.8G次數據,所以一條QPI匯流排連接理論最大值就可以達到4.8GT/S*2=9.6GB/S(單向),雙向則是19.2GB/S;6.4GT/S的匯流排能夠達到雙向25.6GB/S(單向12.8GB/S)。QPI匯流排帶寬計算公式為: QPI匯流排帶寬=QPI匯流排頻率X2(採用了類似於DDR的雙倍並發傳送模式)X2(雙向傳輸) 舉例計算: Intel目前在普通領域最頂端的處理器——Intel Core i7 980X Extreme Edition(32納米製程、六核十二線程)處理器的QPI頻率為6.4GT/s,則QPI匯流排帶寬為6.4GT/s X2X2=25.6GB/s。 備註:25.6GB/s的匯流排帶寬換用傳統的前端匯流排計算方式逆向推算的話,64GT/s的QPI匯流排頻率相當於前端匯流排為3200MHz的前端匯流排頻率,而4.8GT/s的QPI匯流排頻率相當於前端匯流排為2400MHz的前端匯流排頻率。而目前Intel傳統的前端匯流排頻率最高為1600MHz,即前端匯流排帶寬最大為12.8GB/s。
3. 主板的前端匯流排很重要麼 INTEL 和AMD 好像差很多呢
主板的前端匯流排很正好友重要麼 INTEL 和AMD 好像差很多呢
前端匯流排(這個概念應該是AMD獨有的但Inter也有類似結構)的頻率是指cpu和北橋晶元之間最大通信量的值。老式的電腦(Inter i7和AMD K8之前的)都是由北橋晶元來管理內存存取,對於這些電腦來說前端匯流排頻率牽制了內存實際工作的頻率
而新一點的電腦(Inter i7和AMD K8之後的)CPU中都集成了內存管理模塊,也就是說內存和CPU之間用單獨的匯流排連接,這時匯流排頻率就顯得不那麼重要了,但因為北橋晶元仍然負責CPU與GPU之間的通信所以高端顯卡用戶仍然會關心這個問題
什麼是前端匯流排,這個很重要麼?
匯流排是將信息以一個或多個源部件傳送到一個或多個目的部件的一組傳輸線。通俗的說,就是多個部件間的公共舉槐連線,用於在各個部件之間傳輸信息。人們常常以MHz表示的速度來描述匯流排頻率。匯流排的種類很多,前端匯流排的英文名字是Front Side Bus,通常用FSB表示,是將CPU連接到北橋晶元的匯流排。選購主板和CPU時,要注意兩者搭配問題,一般來說,如果CPU不超頻,那麼前端匯流排是由CPU決定的,如果主板不支持CPU所需要的前端匯流排,系統就無法工作。也就是說,需要主板和CPU都支持某個前端匯流排,系統才能工作,只不過一個CPU默認的前端匯流排是唯一的,因此看一個系統的前端匯流排主要看CPU就可以。
amd主板前端匯流排重要嗎
AMD的主板沒有前端匯流排的概念,自AMD的K8時代以來就將前端匯流排改成了HT匯流排了,現在的AMD基本都是HT3.0的匯流排。
一般在搭配主板和cpu的時候,是要看主板的前端匯流排大於等於cpu的前端匯流排的嗎?
前端匯流排大才可以超頻啊。尤其是超外頻,而實際上超外頻比超倍頻更能有效提高性能
為什麼AMD主板前端匯流排頻率比INTEL主板高這么多?
那是因為兩種CPU不是採用一樣的運算方法,AMD的CPU十分依賴一級緩存和外頻,所以需要十分大的前端匯流排,而英特爾對二級緩存的依賴比較大
H77主板前端匯流排多少?
H77晶元組已經沒有FSB(前端匯流排),取而代之的是QPI和DMI匯流排。
CPU通過QPI匯流排與內存、襪野PCI-E顯卡進行通信,通過DMI匯流排與主板晶元組(H77)通信。
PS:以前北橋的主要功能PCI-E、內存控制器等都集成進入CPU內,主板上只剩下單一的晶元(H77),功能相當於以前的南橋。
主板怎麼看前端匯流排
說明書上有寫的,要是沒有說明書,你就看主板的晶元然後查看看支持何種前端匯流排好了
AMD5000+配多少前端匯流排的主板好啊
1 AMD速龍64 X2 5000+ AM2 系統匯流排 200MHz HT匯流排 1000MHz
2 現在市面上的AMD主主板的HT匯流排 1000MHz 都是1000MHZ的。2000的好像還沒出來
1066前端匯流排的945主板 和 965主板相等嗎?
不等945FSB MAX1066 965FSB MAX1333
4. 電腦配置,AMD平台是啥意思,E350和酷睿各是什麼意思,請電腦高手解釋下
AMD平台的碼旅橡意思是——該計算機的核心部件CPU用的是AMD公司產的CPU系列來構成的計算機。
E350的意思是——E350是一款CPU型號,它是AMD公司APU產品中E系列(研發鎮殲代號:Zacate)的遲旁一款。面向於筆記本、一體機或迷你台式機。
酷睿的意思是——Intel公司生產的一種CPU架構。Intel公司在奔騰四CPU之後,生產的一種新架構的CPU,因它採用了Core(音譯酷睿)微架構,因而就把這類採用了Core微架構的CPU稱之為酷睿CPU。
5. AMD CPU 各種名詞介紹
1.主頻
主頻也叫時鍾頻率,單位是MHz,用來表示CPU的運算速度。CPU的主頻=外頻×倍頻系數。很多人認為主頻就決定歲中著CPU的運行速度,這不僅是個片面的,而且對於伺服器來講,這個認識也出現了偏差。至今,沒有一條確定的公式能夠實現主頻和實際的運算速度兩者之間的數值關系,即使是兩大處理器廠家Intel和AMD,在這點上也存在著很大的爭議,我們從Intel的產品的發展趨勢,可以看出Intel很注重加強自身主頻的發展。像其他的處理器廠家,有人曾經拿過一快1G的全美達來做比較,它的運行效率相當於2G的Intel處理器。
所以,CPU的主頻與CPU實際的運算能力是沒有直接關系的,主頻表示在CPU內數字脈沖信號震盪的速度。在Intel的處理器產品中,我們也可以看到這樣的例子:1 GHz Itanium晶元能夠表現得差不多跟2.66 GHz Xeon/Opteron一樣快,或是1.5 GHz Itanium 2大約跟4 GHz Xeon/Opteron一樣快。CPU的運算速度還要看CPU的流水線的各方面的性能指標。
當然,主頻和實際的運算速度是有關的,只能說主頻僅僅是CPU性能表現的一個方面,而不代表CPU的整體性能。
2.外頻
外頻是CPU的基準頻率,單位也是MHz。CPU的外頻決定著整塊主板的運行速度。說白了,在台式機中,我們所說的超頻,都是超CPU的外頻(當然一般情況下,CPU的倍頻都是被鎖住的)相信這點是很好理解的。但對於伺服器CPU來講,超頻是絕對不允許的。前面說到CPU決定著主板的運行速度,兩者是同步運行的,如果把伺服器CPU超頻了,改變了外頻,會產生非同步運行逗雀跡,(台式機很多主板都支持非同步運行)這樣會造成整個伺服器系統的不穩定。
目前的絕大部分電腦系統中外頻也是內存與主板之間的同步運行的速度,在這種方式下,可以理解為CPU的外頻直接與內存相連通,實現兩者間的同步運行狀態。外頻與前端匯流排(FSB)頻率很容易被混為一談,下面的前端匯流排介紹我們談談兩者的區別。
3.前端匯流排(FSB)頻率
