當前位置:首頁 » 網頁前端 » 晶元封裝中前端工藝是什麼
擴展閱讀
webinf下怎麼引入js 2023-08-31 21:54:13
堡壘機怎麼打開web 2023-08-31 21:54:11

晶元封裝中前端工藝是什麼

發布時間: 2022-04-27 10:35:12

Ⅰ 常見晶元封裝有那幾種各有什麼特點

我們經常聽說某某晶元採用什麼什麼的封裝方式,在我們的電腦中,存在著各種各樣不同處理晶元,那麼,它們又是是採用何種封裝形式呢?並且這些封裝形式又有什麼樣的技術特點以及優越性呢?那麼就請看看下面的這篇文章,將為你介紹個中晶元封裝形式的特點和優點。

一、DIP雙列直插式封裝

DIP(DualIn-line Package)是指採用雙列直插形式封裝的集成電路晶元,絕大多數中小規模集成電路(IC)均採用這種封裝形式,其引腳數一般不超過100個。採用DIP封裝的CPU晶元有兩排引腳,需要插入到具有DIP結構的晶元插座上。當然,也可以直接插在有相同焊孔數和幾何排列的電路板上進行焊接。DIP封裝的晶元在從晶元插座上插拔時應特別小心,以免損壞引腳。

DIP封裝具有以下特點:

1.適合在PCB(印刷電路板)上穿孔焊接,操作方便。
2.晶元面積與封裝面積之間的比值較大,故體積也較大。
Intel系列CPU中8088就採用這種封裝形式,緩存(Cache)和早期的內存晶元也是這種封裝形式。

二、QFP塑料方型扁平式封裝和PFP塑料扁平組件式封裝

QFP(Plastic Quad Flat Package)封裝的晶元引腳之間距離很小,管腳很細,一般大規模或超大型集成電路都採用這種封裝形式,其引腳數一般在100個以上。用這種形式封裝的晶元必須採用SMD(表面安裝設備技術)將晶元與主板焊接起來。採用SMD安裝的晶元不必在主板上打孔,一般在主板表面上有設計好的相應管腳的焊點。將晶元各腳對准相應的焊點,即可實現與主板的焊接。用這種方法焊上去的晶元,如果不用專用工具是很難拆卸下來的。

PFP(Plastic Flat Package)方式封裝的晶元與QFP方式基本相同。唯一的區別是QFP一般為正方形,而PFP既可以是正方形,也可以是長方形。

QFP/PFP封裝具有以下特點:

1.適用於SMD表面安裝技術在PCB電路板上安裝布線。
2.適合高頻使用。
3.操作方便,可靠性高。
4.晶元面積與封裝面積之間的比值較小。

Intel系列CPU中80286、80386和某些486主板採用這種封裝形式。

三、PGA插針網格陣列封裝

PGA(Pin Grid Array Package)晶元封裝形式在晶元的內外有多個方陣形的插針,每個方陣形插針沿晶元的四周間隔一定距離排列。根據引腳數目的多少,可以圍成2-5圈。安裝時,將晶元插入專門的PGA插座。為使CPU能夠更方便地安裝和拆卸,從486晶元開始,出現一種名為ZIF的CPU插座,專門用來滿足PGA封裝的CPU在安裝和拆卸上的要求。

ZIF(Zero Insertion Force Socket)是指零插拔力的插座。把這種插座上的扳手輕輕抬起,CPU就可很容易、輕松地插入插座中。然後將扳手壓回原處,利用插座本身的特殊結構生成的擠壓力,將CPU的引腳與插座牢牢地接觸,絕對不存在接觸不良的問題。而拆卸CPU晶元只需將插座的扳手輕輕抬起,則壓力解除,CPU晶元即可輕松取出。

PGA封裝具有以下特點:

1.插拔操作更方便,可靠性高。
2.可適應更高的頻率。

Intel系列CPU中,80486和Pentium、Pentium Pro均採用這種封裝形式。

四、BGA球柵陣列封裝

隨著集成電路技術的發展,對集成電路的封裝要求更加嚴格。這是因為封裝技術關繫到產品的功能性,當IC的頻率超過100MHz時,傳統封裝方式可能會產生所謂的「CrossTalk」現象,而且當IC的管腳數大於208 Pin時,傳統的封裝方式有其困難度。因此,除使用QFP封裝方式外,現今大多數的高腳數晶元(如圖形晶元與晶元組等)皆轉而使用BGA(Ball Grid Array Package)封裝技術。BGA一出現便成為CPU、主板上南/北橋晶元等高密度、高性能、多引腳封裝的最佳選擇。

BGA封裝技術又可詳分為五大類:

1.PBGA(Plasric BGA)基板:一般為2-4層有機材料構成的多層板。Intel系列CPU中,Pentium II、III、IV處理器均採用這種封裝形式。

2.CBGA(CeramicBGA)基板:即陶瓷基板,晶元與基板間的電氣連接通常採用倒裝晶元(FlipChip,簡稱FC)的安裝方式。Intel系列CPU中,Pentium I、II、Pentium Pro處理器均採用過這種封裝形式。

3.FCBGA(FilpChipBGA)基板:硬質多層基板。

4.TBGA(TapeBGA)基板:基板為帶狀軟質的1-2層PCB電路板。

5.CDPBGA(Carity Down PBGA)基板:指封裝中央有方型低陷的晶元區(又稱空腔區)。

BGA封裝具有以下特點:

1.I/O引腳數雖然增多,但引腳之間的距離遠大於QFP封裝方式,提高了成品率。
2.雖然BGA的功耗增加,但由於採用的是可控塌陷晶元法焊接,從而可以改善電熱性能。
3.信號傳輸延遲小,適應頻率大大提高。
4.組裝可用共面焊接,可靠性大大提高。

BGA封裝方式經過十多年的發展已經進入實用化階段。1987年,日本西鐵城(Citizen)公司開始著手研製塑封球柵面陣列封裝的晶元(即BGA)。而後,摩托羅拉、康柏等公司也隨即加入到開發BGA的行列。1993年,摩托羅拉率先將BGA應用於行動電話。同年,康柏公司也在工作站、PC電腦上加以應用。直到五六年前,Intel公司在電腦CPU中(即奔騰II、奔騰III、奔騰IV等),以及晶元組(如i850)中開始使用BGA,這對BGA應用領域擴展發揮了推波助瀾的作用。目前,BGA已成為極其熱門的IC封裝技術,其全球市場規模在2000年為12億塊,預計2005年市場需求將比2000年有70%以上幅度的增長。

五、CSP晶元尺寸封裝

隨著全球電子產品個性化、輕巧化的需求蔚為風潮,封裝技術已進步到CSP(Chip Size Package)。它減小了晶元封裝外形的尺寸,做到裸晶元尺寸有多大,封裝尺寸就有多大。即封裝後的IC尺寸邊長不大於晶元的1.2倍,IC面積只比晶粒(Die)大不超過1.4倍。

CSP封裝又可分為四類:

1.Lead Frame Type(傳統導線架形式),代表廠商有富士通、日立、Rohm、高士達(Goldstar)等等。
2.Rigid Interposer Type(硬質內插板型),代表廠商有摩托羅拉、索尼、東芝、松下等等。
3.Flexible Interposer Type(軟質內插板型),其中最有名的是Tessera公司的microBGA,CTS的sim-BGA也採用相同的原理。其他代表廠商包括通用電氣(GE)和NEC。
4.Wafer Level Package(晶圓尺寸封裝):有別於傳統的單一晶元封裝方式,WLCSP是將整片晶圓切割為一顆顆的單一晶元,它號稱是封裝技術的未來主流,已投入研發的廠商包括FCT、Aptos、卡西歐、EPIC、富士通、三菱電子等。

CSP封裝具有以下特點:

1.滿足了晶元I/O引腳不斷增加的需要。
2.晶元面積與封裝面積之間的比值很小。
3.極大地縮短延遲時間。

CSP封裝適用於腳數少的IC,如內存條和便攜電子產品。未來則將大量應用在信息家電(IA)、數字電視(DTV)、電子書(E-Book)、無線網路WLAN/GigabitEthemet、ADSL/手機晶元、藍芽(Bluetooth)等新興產品中。

六、MCM多晶元模塊

為解決單一晶元集成度低和功能不夠完善的問題,把多個高集成度、高性能、高可靠性的晶元,在高密度多層互聯基板上用SMD技術組成多種多樣的電子模塊系統,從而出現MCM(Multi Chip Model)多晶元模塊系統。
MCM具有以下特點:

1.封裝延遲時間縮小,易於實現模塊高速化。
2.縮小整機/模塊的封裝尺寸和重量。
3.系統可靠性大大提高。

結束語

總之,由於CPU和其他超大型集成電路在不斷發展,集成電路的封裝形式也不斷作出相應的調整變化,而封裝形式的進步又將反過來促進晶元技術向前發展。

Ⅱ 什麼叫做封裝工藝好象是個比較復雜的問題呀,哪位大俠指點一下

所謂「封裝技術」是一種將集成電路用絕緣的塑料或陶瓷材料打包的技術。以CPU為例,我們實際看到的體積和外觀並不是真正的CPU內核的大小和面貌,而是CPU內核等元件經過封裝後的產品。