前端匯流排(FSB)頻率(即匯流排頻率)是直接影響CPU與內存直接數據交換速度。有一條公式可以計算,即數據帶寬=(匯流排頻率×數據帶寬)/8,數據傳輸最大帶寬取決於所有同時傳輸的數據的寬度和傳輸頻率。比方,現在的支持64位的至強Nocona,前端匯流排是800MHz,按照公式,它的數據傳輸最大帶寬是6.4GB/秒。
外頻與前端匯流排(FSB)頻率的區別:前端匯流排的速度指的是數據傳輸的速度,外頻是CPU與主板之間同步運行的速度。也就是說,100MHz外頻特指數字脈沖信號在每秒鍾震盪一千萬次;而100MHz前端匯流排指的是每秒鍾CPU可接受山並的數據傳輸量是100MHz×64bit÷8Byte/bit=800MB/s。
其實現在「HyperTransport」構架的出現,讓這種實際意義上的前端匯流排(FSB)頻率發生了變化。之前我們知道IA-32架構必須有三大重要的構件:內存控制器Hub (MCH) ,I/O控制器Hub和PCI Hub,像Intel很典型的晶元組 Intel 7501、Intel7505晶元組,為雙至強處理器量身定做的,它們所包含的MCH為CPU提供了頻率為533MHz的前端匯流排,配合DDR內存,前端匯流排帶寬可達到4.3GB/秒。但隨著處理器性能不斷提高同時給系統架構帶來了很多問題。而「HyperTransport」構架不但解決了問題,而且更有效地提高了匯流排帶寬,比方AMD Opteron處理器,靈活的HyperTransport I/O匯流排體系結構讓它整合了內存控制器,使處理器不通過系統匯流排傳給晶元組而直接和內存交換數據。這樣的話,前端匯流排(FSB)頻率在AMD Opteron處理器就不知道從何談起了。
4、CPU的位和字長
位:在數字電路和電腦技術中採用二進制,代碼只有「0」和「1」,其中無論是 「0」或是「1」在CPU中都是 一「位」。
字長:電腦技術中對CPU在單位時間內(同一時間)能一次處理的二進制數的位數叫字長。所以能處理字長為8位數據的CPU通常就叫8位的CPU。同理32位的CPU就能在單位時間內處理字長為32位的二進制數據。位元組和字長的區別:由於常用的英文字元用8位二進制就可以表示,所以通常就將8位稱為一個位元組。字長的長度是不固定的,對於不同的CPU、字長的長度也不一樣。8位的CPU一次只能處理一個位元組,而32位的CPU一次就能處理4個位元組,同理字長為64位的CPU一次可以處理8個位元組。
5.倍頻系數
倍頻系數是指CPU主頻與外頻之間的相對比例關系。在相同的外頻下,倍頻越高CPU的頻率也越高。但實際上,在相同外頻的前提下,高倍頻的CPU本身意義並不大。這是因為CPU與系統之間數據傳輸速度是有限的,一味追求高倍頻而得到高主頻的CPU就會出現明顯的「瓶頸」效應―CPU從系統中得到數據的極限速度不能夠滿足CPU運算的速度。一般除了工程樣版的Intel的CPU都是鎖了倍頻的,而AMD之前都沒有鎖。
6.緩存
緩存大小也是CPU的重要指標之一,而且緩存的結構和大小對CPU速度的影響非常大,CPU內緩存的運行頻率極高,一般是和處理器同頻運作,工作效率遠遠大於系統內存和硬碟。實際工作時,CPU往往需要重復讀取同樣的數據塊,而緩存容量的增大,可以大幅度提升CPU內部讀取數據的命中率,而不用再到內存或者硬碟上尋找,以此提高系統性能。但是由於CPU晶元面積和成本的因素來考慮,緩存都很小。
L1 Cache(一級緩存)是CPU第一層高速緩存,分為數據緩存和指令緩存。內置的L1高速緩存的容量和結構對CPU的性能影響較大,不過高速緩沖存儲器均由靜態RAM組成,結構較復雜,在CPU管芯面積不能太大的情況下,L1級高速緩存的容量不可能做得太大。一般伺服器CPU的L1緩存的容量通常在32―256KB。
L2 Cache(二級緩存)是CPU的第二層高速緩存,分內部和外部兩種晶元。內部的晶元二級緩存運行速度與主頻相同,而外部的二級緩存則只有主頻的一半。L2高速緩存容量也會影響CPU的性能,原則是越大越好,現在家庭用CPU容量最大的是512KB,而伺服器和工作站上用CPU的L2高速緩存更高達256-1MB,有的高達2MB或者3MB。
L3 Cache(三級緩存),分為兩種,早期的是外置,現在的都是內置的。而它的實際作用即是,L3緩存的應用可以進一步降低內存延遲,同時提升大數據量計算時處理器的性能。降低內存延遲和提升大數據量計算能力對游戲都很有幫助。而在伺服器領域增加L3緩存在性能方面仍然有顯著的提升。比方具有較大L3緩存的配置利用物理內存會更有效,故它比較慢的磁碟I/O子系統可以處理更多的數據請求。具有較大L3緩存的處理器提供更有效的文件系統緩存行為及較短消息和處理器隊列長度。
其實最早的L3緩存被應用在AMD發布的K6-III處理器上,當時的L3緩存受限於製造工藝,並沒有被集成進晶元內部,而是集成在主板上。在只能夠和系統匯流排頻率同步的L3緩存同主內存其實差不了多少。後來使用L3緩存的是英特爾為伺服器市場所推出的Itanium處理器。接著就是P4EE和至強MP。Intel還打算推出一款9MB L3緩存的Itanium2處理器,和以後24MB L3緩存的雙核心Itanium2處理器。
但基本上L3緩存對處理器的性能提高顯得不是很重要,比方配備1MB L3緩存的Xeon MP處理器卻仍然不是Opteron的對手,由此可見前端匯流排的增加,要比緩存增加帶來更有效的性能提升。
7.CPU擴展指令集
CPU依靠指令來計算和控制系統,每款CPU在設計時就規定了一系列與其硬體電路相配合的指令系統。指令的強弱也是CPU的重要指標,指令集是提高微處理器效率的最有效工具之一。從現階段的主流體系結構講,指令集可分為復雜指令集和精簡指令集兩部分,而從具體運用看,如Intel的MMX(Multi Media Extended)、SSE、 SSE2(Streaming-Single instruction multiple data-Extensions 2)、SEE3和AMD的3DNow!等都是CPU的擴展指令集,分別增強了CPU的多媒體、圖形圖象和Internet等的處理能力。我們通常會把CPU的擴展指令集稱為"CPU的指令集"。SSE3指令集也是目前規模最小的指令集,此前MMX包含有57條命令,SSE包含有50條命令,SSE2包含有144條命令,SSE3包含有13條命令。目前SSE3也是最先進的指令集,英特爾Prescott處理器已經支持SSE3指令集,AMD會在未來雙核心處理器當中加入對SSE3指令集的支持,全美達的處理器也將支持這一指令集。
8.CPU內核和I/O工作電壓
從586CPU開始,CPU的工作電壓分為內核電壓和I/O電壓兩種,通常CPU的核心電壓小於等於I/O電壓。其中內核電壓的大小是根據CPU的生產工藝而定,一般製作工藝越小,內核工作電壓越低;I/O電壓一般都在1.6~5V。低電壓能解決耗電過大和發熱過高的問題。
9.製造工藝
製造工藝的微米是指IC內電路與電路之間的距離。製造工藝的趨勢是向密集度愈高的方向發展。密度愈高的IC電路設計,意味著在同樣大小面積的IC中,可以擁有密度更高、功能更復雜的電路設計。現在主要的180nm、130nm、90nm。最近官方已經表示有65nm的製造工藝了。