封裝對於晶元來說是必須的,也是至關重要的。因為晶元必須與外界隔離,以防止空氣中的雜質對晶元電路的腐蝕而造成電氣性能下降。另一方面,封裝後的晶元也更便於安裝和運輸。由於封裝技術的好壞還直接影響到晶元自身性能的發揮和與之連接的PCB(印製電路板)的設計和製造,因此它是至關重要的。封裝也可以說是指安裝半導體集成電路晶元用的外殼,它不僅起著安放、固定、密封、保護晶元和增強導熱性能的作用,而且還是溝通晶元內部世界與外部電路的橋梁——晶元上的接點用導線連接到封裝外殼的引腳上,這些引腳又通過印刷電路板上的導線與其他器件建立連接。因此,對於很多集成電路產品而言,封裝技術都是非常關鍵的一環。

目前採用的CPU封裝多是用絕緣的塑料或陶瓷材料包裝起來,能起著密封和提高晶元電熱性能的作用。由於現在處理器晶元的內頻越來越高,功能越來越強,引腳數越來越多,封裝的外形也不斷在改變。封裝時主要考慮的因素:

晶元面積與封裝面積之比為提高封裝效率,盡量接近1:1
引腳要盡量短以減少延遲,引腳間的距離盡量遠,以保證互不幹擾,提高性能
基於散熱的要求,封裝越薄越好
作為計算機的重要組成部分,CPU的性能直接影響計算機的整體性能。而CPU製造工藝的最後一步也是最關鍵一步就是CPU的封裝技術,採用不同封裝技術的CPU,在性能上存在較大差距。只有高品質的封裝技術才能生產出完美的CPU產品。

CPU晶元的主要封裝技術:

DIP技術
QFP技術
PFP技術
PGA技術
BGA技術
目前較為常見的封裝形式:

OPGA封裝
mPGA封裝
CPGA封裝
FC-PGA封裝
FC-PGA2封裝
OOI 封裝
PPGA封裝
S.E.C.C.封裝
S.E.C.C.2 封裝
S.E.P.封裝
PLGA封裝
CuPGA封裝

Ⅲ 半導體工藝流程中的前段(F)後段(B)一般是如何劃分的,為何要這樣劃分

晶元的製造過程可概分為晶圓處理工序(Wafer Fabrication)、晶圓針測工序(Wafer Probe)、構裝工序(Packaging)。

測試工序(Initial Test and Final Test)等幾個步驟。其中晶圓處理工序和晶圓針測工序為前段(Front End)工序,而構裝工序、測試工序為後段(Back End)工序。

按照其製造技術可分為分立器件半導體、光電半導體、邏輯IC、模擬IC、存儲器等大類,一般來說這些還會被再分成小類。

此外,IC除了在製造技術上的分類以外,還有以應用領域、設計方法等進行分類,最近雖然不常用。

但還有按照IC、LSI、VLSI(超大LSI)及其規模進行分類的方法。此外,還有按照其所處理的信號,可以分成模擬、數字、模擬數字混成及功能進行分類的方法。

晶圓處理工序:本工序的主要工作是在晶圓上製作電路及電子元件(如晶體管、電容、邏輯開關等),其處理程序通常與產品種類和所使用的技術有關。

但一般基本步驟是先將晶圓適當清洗,再在其表面進行氧化及化學氣相沉積,然後進行塗膜、曝光、顯影、蝕刻、離子植入、金屬濺鍍等反復步驟,最終在晶圓上完成數層電路及元件加工與製作。

(3)晶元封裝中前端工藝是什麼擴展閱讀:

(1)元素半導體。元素半導體是指單一元素構成的半導體,其中對硅、錫的研究比較早。它是由相同元素組成的具有半導體特性的固體材料,容易受到微量雜質和外界條件的影響而發生變化。目前, 只有硅、鍺性能好,運用的比較廣,硒在電子照明和光電領域中應用。

硅在半導體工業中運用的多,這主要受到二氧化硅的影響,能夠在器件製作上形成掩膜,能夠提高半導體器件的穩定性,利於自動化工業生產。

(2)無機合成物半導體。無機合成物主要是通過單一元素構成半導體材料,當然也有多種元素構成的半導體材料,主要的半導體性質有I族與V、VI、VII族;II族與IV、V、VI、VII族;III族與V、VI族;IV族與IV、VI族。V族與VI族;

VI族與VI族的結合化合物,但受到元素的特性和製作方式的影響,不是所有的化合物都能夠符合半導體材料的要求。這一半導體主要運用到高速器件中,InP製造的晶體管的速度比其他材料都高,主要運用到光電集成電路、抗核輻射器件中。 對於導電率高的材料,主要用於LED等方面。

Ⅳ 晶元的封裝是怎麼區別的。

晶元封裝方式一覽:

1、BGA(ball grid array)
球形觸點陳列,表面貼裝型封裝之一。在印刷基板的背面按陳列方式製作出球形凸點用以代替引腳,在印刷基板的正面裝配LSI 晶元,然後用模壓樹脂或灌封方法進行密封。也稱為凸點陳列載體(PAC)。引腳可超過200,是多引腳LSI 用的一種封裝。封裝本體也可做得比QFP(四側引腳扁平封裝)小。例如,引腳中心距為1.5mm 的360 引腳 BGA 僅為31mm 見方;而引腳中心距為0.5mm 的304 引腳QFP 為40mm 見方。而且BGA 不 用擔心QFP 那樣的引腳變形問題。該封裝是美國Motorola 公司開發的,首先在攜帶型電話等設備中被採用,今後在美國有可能在個人計算機中普及。最初,BGA 的引腳(凸點)中心距為1.5mm,引腳數為225。現在也有一些LSI 廠家正在開發500 引腳的BGA。BGA 的問題是迴流焊後的外觀檢查。現在尚不清楚是否有效的外觀檢查方法。有的認為,由於焊接的中心距較大,連接可以看作是穩定的,只能通過功能檢查來處理。美國Motorola 公司把用模壓樹脂密封的封裝稱為OMPAC,而把灌封方法密封的封裝稱為GPAC(見OMPAC 和GPAC)。
2、BQFP(quad flat package with bumper)
帶緩沖墊的四側引腳扁平封裝。QFP 封裝之一,在封裝本體的四個角設置突起(緩沖墊)以防止在運送過程中引腳發生彎曲變形。美國半導體廠家主要在微處理器和ASIC 等電路中採用此封裝。引腳中心距0.635mm,引腳數從84 到196 左右(見QFP)。
3、碰焊PGA(butt joint pin grid array)
表面貼裝型PGA 的別稱(見表面貼裝型PGA)。
4、C-(ceramic)
表示陶瓷封裝的記號。例如,CDIP 表示的是陶瓷DIP。是在實際中經常使用的記號。
5、Cerdip
用玻璃密封的陶瓷雙列直插式封裝,用於ECL RAM,DSP(數字信號處理器)等電路。帶有玻璃窗口的Cerdip 用於紫外線擦除型EPROM 以及內部帶有EPROM 的微機電路等。引腳中心距2.54mm,引腳數從8 到42。在日本,此封裝表示為DIP-G(G 即玻璃密封的意思)。
6、Cerquad
表面貼裝型封裝之一,即用下密封的陶瓷QFP,用於封裝DSP 等的邏輯LSI 電路。帶有窗口的Cerquad 用於封裝EPROM 電路。散熱性比塑料QFP 好,在自然空冷條件下可容許1.5~ 2W 的功率。但封裝成本比塑料QFP 高3~5 倍。引腳中心距有1.27mm、0.8mm、0.65mm、0.5mm、0.4mm 等多種規格。引腳數從32 到368。
7、CLCC(ceramic leaded chip carrier)
帶引腳的陶瓷晶元載體,表面貼裝型封裝之一,引腳從封裝的四個側面引出,呈丁字形。
帶有窗口的用於封裝紫外線擦除型EPROM 以及帶有EPROM 的微機電路等。此封裝也稱為QFJ、QFJ-G(見QFJ)。
8、COB(chip on board)
板上晶元封裝,是裸晶元貼裝技術之一,半導體晶元交接貼裝在印刷線路板上,晶元與基板的電氣連接用引線縫合方法實現,晶元與基板的電氣連接用引線縫合方法實現,並用樹脂覆蓋以確保可靠性。雖然COB 是最簡單的裸晶元貼裝技術,但它的封裝密度遠不如TAB 和倒片焊技術。
9、DFP(al flat package)
雙側引腳扁平封裝。是SOP 的別稱(見SOP)。以前曾有此稱法,現在已基本上不用。
10、DIC(al in-line ceramic package)
陶瓷DIP(含玻璃密封)的別稱(見DIP).
11、DIL(al in-line)
DIP 的別稱(見DIP)。歐洲半導體廠家多用此名稱。
12、DIP(al in-line package)
雙列直插式封裝。插裝型封裝之一,引腳從封裝兩側引出,封裝材料有塑料和陶瓷兩種。DIP 是最普及的插裝型封裝,應用范圍包括標准邏輯IC,存貯器LSI,微機電路等。引腳中心距2.54mm,引腳數從6 到64。封裝寬度通常為15.2mm。有的把寬度為7.52mm和10.16mm 的封裝分別稱為skinny DIP 和slim DIP(窄體型DIP)。但多數情況下並不加區分,只簡單地統稱為DIP。另外,用低熔點玻璃密封的陶瓷DIP 也稱為cerdip(見cerdip)。