10.指令集
(1)CISC指令集
CISC指令集,也稱為復雜指令集,英文名是CISC,(Complex Instruction Set Computer的縮寫)。在CISC微處理器中,程序的各條指令是按順序串列執行的,每條指令中的各個操作也是按順序串列執行的。順序執行的優點是控制簡單,但計算機各部分的利用率不高,執行速度慢。其實它是英特爾生產的x86系列(也就是IA-32架構)CPU及其兼容CPU,如AMD、VIA的。即使是現在新起的X86-64(也被成AMD64)都是屬於CISC的范疇。
要知道什麼是指令集還要從當今的X86架構的CPU說起。X86指令集是Intel為其第一塊16位CPU(i8086)專門開發的,IBM1981年推出的世界第一台PC機中的CPU―i8088(i8086簡化版)使用的也是X86指令,同時電腦中為提高浮點數據處理能力而增加了X87晶元,以後就將X86指令集和X87指令集統稱為X86指令集。
雖然隨著CPU技術的不斷發展,Intel陸續研製出更新型的i80386、i80486直到過去的PII至強、PIII至強、Pentium 3,最後到今天的Pentium 4系列、至強(不包括至強Nocona),但為了保證電腦能繼續運行以往開發的各類應用程序以保護和繼承豐富的軟體資源,所以Intel公司所生產的所有CPU仍然繼續使用X86指令集,所以它的CPU仍屬於X86系列。由於Intel X86系列及其兼容CPU(如AMD Athlon MP、)都使用X86指令集,所以就形成了今天龐大的X86系列及兼容CPU陣容。x86CPU目前主要有intel的伺服器CPU和AMD的伺服器CPU兩類。
(2)RISC指令集
RISC是英文「Reced Instruction Set Computing 」 的縮寫,中文意思是「精簡指令集」。它是在CISC指令系統基礎上發展起來的,有人對CISC機進行測試表明,各種指令的使用頻度相當懸殊,最常使用的是一些比較簡單的指令,它們僅占指令總數的20%,但在程序中出現的頻度卻佔80%。復雜的指令系統必然增加微處理器的復雜性,使處理器的研製時間長,成本高。並且復雜指令需要復雜的操作,必然會降低計算機的速度。基於上述原因,20世紀80年代RISC型CPU誕生了,相對於CISC型CPU ,RISC型CPU不僅精簡了指令系統,還採用了一種叫做「超標量和超流水線結構」,大大增加了並行處理能力。RISC指令集是高性能CPU的發展方向。它與傳統的CISC(復雜指令集)相對。相比而言,RISC的指令格式統一,種類比較少,定址方式也比復雜指令集少。當然處理速度就提高很多了。目前在中高檔伺服器中普遍採用這一指令系統的CPU,特別是高檔伺服器全都採用RISC指令系統的CPU。RISC指令系統更加適合高檔伺服器的操作系統UNIX,現在Linux也屬於類似UNIX的操作系統。RISC型CPU與Intel和AMD的CPU在軟體和硬體上都不兼容。
目前,在中高檔伺服器中採用RISC指令的CPU主要有以下幾類:PowerPC處理器、SPARC處理器、PA-RISC處理器、MIPS處理器、Alpha處理器。
(3)IA-64
EPIC(Explicitly Parallel Instruction Computers,精確並行指令計算機)是否是RISC和CISC體系的繼承者的爭論已經有很多,單以EPIC體系來說,它更像Intel的處理器邁向RISC體系的重要步驟。從理論上說,EPIC體系設計的CPU,在相同的主機配置下,處理Windows的應用軟體比基於Unix下的應用軟體要好得多。
Intel採用EPIC技術的伺服器CPU是安騰Itanium(開發代號即Merced)。它是64位處理器,也是IA-64系列中的第一款。微軟也已開發了代號為Win64的操作系統,在軟體上加以支持。在Intel採用了X86指令集之後,它又轉而尋求更先進的64-bit微處理器,Intel這樣做的原因是,它們想擺脫容量巨大的x86架構,從而引入精力充沛而又功能強大的指令集,於是採用EPIC指令集的IA-64架構便誕生了。IA-64 在很多方面來說,都比x86有了長足的進步。突破了傳統IA32架構的許多限制,在數據的處理能力,系統的穩定性、安全性、可用性、可觀理性等方面獲得了突破性的提高。
IA-64微處理器最大的缺陷是它們缺乏與x86的兼容,而Intel為了IA-64處理器能夠更好地運行兩個朝代的軟體,它在IA-64處理器上(Itanium、Itanium2 ……)引入了x86-to-IA-64的解碼器,這樣就能夠把x86指令翻譯為IA-64指令。這個解碼器並不是最有效率的解碼器,也不是運行x86代碼的最好途徑(最好的途徑是直接在x86處理器上運行x86代碼),因此Itanium 和Itanium2在運行x86應用程序時候的性能非常糟糕。這也成為X86-64產生的根本原因。
(4)X86-64 (AMD64 / EM64T)
HAMD公司設計,可以在同一時間內處理64位的整數運算,並兼容於X86-32架構。其中支持64位邏輯定址,同時提供轉換為32位定址選項;但數據操作指令默認為32位和8位,提供轉換成64位和16位的選項;支持常規用途寄存器,如果是32位運算操作,就要將結果擴展成完整的64位。這樣,指令中有「直接執行」和「轉換執行」的區別,其指令欄位是8位或32位,可以避免欄位過長。
x86-64(也叫AMD64)的產生也並非空穴來風,x86處理器的32bit定址空間限制在4GB內存,而IA-64的處理器又不能兼容x86。AMD充分考慮顧客的需求,加強x86指令集的功能,使這套指令集可同時支持64位的運算模式,因此AMD把它們的結構稱之為x86-64。在技術上AMD在x86-64架構中為了進行64位運算,AMD為其引入了新增了R8-R15通用寄存器作為原有X86處理器寄存器的擴充,但在而在32位環境下並不完全使用到這些寄存器。原來的寄存器諸如EAX、EBX也由32位擴張至64位。在SSE單元中新加入了8個新寄存器以提供對SSE2的支持。寄存器數量的增加將帶來性能的提升。與此同時,為了同時支持32和64位代碼及寄存器,x86-64架構允許處理器工作在以下兩種模式:Long Mode(長模式)和Legacy Mode(遺傳模式),Long模式又分為兩種子模式(64bit模式和Compatibility mode兼容模式)。該標准已經被引進在AMD伺服器處理器中的Opteron處理器。
而今年也推出了支持64位的EM64T技術,再還沒被正式命為EM64T之前是IA32E,這是英特爾64位擴展技術的名字,用來區別X86指令集。Intel的EM64T支持64位sub-mode,和AMD的X86-64技術類似,採用64位的線性平面定址,加入8個新的通用寄存器(GPRs),還增加8個寄存器支持SSE指令。與AMD相類似,Intel的64位技術將兼容IA32和IA32E,只有在運行64位操作系統下的時候,才將會採用IA32E。IA32E將由2個sub-mode組成:64位sub-mode和32位sub-mode,同AMD64一樣是向下兼容的。Intel的EM64T將完全兼容AMD的X86-64技術。現在Nocona處理器已經加入了一些64位技術,Intel的Pentium 4E處理器也支持64位技術。
6. 前端amd和cmd的區別
最明顯的旅嘩高區別就是在模塊定義時對依賴的處理不同
1、AMD推崇依賴前置,在定義模塊的時候就要聲明其依賴的模塊
2、CMD推崇就近依賴,只有在用到某個模塊的時候再去require
這種區別各有優劣,只是語法上的差距,而且requireJS和SeaJS都支持對方的寫法
AMD和CMD最大的區別是對依賴模塊的執行時機處理不同,注意不是載入的時機或者方式不同
很拆尺多人說requireJS是非同步載入模塊,SeaJS是同步載入模塊,這么理解實際上是不準確的,其實載入模塊都是非同步的,只不過AMD依賴前置,js可以方便知道依賴模塊是誰,立即載入,而CMD就近依賴,需要使用把蘆檔模塊變為字元串解析一遍才知道依賴了那些模塊,這也是很多人詬病CMD的一點,犧牲性能來帶來開發的便利性,實際上解析模塊用的時間短到可以忽略。
7. 電腦CPU所指的雙核,還有英特爾和AMD分別是什麼意思
雙核就是2個核心
核心(Die)又稱為內核,是CPU最重要的組成部分。CPU中心那塊隆起的晶元就是核心,是由單晶硅以一定的生產工藝製造出來的,CPU所有的計算、接受/存儲命令、處理數據都由核心執行。各種CPU核心都具有固定的邏輯結構,一級緩存、二級緩存、執行單元、指令級單元和匯流排介面等邏輯單元都會有科學的布局。
從雙核技術本身來看,到底什麼是雙內核?毫無疑問雙內核應該具備兩個物理上的運算內核,而這兩個內核的設計應用方式卻大有文章可作。據現有的資料顯示念蠢,AMD Opteron 處理器從一開始設計時就考慮到了添加第二個內核,兩個CPU內核使用相同的系統請求介面SRI、HyperTransport技術和內存控制器,兼容90納米單內核處理器所使用的940引腳介面。而英特爾的雙核心卻僅僅是使用兩個完整的CPU封裝在一起,連接到同一個前端匯流排上。可以說,AMD的解決方案是真正的「雙核」,而英特爾的解決方案則是「雙芯」。可以設想,這樣的兩個核心必然會產生匯流排爭搶,影響性能。不僅如此,還對於未來更多核心的集成埋下了隱患,因為會加劇處理器爭用前端匯流排帶寬,成為提升系統性能的瓶頸,而這是由架構決定的。因此可以說,AMD的技術架構為實現雙核和多核奠定了堅實的基礎。AMD直連架構(也就是通過超傳輸技術讓CPU內核直接跟外部I/O相連,不通過前端匯流排)和集成內存控制器技術,使得每個內核都自己的高速緩存可資遣用,都有自己的專用車道直通I/O,沒有資源爭搶的問題,實現雙核和多核更容易。而Intel是多個核心共享二級緩存、共同使用前端匯流排的,當內核增多,核心的處理能力增強時,就像現在北京郊區開發的大型社區一樣,多個社區利用同一條城市快速路,肯定要遇到堵車的問題。
HT技術是超線程技術,是造就了PENTIUM 4的一個輝煌時代的武器,盡管它被評為失敗的技術,但是卻對P4起一定推廣作用,雙核心處理器是全新推出的處理器類別;HT技術是在處理器實現2個邏輯處理器,是充分利用處理器資源,雙核心處理器是集成2個物理核心,是實際意義上的雙核心處理器。其實引用《現代計算機》雜志所比喻的HT技術好比是一個能用雙手同時炒菜的廚師,並且一次一次把一碟菜放到桌面;而雙核心處理器好比2個廚師炒兩個菜,並同時把兩個菜送到桌面。很顯然雙核心處理器性能要更優越。按照技術角度PENTIUM D 8XX系列不是實際意義上的雙核心處理器,只是兩個處理器集成,但是PENTIUM D 9XX就是實際意義上雙核心處理器,而K8從一開始就是實際意義上雙核心處理器。
雙核處理器(Dual Core Processor):
雙核處理器是指在一個處理器上集成兩個運算核心,從而提高計算能力。「雙核」的概念最早是由IBM、HP、Sun等支持RISC架構的高端伺服器廠商提出的,不過由於RISC架構的伺服器價格高、應用面窄,沒有引起廣泛的注意。
最近逐漸熱起來的「雙核」概念,主要是指基於X86開放架構的雙核技術。在這方面,起領導地位的廠商主要有AMD和Intel兩家。其中,兩家的思路又有不同。AMD從一開始設計時就考慮到了對多核心的支持。所有組件都直接連接到CPU,消除系統架構方面的挑戰和瓶頸。兩個處理器核心直接連接到同一個內核上,核心之間以晶元速度通信,進一步降低了處理器之間的延遲。而Intel採用多個核心共享前端匯流排的方式。專家認為,AMD的架構對於更容易實現雙核以至多核,Intel的架構會遇到多個內核爭用匯流排資源的瓶頸問題。
雙核與雙芯(Dual Core Vs. Dual CPU):
AMD和Intel的雙核技術在物理結構上也有很大不同之處。AMD將兩個內核做在一個Die(晶元)上,通過直連架構連接起來,集成度更高。Intel則是將放在不同Die(晶元)上的兩個內核封裝在一起,因此有人仔埋陪將Intel的方案稱為「雙芯」,認為AMD的方案才是真正的「雙核」液梁。從用戶端的角度來看,AMD的方案能夠使雙核CPU的管腳、功耗等指標跟單核CPU保持一致,從單核升級到雙核,不需要更換電源、晶元組、散熱系統和主板,只需要刷新BIOS軟體即可,這對於主板廠商、計算機廠商和最終用戶的投資保護是非常有利的。客戶可以利用其現有的90納米基礎設施,通過BIOS更改移植到基於雙核心的系統。
計算機廠商可以輕松地提供同一硬體的單核心與雙核心版本,使那些既想提高性能又想保持IT環境穩定性的客戶能夠在不中斷業務的情況下升級到雙核心。在一個機架密度較高的環境中,通過在保持電源與基礎設施投資不變的情況下移植到雙核心,客戶的系統性能將得到巨大的提升。在同樣的系統佔地空間上,通過使用雙核心處理器,客戶將獲得更高水平的計算能力和性能。
8. 詳細介紹一下AMD
不知道你說的是廠商呢 還是它的產品 都說一下吧 說起AMD不能不提它的冤家對頭INTER
Intel與AMD的競爭似乎從他們成立之初就已經註定。
1968年,Intel公司成立,隨後1969年,AMD公司開始正式營業。兩家公司的「斗爭」由此開始。1971年,Intel研製的4004作為第一款微處理器開啟了微型計算機發展的大門。
1978年,Intel出產第一顆16位微處理器8086,同時英特爾還生產出與之相配合的數學協處理器i8087,這兩種晶元使用相互兼容的指令集。人們將這些指令集統一稱之為 x86指令集,該指令系統沿用至今。
接觸電腦比較早的人,一定知道早期的計算機表示方法都是按照X86指令集定義,比如286、386、486。當時各個公司出品的CPU都是一個名稱,只是打的廠牌不同。
在微處理器發展初期,Intel提出的X86體系處理器遠沒有現在風光,當時IBM和蘋果公司都推出了微處理器產品,在結構體繫上互不相同,但性能差距不大,當時Intel對於AMD以及當時Cyrix等公司的態度十分微妙。一方面他們推出的產品和Intel的產品完全兼容,在市場上對其產品銷售有一定影響;另一方面,Intel也在藉助這些公司的產品穩固X86體系的地位。