13、DSO(al small out-lint)
雙側引腳小外形封裝。SOP 的別稱(見SOP)。部分半導體廠家採用此名稱。
14、DICP(al tape carrier package)
雙側引腳帶載封裝。TCP(帶載封裝)之一。引腳製作在絕緣帶上並從封裝兩側引出。由於利用的是TAB(自動帶載焊接)技術,封裝外形非常薄。常用於液晶顯示驅動LSI,但多數為定製品。另外,0.5mm 厚的存儲器LSI 簿形封裝正處於開發階段。在日本,按照EIAJ(日本電子機械工業)會標准規定,將DICP 命名為DTP。
15、DIP(al tape carrier package)
同上。日本電子機械工業會標准對DTCP 的命名(見DTCP)。
16、FP(flat package)
扁平封裝。表面貼裝型封裝之一。QFP 或SOP(見QFP 和SOP)的別稱。部分半導體廠家採用此名稱。
17、flip-chip
倒焊晶元。裸晶元封裝技術之一,在LSI 晶元的電極區製作好金屬凸點,然後把金屬凸點與印刷基板上的電極區進行壓焊連接。封裝的佔有面積基本上與晶元尺寸相同。是所有封裝技術中體積最小、最薄的一種。但如果基板的熱膨脹系數與LSI 晶元不同,就會在接合處產生反應,從而影響連接的可靠性。因此必須用樹脂來加固LSI 晶元,並使用熱膨脹系數基本相同的基板材料。
18、FQFP(fine pitch quad flat package)
小引腳中心距QFP。通常指引腳中心距小於0.65mm 的QFP(見QFP)。部分導導體廠家採用此名稱。
19、CPAC(globe top pad array carrier)
美國Motorola 公司對BGA 的別稱(見BGA)。
20、CQFP(quad fiat package with guard ring)
帶保護環的四側引腳扁平封裝。塑料QFP 之一,引腳用樹脂保護環掩蔽,以防止彎曲變形。在把LSI 組裝在印刷基板上之前,從保護環處切斷引腳並使其成為海鷗翼狀(L 形狀)。這種封裝在美國Motorola 公司已批量生產。引腳中心距0.5mm,引腳數最多為208 左右。
21、H-(with heat sink)
表示帶散熱器的標記。例如,HSOP 表示帶散熱器的SOP。
22、pin grid array(surface mount type)
表面貼裝型PGA。通常PGA 為插裝型封裝,引腳長約3.4mm。表面貼裝型PGA 在封裝的底面有陳列狀的引腳,其長度從1.5mm 到2.0mm。貼裝採用與印刷基板碰焊的方法,因而也稱為碰焊PGA。因為引腳中心距只有1.27mm,比插裝型PGA 小一半,所以封裝本體可製作得不怎麼大,而引腳數比插裝型多(250~528),是大規模邏輯LSI 用的封裝。封裝的基材有多層陶瓷基板和玻璃環氧樹脂印刷基數。以多層陶瓷基材製作封裝已經實用化。
23、JLCC(J-leaded chip carrier)
J 形引腳晶元載體。指帶窗口CLCC 和帶窗口的陶瓷QFJ 的別稱(見CLCC 和QFJ)。部分半導體廠家採用的名稱。
24、LCC(Leadless chip carrier)
無引腳晶元載體。指陶瓷基板的四個側面只有電極接觸而無引腳的表面貼裝型封裝。是高速和高頻IC 用封裝,也稱為陶瓷QFN 或QFN-C(見QFN)。
25、LGA(land grid array)
觸點陳列封裝。即在底面製作有陣列狀態坦電極觸點的封裝。裝配時插入插座即可。現已實用的有227 觸點(1.27mm 中心距)和447 觸點(2.54mm 中心距)的陶瓷LGA,應用於高速邏輯LSI 電路。LGA 與QFP 相比,能夠以比較小的封裝容納更多的輸入輸出引腳。另外,由於引線的阻抗小,對於高速LSI 是很適用的。但由於插座製作復雜,成本高,現在基本上不怎麼使用。預計今後對其需求會有所增加。
26、LOC(lead on chip)
晶元上引線封裝。LSI 封裝技術之一,引線框架的前端處於晶元上方的一種結構,晶元的中心附近製作有凸焊點,用引線縫合進行電氣連接。與原來把引線框架布置在晶元側面附近的結構相比,在相同大小的封裝中容納的晶元達1mm 左右寬度。
27、LQFP(low profile quad flat package)