在Intel與AMD發展的初期,兩家公司還有過鮮為人知的合作關系,為X86體系地位的建立做出了很大貢獻,隨著286 、386的不斷推出,特別是到486的時代,x86體系已經雄霸民用微處理器市場,IBM只有在伺服器市場堅守著自己的領地,蘋果被限制在了某些專業領域維持其獨特的風格。
在這段時間人們對於處理器的品牌概念十分淡漠,當時的消費者只知道購買的的康柏的486或者IBM的486,並不關心處理器的Intel還是AMD。Intel憑借標准提出者的身份,一直是新產品的首發者,並且在市場份額上保持著老大的地位。AMD只能跟在對手背後以完全兼容作為生存的標准,更像是一家生產廠,在競爭上也只能以低價作為俄日裔的手段,這也是為什麼AMD一直以來跟人的感覺都是一個「高性價比」品牌,其實就是低價產品的美化說法。
被迫改變
1993年,一個值得紀念的年份。在這一年,Intel一改以往的產品命名方式,對於人們認為該命名為586的產品,注冊了獨立的商標——Pentium(奔騰)。此舉不僅震驚了市場,更是給了AMD當頭一棒,AMD到了必須走一條新路的時刻。
從Pentium(奔騰)開始,Intel的宣傳攻勢不斷加強,當時提出的「Intel Inside」口號,現在已經深入人心,經歷了Pentium II(奔騰2)和Pentium III(奔騰3)兩代產品,Intel已經成為微處理器市場的霸主,一直同AMD並肩作戰的Cyrix公司在Intel的強勢下無奈選擇下嫁VIA公司,退出了市場競爭。
面對Intel的Pentium(奔騰)系列處理器,AMD在產品上雖有K5、K6等系列對抗,但從性能上一直難與Intel抗衡,只有憑借低廉的價格在低端市場勉強維持生計,眼看著Intel不斷擴大其市場佔有率。作為一家科技公司,AMD終於醒悟單純的價格並不能使其產品得到用戶的認可,擁有技術才是關鍵。
1999年,AMD推出了Athlon系列處理器,一舉贏得了業界與消費者的關注,AMD徹底擺脫了自己跟隨著的身份,腰身成為敢與Intel爭鋒的挑戰者。也是在這一年,Intel放棄了使用多年的處理器介面規格,AMD也第一次沒有跟隨Intel的變化,一直沿用原有介面規格,標志著AMD與Intel的競爭進入了技術時代。
新的開始
從Athlon開始,AMD似乎找到了感覺,接連在技術上與Intel展開競爭,率先進入G時代,無疑是這一段交鋒中,AMD最值得驕傲的一點。在比拼主頻的這段時間,不僅讓對手再不敢小覷這個對手,也讓消費者認識了AMD,市場份額雖然還處在絕對劣勢,但是在很多的調查中,AMD已經一舉超過Intel成為消費者最關心的CPU品牌。
接下來AMD發起了一系列的技術攻勢,在Intel推出奔奔騰4在主頻上與AMD拉開距離後,AMD極力宣傳CPU效能概念,在穩住市場的同時還概念了消費者盯住主頻的消費習慣,為以後的發展奠定了良好的基礎。
2003年,AMD首先提出了64位的概念,打了Intel一個措手不及。當時64位技術還僅限於高端伺服器處理器產品,在民用領域推行64位技術,使AMD第一次作為技術領先者在競爭中取得主動。Intel當時十分肯定地說,64位技術進入民用市場最少還要幾年時間,但是1年後,面對市場趨勢不得不匆忙宣布推出64位處理器。
在這次64位的比拼中,AMD無論在時間還是技術上都佔有明顯優勢,可惜天公不作美,由於微軟公司的拖沓比預計晚了一年半的時間才推出支持64位的操作系統,而此時Intel的64微處理器也「恰好」上市了,AMD得到了一片叫好聲但是「票房」慘淡,所幸AMD也許早料到了這一點,其向下兼容的64位技術在32位應用中性能不俗,沒有落得更大遺憾。
在64位沒有取得先機的Intel,在雙核處理器上再下文章,領先AMD一個月推出雙核產品。AMD現在早已不是當初那個跟在人後的小公司,在推出自己的雙核產品後,拋出了真假雙核的辯論。
更令業界震驚的是2005年6月底,AMD毅然把Intel告上了法庭,直指對手壟斷行業。對於這場官司的勝負暫且不論,AMD的這種態度已經說明了一切,不再依靠跟隨對手,不再依靠低價搶占市場,AMD現在要求的事平等,是站在同一賽場上的對手。
在法庭外的市場上,AMD再一次拿起了價格這柄利器。在過去的幾年中,由於主頻競爭發展緩慢,因而Intel公司和AMD公司之間幾乎沒有進行過大幅度的降價競爭。但是隨著雙核處理技術的發展,兩家公司與業內的其他競爭對手都提高了生產的效率,產品價格重新成為了Intel公司與AMD公司爭奪市場的主要戰場。
市場調研機構Mercury Research公布的x86處理器市場2005年第一季調查。結果表示Intel還是這個市場的頭龍占市場81.7%,比上季下降0.5%,而AMD為16.9%上升了0.3%,在戰斗中兩個對手都在不斷成長,似乎AMD要走的路還要更遠一點。
產品對比
AMD與Intel的產品線概述
AMD目前的主流產品線按介面類型可以分成兩類,分別是基於Socket 754介面的中低端產品線和基於Socket 939介面的中高端產品線;而按處理器的品牌又分為Sempron、Athlon 64、Opteron系列,此外還有雙核的Athlon 64 X2系列,其中Sempron屬於低端產品線,Athlon 64,Opteron和Athlon 64 X2屬於中高端產品線。這樣看來,AMD家族同一品牌的處理器除了介面類型不同之外,同時還存在著多種不同的核心,這給消費者帶來了不小的麻煩。可以說AMD現在的產品線是十分混亂的。與AMD復雜的產品線相比,Intel的產品線可以說是相當清晰的。Intel目前主流的處理器都採用LGA 775介面,按市場定位可以分成低端的Celeron D系列、中端的Pentium 4 5xx系列和高端的Pentium 4 6xx系列、雙核的Pentium D系列。除了Pentium D處理器以外,其他目前在市面上銷售的處理器都是基於Prescott核心,主要以頻率和二級緩存的不同來劃分檔次,這給了消費者一個相當清晰的印象,便於選擇購買。(鑒於目前市場上銷售的CPU產品都已經全面走向64位,32位的CPU無論在性能或者價格上都不佔優勢,因此我們所列舉的CPU並不包括32位的產品。同樣道理,AMD平台的Socket A介面和Intel的Socket 478介面的產品都已經在兩家公司的停產列表之上,而AMD的Athlon 64 FX系列和Intel的Pentium XE/EE系列以及伺服器領域的產品也不容易在市面上購買到,因此也不在本文談論范圍之內。)
2. AMD與Intel產品線對比
雙核處理器可以說是2005年CPU領域最大的亮點。畢竟X86處理器發展到了今天,在傳統的通過增加分支預測單元、緩存的容量、提升頻率來增加性能之路似乎已經難以行通了。因此,當單核處理器似乎走到盡頭之際, Intel、AMD都不約而同地推出了自家的雙核處理器解決方案:Pentium D、Athlon 64 X2!
所謂雙核處理器,簡單地說就是在一塊CPU基板上集成兩個處理器核心,並通過並行匯流排將各處理器核心連接起來。雙核其實並不是一個全新概念,而只是CMP(Chip Multi Processors,單晶元多處理器)中最基本、最簡單、最容易實現的一種類型。
處理器協作機制:
AMD Athlon 64 X2
Athlon 64 X2其實是由Athlon 64演變而來的,具有兩個Athlon 64核心,採用了獨立緩存的設計,兩顆核心同時擁有各自獨立的緩存資源,而且通過「System Request Interface」(系統請求介面,簡稱SRI)使Athlon 64 X2兩個核心的協作更加緊密。SRI單元擁有連接到兩個二級緩存的高速匯流排,如果兩個核心的緩存數據需要同步,只須通過SRI單元完成即可。這樣子的設計不但可以使CPU的資源開銷變小,而且有效的利用了內存匯流排資源,不必佔用內存匯流排資源。
Pentium D
與Athlon 64 X2一樣,Pentium D兩個核心的二級高速緩存是相互隔絕的,不過並沒有專門設計協作的介面,而只是在前端匯流排部分簡單的合並在一起,這種設計的不足之處就在於需要消耗大量的CPU周期。即當一個核心的緩存數據更改之後,必須將數據通過前端匯流排發送到北橋晶元,接著再由北橋晶元發往內存,而另外一個核心再通過北橋讀取該數據,也就是說,Pentium D並不能像Athlon 64 X2一樣,在CPU內部進行數據同步,而是需要通過訪問內存來進行同步,這樣子就比Athlon 64 X2多消耗了一些時間。
二級緩存對比:
二級緩存對於CPU的處理能力影響不小,這一點可以從同一家公司的產品線上的高低端產品當中明顯的體現出來。二級緩存做為一個數據的緩沖區,其大小具有相當重大的意義,越大的緩存也就意味著所能容納的數據量越多,這就大大地減輕了由於匯流排與內存的速度無法配合CPU的處理速度,而浪費了CPU的資源。
事實上也證明了,較大的高速緩存意味著可以一次交換更多的可用數據,而且還可以大大降低高速緩存失誤情況的出現,以及加快數據的訪問速度,使整體的性能更高。
就目前而言,AMD的CPU在二級高速緩存的設計上,由於製造工藝的原因,還是比較小,高端的最高也只達到2M,不少中低端產品只有512K,這對於數據的處理多多少少會帶來一些不良的影響,特別是處理的數據量較大的時候。Intel則相反,在這方面比較重視,如Pentium D核心內部便集成了2M的二級高速緩存,這在處理數據的時候具有較大的優勢,在高端產品中,甚至集成4M的二級高速緩存,可以說是AMD的N倍。在一些實際測試所得出來的數據也表明,二級緩存較大的Intel分數要高於二級緩存較小的AMD不少。
內存架構對比:
由Athlon 64開始,AMD便開始採用將內存控制器集成於CPU內核當中的設計,這種設計的好處在於,可以縮短CPU與內存之間的數據交換周期,以前都是採用內存控制器集成於北橋晶元組的設計,改成集成於CPU核心當中,這樣一來CPU無需通過北橋,直接可以對內存進行訪問操作,在有效的提高了處理效率的同時,還減輕了北橋晶元的設計難度,使主板廠商節約了成本。不過這種設計在提高了性能的同時,也帶來了一些麻煩,一個是兼容性問題,由於內存控制器集成於核心之內,不像內置於北橋晶元內部,兼容性較差,這就給用戶在選購內存的時候帶來一些不必要的麻煩。
除了內存兼容性較差之外,由於採用核心集成內存控制器的緣故,對於內存種類的選擇也有著很大的制約。就現在的內存市場上來看,很明顯已經像DDR2代過渡,而到目前為止Athlon 64所集成的還只是DDR內存控制器,換句話說,現有的Athlon 64不支持DDR2,這不僅對性能起到了制約,對用戶選擇上了造成了局限性。而Intel的CPU卻並不會有這樣子的麻煩,只需要北橋集成了相應的內存控制器,就可以輕松的選擇使用哪種內存,靈活性增強了不少。
還有一個問題,如若用戶採用集成顯卡時,AMD的這種設計會影響到集成顯卡性能的發揮。目前集成顯卡主要是通過動態分配內存做為顯存,當採用AMD平台時,集成在北橋晶元當中的顯卡核心需要通過CPU才能夠對內存操作,相比直接對內存進行操作,延遲要長許多。
平台帶寬對比:
隨著主流的雙核處理器的到來,以及945、955系列主板的支持,Intel的前端匯流排將提升到1066Mhz,配合上最新的DDR2 667內存,將I/O帶寬進一步提升到8.5GB/S,內存帶寬也達到了10.66GB/S,相比AMD目前的8.0GB/S(I/O帶寬)、6.4GB/S(內存帶寬)來說,Intel的要遠遠高出,在總體性能上要突出一些。
功耗對比:
在功耗方面,Intel依然比較AMD的要稍為高一些,不過,近期的已經有所好轉了。Intel自推出了Prescott核心,由於採用0.09微米製程、集成了更多的L2緩存,晶體管更加的細薄,從而導致漏電現象的出現,也就增加了漏電功耗,更多的晶體管數量帶來了功耗及熱量的上升。為了改進Prescott核心處理器的功耗和發熱量的問題,Intel便將以前應用於移動處理器上的EIST(Enhanced Intel Speedstep Technolog)移植到目前的主流Prescott核心CPU上,以保證有效的控制降低功耗及發熱量。
而AMD方面則加入了Cool 『n』 Quiet技術,以降低CPU自身的功耗,其工作原理與Intel的SpeedStep動態調節技術相似,都是通過調節倍頻等等來實現降低功耗的效果。
實際上,Intel的CPU功率之所以目前會高於AMD,其主要的原因在於其內部集成的晶體管遠遠要比AMD的CPU多得多,再加上工作頻率上也要比AMD的CPU高出不少,這才會變得功率較大。不過在即將來臨的Intel新一代CPU架構Conroe,這個問題將會得到有效的解決。其實Conroe是由目前的Pentium M架構變化而來的,它延續了Pentium M的絕大多數優點,如功耗更加低,在主頻較低的情況下已然能夠獲得較好的性能等等這些。可以看出,未來Intel將把移動平台上的Conroe移植到桌面平台上來,取得統一。
流水線對比:
自踏入P4時代以來,Intel的CPU內部的流水線級要比AMD的高出一些。以前的Northwood和Willamette核心的流水線為20級,相對於當時的PIII或者Athlon XP的10級左右的流水線來說,增長了幾乎一倍。而目前市場上採用Proscott核心CPU流水線為31級。很多人會有疑問,為何要加長流水線呢?其實流水線的長短對於主頻影響還是相當大的。流水線越長,頻率提升潛力越大,若一旦分支預測失敗或者緩存不中的話,所耽誤的延遲時間越長,為此在Netburst架構中,Intel將8級指令獲取/解碼的流水線分離出來,而Proscott核心有兩個這樣的8級流水線,因此嚴格說起來,Northwood和Willamette核心有28級流水線,而Proscott有39級流水線,是現在Athlon 64(K8)架構流水線的兩倍。
相信不少人都知道較長流水線不足之處,不過,是否有了解過較長流水線的優勢呢?在NetBurst流水線內部功能中,每時鍾周期能夠處理三個操作數。這和K7/K8是相同的。理論上,NetBurst架構每時鍾執行3指令乘以時鍾速度,便是最後的性能,由此可見頻率至上論有其理論基礎。以此為准來計算性能的話,則K8也非NetBurst對手。不過影響性能的因素有很多,最主要的就是分支預測失敗、緩存不中、指令相關性三個方面。