薄型QFP。指封裝本體厚度為1.4mm 的QFP,是日本電子機械工業會根據制定的新QFP外形規格所用的名稱。
28、L-QUAD
陶瓷QFP 之一。封裝基板用氮化鋁,基導熱率比氧化鋁高7~8 倍,具有較好的散熱性。封裝的框架用氧化鋁,晶元用灌封法密封,從而抑制了成本。是為邏輯LSI 開發的一種封裝,在自然空冷條件下可容許W3的功率。現已開發出了208 引腳(0.5mm 中心距)和160 引腳(0.65mm中心距)的LSI 邏輯用封裝,並於1993 年10 月開始投入批量生產。
29、MCM(multi-chip mole)
多晶元組件。將多塊半導體裸晶元組裝在一塊布線基板上的一種封裝。根據基板材料可分為MCM-L,MCM-C 和MCM-D 三大類。MCM-L 是使用通常的玻璃環氧樹脂多層印刷基板的組件。布線密度不怎麼高,成本較低。MCM-C 是用厚膜技術形成多層布線,以陶瓷(氧化鋁或玻璃陶瓷)作為基板的組件,與使用多層陶瓷基板的厚膜混合IC 類似。兩者無明顯差別。布線密度高於MCM-L。MCM-D 是用薄膜技術形成多層布線,以陶瓷(氧化鋁或氮化鋁)或Si、Al 作為基板的組件。布線密謀在三種組件中是最高的,但成本也高。
30、MFP(mini flat package)
小形扁平封裝。塑料SOP 或SSOP 的別稱(見SOP 和SSOP)。部分半導體廠家採用的名稱。
31、MQFP(metric quad flat package)
按照JEDEC(美國聯合電子設備委員會)標准對QFP 進行的一種分類。指引腳中心距為
0.65mm、本體厚度為3.8mm~2.0mm 的標准QFP(見QFP)。
32、MQUAD(metal quad)
美國Olin 公司開發的一種QFP 封裝。基板與封蓋均採用鋁材,用粘合劑密封。在自然空冷條件下可容許2.5W~2.8W 的功率。日本新光電氣工業公司於1993 年獲得特許開始生產。
33、MSP(mini square package)
QFI 的別稱(見QFI),在開發初期多稱為MSP。QFI 是日本電子機械工業會規定的名稱。
34、OPMAC(over molded pad array carrier)
模壓樹脂密封凸點陳列載體。美國Motorola 公司對模壓樹脂密封BGA 採用的名稱(見
BGA)。
35、P-(plastic)
表示塑料封裝的記號。如PDIP 表示塑料DIP。
36、PAC(pad array carrier)
凸點陳列載體,BGA 的別稱(見BGA)。
37、PCLP(printed circuit board leadless package)
印刷電路板無引線封裝。日本富士通公司對塑料QFN(塑料LCC)採用的名稱(見QFN)。引腳中心距有0.55mm 和0.4mm 兩種規格。目前正處於開發階段。
38、PFPF(plastic flat package)
塑料扁平封裝。塑料QFP 的別稱(見QFP)。部分LSI 廠家採用的名稱。
39、PGA(pin grid array)
陳列引腳封裝。插裝型封裝之一,其底面的垂直引腳呈陳列狀排列。封裝基材基本上都採用多層陶瓷基板。在未專門表示出材料名稱的情況下,多數為陶瓷PGA,用於高速大規模邏輯LSI 電路。成本較高。引腳中心距通常為2.54mm,引腳數從64 到447 左右。了為降低成本,封裝基材可用玻璃環氧樹脂印刷基板代替。也有64~256 引腳的塑料PGA。
另外,還有一種引腳中心距為1.27mm 的短引腳表面貼裝型PGA(碰焊PGA)。(見表面貼裝
型PGA)。
40、piggy back
馱載封裝。指配有插座的陶瓷封裝,形關與DIP、QFP、QFN 相似。在開發帶有微機的設備時用於評價程序確認操作。例如,將EPROM 插入插座進行調試。這種封裝基本上都是定製品,市場上不怎麼流通。
41、PLCC(plastic leaded chip carrier)
帶引線的塑料晶元載體。表面貼裝型封裝之一。引腳從封裝的四個側面引出,呈丁字形,
是塑料製品。美國德克薩斯儀器公司首先在64k 位DRAM 和256kDRAM 中採用,現在已經普及用於邏輯LSI、DLD(或程邏輯器件)等電路。引腳中心距1.27mm,引腳數從18 到84。
J 形引腳不易變形,比QFP 容易操作,但焊接後的外觀檢查較為困難。PLCC 與LCC(也稱QFN)相似。以前,兩者的區別僅在於前者用塑料,後者用陶瓷。但現在已經出現用陶瓷製作的J 形引腳封裝和用塑料製作的無引腳封裝(標記為塑料LCC、PCLP、P-LCC 等),已經無法分辨。為此,日本電子機械工業會於1988 年決定,把從四側引出J 形引腳的封裝稱為QFJ,把在四側帶有電極凸點的封裝稱為QFN(見QFJ 和QFN)。
42、P-LCC(plastic teadless chip carrier)(plastic leaded chip currier)
有時候是塑料QFJ 的別稱,有時候是QFN(塑料LCC)的別稱(見QFJ 和QFN)。部分LSI 廠家用PLCC 表示帶引線封裝,用P-LCC 表示無引線封裝,以示區別。
43、QFH(quad flat high package)
四側引腳厚體扁平封裝。塑料QFP 的一種,為了防止封裝本體斷裂,QFP 本體製作得 較厚(見QFP)。部分半導體廠家採用的名稱。
44、QFI(quad flat I-leaded packgac)
四側I 形引腳扁平封裝。表面貼裝型封裝之一。引腳從封裝四個側面引出,向下呈I 字。
也稱為MSP(見MSP)。貼裝與印刷基板進行碰焊連接。由於引腳無突出部分,貼裝佔有面積小於QFP。日立製作所為視頻模擬IC 開發並使用了這種封裝。此外,日本的Motorola 公司的PLL IC也採用了此種封裝。引腳中心距1.27mm,引腳數從18 於68。
45、QFJ(quad flat J-leaded package)
四側J 形引腳扁平封裝。表面貼裝封裝之一。引腳從封裝四個側面引出,向下呈J 字形。是日本電子機械工業會規定的名稱。引腳中心距1.27mm。材料有塑料和陶瓷兩種。塑料QFJ 多數情況稱為PLCC(見PLCC),用於微機、門陳列、DRAM、ASSP、OTP 等電路。引腳數從18 至84。陶瓷QFJ 也稱為CLCC、JLCC(見CLCC)。帶窗口的封裝用於紫外線擦除型EPROM 以及帶有EPROM 的微機晶元電路。引腳數從32 至84。
46、QFN(quad flat non-leaded package)
四側無引腳扁平封裝。表面貼裝型封裝之一。現在多稱為LCC。QFN 是日本電子機械工業會規定的名稱。封裝四側配置有電極觸點,由於無引腳,貼裝佔有面積比QFP 小,高度比QFP低。但是,當印刷基板與封裝之間產生應力時,在電極接觸處就不能得到緩解。因此電極觸點難於作到QFP 的引腳那樣多,一般從14 到100 左右。材料有陶瓷和塑料兩種。當有LCC 標記時基本上都是陶瓷QFN。電極觸點中心距1.27mm。塑料QFN 是以玻璃環氧樹脂印刷基板基材的一種低成本封裝。電極觸點中心距除1.27mm 外,還有0.65mm 和0.5mm 兩種。這種封裝也稱為塑料LCC、PCLC、P-LCC 等。
47、QFP(quad flat package)
四側引腳扁平封裝。表面貼裝型封裝之一,引腳從四個側面引出呈海鷗翼(L)型。基材有陶瓷、金屬和塑料三種。從數量上看,塑料封裝占絕大部分。當沒有特別表示出材料時,多數情況為塑料QFP。塑料QFP 是最普及的多引腳LSI 封裝。不僅用於微處理器,門陳列等數字邏輯LSI 電路,而且也用於VTR 信號處理、音響信號處理等模擬LSI 電路。引腳中心距有1.0mm、0.8mm、0.65mm、0.5mm、0.4mm、0.3mm 等多種規格。0.65mm 中心距規格中最多引腳數為304。日本將引腳中心距小於0.65mm 的QFP 稱為QFP(FP)。但現在日本電子機械工業會對QFP的外形規格進行了重新評價。在引腳中心距上不加區別,而是根據封裝本體厚度分為QFP(2.0mm~3.6mm 厚)、LQFP(1.4mm 厚)和TQFP(1.0mm 厚)三種。另外,有的LSI 廠家把引腳中心距為0.5mm 的QFP 專門稱為收縮型QFP 或SQFP、VQFP。但有的廠家把引腳中心距為0.65mm 及0.4mm 的QFP 也稱為SQFP,至使名稱稍有一些混亂。QFP 的缺點是,當引腳中心距小於0.65mm 時,引腳容易彎曲。為了防止引腳變形,現已出現了幾種改進的QFP 品種。如封裝的四個角帶有樹指緩沖墊的BQFP(見BQFP);帶樹脂保護環覆蓋引腳前端的GQFP(見GQFP);在封裝本體里設置測試凸點、放在防止引腳變形的專用夾具里就可進行測試的TPQFP(見TPQFP)。在邏輯LSI 方面,不少開發品和高可靠品都封裝在多層陶瓷QFP 里。引腳中心距最小為0.4mm、引腳數最多為348 的產品也已問世。此外,也有用玻璃密封的陶瓷QFP(見Gerqad)。