這三個方面的問題每個CPU都會遇到,只是各種解決方法及效果存在著差異而已。而NetBurst天生的長流水線既是它的最大優勢,也是它的最大劣勢。如果一旦發生分支預測失敗或者緩存不中的情況,Prescott核心就會有39個周期的延遲。這要比其他的架構延遲時間多得多。不過由於其工作主頻較高,加上較大容量的二級高速緩存在一定程度上彌補了NetBurst架構的不足之處。不過流水線的問題在Intel的新一代CPU架構Conroe得到了較好的解決,這樣子以來,大容量的高速緩存,以及較低的流水線,配合雙核心設計,使得未來的Intel CPU性能更加優異。
「真假雙核」
在雙核處理器推廣的過程中,我們聽到了一些不和諧的音符:AMD宣揚自己的雙核Opteron和Athlon-64 X2才符合真正意義上的雙核處理器准則,並隱晦地表示Intel雙核處理器只是「雙芯」,暗示其為「偽雙核」,聲稱自己的才是「真雙核」,真假雙核在外界引起了爭議,也為消費者的選擇帶來了不便。
AMD認為,它的雙核之所以是「真雙核」,就在於它並不只是簡單地將兩個處理器核心集成在一個硅晶片(或稱DIE)上,與單核相比,它增添了「系統請求介面」(System Request Interface,SRI)和「交叉開關」(Crossbar Switch)。它們的作用據AMD方面介紹應是對兩個核心的任務進行仲裁、及實現核與核之間的通信。它們與集成的內存控制器和HyperTransport匯流排配合,可讓每個核心都有獨享的I/O帶寬、避免資源爭搶,實現更小的內存延遲,並提供了更大的擴展空間,讓雙核能輕易擴展成為多核。
與自己的「真雙核」相對應,AMD把英特爾已發布的雙核處理器——奔騰至尊版和奔騰D處理器採用的雙核架構稱之為「雙芯」。AMD稱,它們只是將兩個完整的處理器核心簡單集成在一起,並連接到同一條帶寬有限的前端匯流排上,這種架構必然會導致它們的兩個核心爭搶匯流排資源、從而影響性能,而且在英特爾這種雙核架構上很難添加更多處理器核心,因為更多的核心會帶來更為激烈的匯流排帶寬爭搶。
而根據前面我們提到CMP的概念,筆者認為英特爾和AMD的雙核處理器,以及它們未來的多核處理器實際上都屬於CMP架構。而對雙核處理器的架構或標准,業界並無明確定義,稱雙核處理器存在「真偽」純屬AMD的一家之言,是一種文字游戲,有誤導消費者之嫌。
目前業界對雙核處理器的架構並沒有共同標准或定義,自然也就沒有什麼真偽之分。CMP的原意就是在一個處理器上集成多個處理器核心,在這一點上AMD與英特爾並無分別,不能說自己的產品集成了仲裁等功能就是「真雙核」,更沒有理由稱別人的產品是「雙芯」或「偽雙核」。此外在不久前AMD舉辦的「我為雙核狂」的活動中,有不少玩家指出,AMD的雙核處理器在面對多任務環境下,無法合理分配CPU運算資源,導致運行同樣的程序卻會得到不同的時間,AMD的雙核並不穩定。從不少媒體的評測還可以看到,AMD的雙核在單程序運行的效率要高於Intel處理器,但是在多任務的測試中則全面落後!
由此可見,對於真假雙核之說,筆者認為只是一種市場的抄作,並不是一種客觀的性能表現。從真正的雙核應用上來看(雙核的發展主要是由於各種程序的同時運行,即多程序同時運行的要求),Intel的雙核更符合多程序的發展需求。
高性能的基石——Intel及AMD平台對比
二、高性能的基石——Intel及AMD平台對比
看完上面的介紹,我們可以看到無論Intel還是AMD都提供了豐富的產品,而至於二者在處理器架構上的優劣畢竟不是片言隻字可以言明,也不可以片面的說誰的架構更為優勝,因為二者都有各自的優勢之處,也有其不足。但無論如何,對於CPU來說,一個產品優秀與否,性能如何,都必須要有其發揮的平台,接下來,我們來看看兩家產品的主流平台。
1. 平台對比之Intel篇
在剛過去的2005年中,Intel處理器在產品規格與規劃兩方面對整個晶元技術的發展都做出了巨大的貢獻,對用戶的最終選擇有著直接的影響。首先,盡管LGA775介面較脆弱的問題曾一度過引發爭議,但桌面級CPU從Socket 478向LGA 775過渡已是不可逆轉;其次,處理器的FSB頻率再一次被拉高,1066MHz已成為新一代處理器的標准;再次,雙核CPU的上市引發了不小的轟動,普及也只是時間的問題。與之對應,第一代LGA 775介面晶元組——Intel 915/925系列已是昨日黃花,945/955系列已經作為新的主流取而代之。集成HD音效技術、雙通道DDR2內存架構、千兆網卡、SATA2技術,RAID5等一系列過去只能在高端主板上才有的技術現在已經成為標准配置。在PCI-E顯卡介面已經成為市場主流的時候,市場上有了更多的廠商加入其中,Intel晶元組一家獨大的情況已經有所改變,NVIDIA和ATI都推出了相應產品,功能規格毫不遜色;VIA和SIS等台系廠商也有其「特色產品」,市場空前繁榮。 Intel Intel處理器搭配Intel晶元組一向是DIYer的首選。2005年,Intel沿襲了其一貫的特點:新品推出速度快,檔次定位明確,新技術大量使用等等。目前Intel的高端桌面晶元組當屬955X和975X系列,作為高端產品,955X具備了945系列的主要功能,但拋棄了過時的533MHz FSB。加之其支持8GB內存、ECC校驗技術和內存加速技術,這些特點令其與主流產品拉開了距離。975X則是955X的加強版,可以完美支持Intel所有桌面處理器,包括Pentium EE。更重要的是支持雙PCI-E 8X顯卡並行技術。925X/XE是上一代的高端產品,但由於缺乏對雙核心的支持,令其瞬間失勢。
主流市場一向是Intel的中流砥柱。945系列是其鞏固這一市場的利器,包括945P/PL/G/GZ等型號,分別用於不同需求的用戶。945系列支持FSB 533-1066的處理器,包括Celeron D、Pentium 4和Pentium D等在內的Intel主流CPU,945系列已全面轉向DDR2,並支持Intel Flex Memory技術,可使不同容量的內存構成雙通道模式,兼容性得以提高。
隨著945系列的大量鋪貨,曾經的主流產品915系列不可避免的被推到低端市場。915系列包括915P/PL/G/GV/GL五種型號,針對不同的用戶,但目前該系列產品存在不同程度的缺貨,售價與945系列相差也不是太大,而且也傳言Intel即將將其停產,故不推薦購買。
NVIDIA目前NVIDIA發布的Intel平台的晶元組有NF4 SLI IE,NF4 SLI XE,NF4 Ultra等幾款,都是作為中高端產品出現在市場的,其中的NF4 SLI IE更是第一個把NVIDIA在AMD平台上無限風光的SLI技術引入了INTEL平台,讓INTEL平台也能實現雙顯卡運作的模式。而更具革命性的是,NF4 SLI IE晶元組在打開雙顯卡模式的時候,能夠運行在PCI-E 16X+16X的高顯示帶寬之上,性能提升效果更加明顯。這樣的技術優勢,即便是說AMD平台上的NF4 SLI晶元組也已經難以實現(NF4 SLI只能打開PCI-E 8X+8X的帶寬),缺乏技術授權的眾INTEL晶元組更是無可奈何。
ATI目前ATI在Intel平台的主力晶元組是Radeon Xpress 200 For Intel platforms系列,而支持交火技術的Radeon Xpress 200 CrossFire則定位高端。Radeon Xpress 200 For Intel platforms晶元組的主板採用南北橋分離設計,包括RS400、RC400、RC410和RXC410四款產品。北橋集成X300顯示核心,並具備Intel平台的幾乎所有主流技術支持,兼容性十分強大。Radeon Xpress 200 CrossFire在Intel平台的產品稱作RD400,基本架構與RS400相仿,最大的特點是支持ATI的CrossFire顯卡並行技術。但ATI的自家的南橋功能有限,眾多廠商會採用ULi M1573/1575替代作為折衷方案。
VIA、SIS VIA和SiS在Intel平台也是有相當資歷的元老級晶元組生產商,二者主要為Intel平台提供中低端的產品。VIA目前在Intel平台的主要產品有PT880 PRO和PT894,集成顯卡的最新產品為P4M890。SiS則提供SiS 656/649等產品。 2. 平台對比之AMD篇
隨著K7核心退出歷史舞台,K8處理器已經順利完成過渡。與此同時,Socket 754和Socket 939平台也發生著分化——Socket939定位於主流桌面和入門級伺服器市場,Socket 754則定位於低端平台。與之搭配的晶元組延續著顯示核心市場的明爭暗鬥——NVIDIA於ATI的大戰愈演愈烈,加上久經沙場的VIA和SiS,AMD處理器配套晶元組市場從未如此熱鬧。
NVIDIA
NVIDIA是AMD平台中晶元組最多的一家廠商,從集成顯示核心的入門級產品到支持顯卡並行技術的高端產品都可以找到NVIDIA的身影。可以說NVIDIA晶元組是AMD平台中占絕大部分市場份額的產品,也是眾多DIYer眼中AMD處理器的最佳搭檔。
目前NVIDIA在AMD平台的晶元組包括NF4-4X、NF4標准版、NF4 Ultra、NF4 SLI以及整合圖形核心的C51系列。其中NF4-4X主要採用Socket 754介面,針對低端及入門級用戶,主要搭配Socket 754介面的Sempron和Athlon 64處理器。NF4 Ultra和NF4 SLI則主要採用Socket 939介面,針對中高端用戶。其中部分產品更是用料十足,配置豪華,是骨灰級玩家的選擇。C51系列包括C51G(GeForce 6100)和C51PV(GeForce 6150)兩種北橋晶元,搭配nForce 410 MCP和nForce 430 MCP兩種南橋,為AMD提供整合顯示晶元的主板。其集成的顯示晶元性能已經不再是雞肋,緊跟主流顯卡腳步。
ATI
ATI作為NVIDIA在顯卡市場的主要競爭對手,在AMD平台中的角色也非常強,但競爭力就要比在顯卡市場下降不少。作為對NVIDIA SLI技術的回應,ATI推出了Crossfie晶元組與之抗衡,而且其雙顯卡並行的限制比SLI要寬松很多, Crossfie技術對游戲的兼容性很好,幾乎每款游戲都可以從中獲得性能提升。但目前在市面上可以買到的Crossfie主板遠沒有SLI的多,ATI在這方面推廣力度似乎不夠。此外在中低端市場,ATI提供了Radeon Xpress 200系列,包括整合顯示核心的RS480/482和採用獨立顯卡的RX480,支持單PCI-E x16顯卡插槽,支持兩個以上的SATA介面,支持千兆網卡,性能中規中舉。
平台綜述
目前市場上Intel和AMD平台的主要產品都已經略為介紹,我們可以看到,AMD處理器目前使用的晶元組絕大多數由其合作夥伴設計,比如nVidia、ATI、VIA等等,他們設計好後再找其他企業代工生產。這樣一來,AMD在實際的市場操作方面就有很多困難,比如說在平台的整體價格控制方面無法做到統一調控,另外很可能會出現主板供應跟不上CPU的市場出貨率,或者大於CPU的供應量等等。雖然AMD本身也有配合自己產品的平台,但是高昂的成本、不實用的功能也只能使它成為評測室中的一道風景。
從另外一個角度看,AMD的主流處理器產品擁有Socket 754和Socket 939兩個平台,而在兩個平台的產品針對不同的消費者
9. AMD 前端匯流排的演算法!
同志,你說的1000MHz不是AMD的前端匯流排頻率,而是HT匯流排頻率。
AMD的前端匯流排頻率計算公式是外頻*2沒錯。
不像intel CPU(Core i7除外),前端匯流排要負責與內存進行數據交檔飢換,AMD的CPU內部集成內存控制器,CPU直接和內存進行數據交換,而不需要前端匯流排的參與。
AMD的CPU前端匯流排是處理器和北橋的通道,北橋負責連接顯卡、內存、硬碟和南橋,南橋負責I/O設備。
而HT匯流排才是負責CPU和內存傳輸的通道。
現在已經發展到了HT3.0。
HT匯流排=外頻*匯流排倍頻系數行汪返
如陵哪5400+,外頻為200MHz,匯流排倍頻系數為5
故其前端匯流排頻率為200*2=400MHz;
HT匯流排頻率為200*5=1000MHz。
10. 什麼是amd/cmd 前端規范
AMD 是 RequireJS 在推廣過程中對模塊定義的規范化產出。
CMD 是 SeaJS 在推廣過程中對模塊定義的規范化產出。
類似的還有 CommonJS Moles/2.0 規范,是 BravoJS 在推廣過程中對模塊定義的規范化產出。
還有不少⋯⋯
這些規范的目的都是為了 JavaScript 的模塊化開發,特別是在瀏覽器端的。
目前這些規范的實現都能達成瀏覽器端模塊化開發的目的。
區別:
1. 對於依賴的模塊,AMD 是提前執行,CMD 是延遲執行。不過 RequireJS 從 2.0 開始,也改成可以延遲執行(根據寫法不同,處理方式不同)。CMD 推崇 as lazy as possible.
2. CMD 推崇依賴就近,AMD 推崇依賴前置。看代碼:
// CMD
define(function(require, exports, mole) {
var a = require('./a')
a.doSomething()
// 此處略去 100 行
var b = require('./b') // 依賴可以就近書寫
b.doSomething()
// ...
})
// AMD 默認推薦的是
define(['./a', './b'], function(a, b) { // 依賴必須一開始就寫好
a.doSomething()
// 此處略去 100 行
b.doSomething()
...
})
雖然 AMD 也支持 CMD 的寫法,同時還支持將 require 作為依賴項傳遞,但 RequireJS 的作者默認是最喜歡上面的寫法,也是官方文檔里默認的模塊定義寫法。
3. AMD 的 API 默認是一個當多個用,CMD 的 API 嚴格區分,推崇職責單一。比如 AMD 里,require 分全局 require 和局部 require,都叫 require。CMD 里,沒有全局 require,而是根據模塊系統的完備性,提供 seajs.use 來實現模塊系統的載入啟動。CMD 里,每個 API 都簡單純粹。