48、QFP(FP)(QFP fine pitch)
小中心距QFP。日本電子機械工業會標准所規定的名稱。指引腳中心距為0.55mm、0.4mm、0.3mm 等小於0.65mm 的QFP(見QFP)。
49、QIC(quad in-line ceramic package)
陶瓷QFP 的別稱。部分半導體廠家採用的名稱(見QFP、Cerquad)。
50、QIP(quad in-line plastic package)
塑料QFP 的別稱。部分半導體廠家採用的名稱(見QFP)。
51、QTCP(quad tape carrier package)
四側引腳帶載封裝。TCP 封裝之一,在絕緣帶上形成引腳並從封裝四個側面引出。是利用TAB 技術的薄型封裝(見TAB、TCP)。
52、QTP(quad tape carrier package)
四側引腳帶載封裝。日本電子機械工業會於1993 年4 月對QTCP 所制定的外形規格所用的名稱(見TCP)。
53、QUIL(quad in-line)
QUIP 的別稱(見QUIP)。
54、QUIP(quad in-line package)
四列引腳直插式封裝。引腳從封裝兩個側面引出,每隔一根交錯向下彎曲成四列。引腳中心距1.27mm,當插入印刷基板時,插入中心距就變成2.5mm。因此可用於標准印刷線路板。是比標准DIP 更小的一種封裝。日本電氣公司在台式計算機和家電產品等的微機晶元中採用了些種封裝。材料有陶瓷和塑料兩種。引腳數64。
55、SDIP (shrink al in-line package)
收縮型DIP。插裝型封裝之一,形狀與DIP 相同,但引腳中心距(1.778mm)小於DIP(2.54mm),因而得此稱呼。引腳數從14 到90。也有稱為SH-DIP 的。材料有陶瓷和塑料兩種。
56、SH-DIP(shrink al in-line package)
同SDIP。部分半導體廠家採用的名稱。
57、SIL(single in-line)
SIP 的別稱(見SIP)。歐洲半導體廠家多採用SIL 這個名稱。
58、SIMM(single in-line memory mole)
單列存貯器組件。只在印刷基板的一個側面附近配有電極的存貯器組件。通常指插入插座的組件。標准SIMM 有中心距為2.54mm 的30 電極和中心距為1.27mm 的72 電極兩種規格。在印刷基板的單面或雙面裝有用SOJ 封裝的1 兆位及4 兆位DRAM 的SIMM 已經在個人計算機、工作站等設備中獲得廣泛應用。至少有30~40%的DRAM 都裝配在SIMM 里。
59、SIP(single in-line package)
單列直插式封裝。引腳從封裝一個側面引出,排列成一條直線。當裝配到印刷基板上時封裝呈側立狀。引腳中心距通常為2.54mm,引腳數從2 至23,多數為定製產品。封裝的形狀各異。也有的把形狀與ZIP 相同的封裝稱為SIP。
60、SK-DIP(skinny al in-line package)
DIP 的一種。指寬度為7.62mm、引腳中心距為2.54mm 的窄體DIP。通常統稱為DIP(見
DIP)。
61、SL-DIP(slim al in-line package)
DIP 的一種。指寬度為10.16mm,引腳中心距為2.54mm 的窄體DIP。通常統稱為DIP。
62、SMD(surface mount devices)
表面貼裝器件。偶而,有的半導體廠家把SOP 歸為SMD(見SOP)。
63、SO(small out-line)
SOP 的別稱。世界上很多半導體廠家都採用此別稱。(見SOP)。
64、SOI(small out-line I-leaded package)
I 形引腳小外型封裝。表面貼裝型封裝之一。引腳從封裝雙側引出向下呈I 字形,中心距1.27mm。貼裝佔有面積小於SOP。日立公司在模擬IC(電機驅動用IC)中採用了此封裝。引腳數26。
65、SOIC(small out-line integrated circuit)
SOP 的別稱(見SOP)。國外有許多半導體廠家採用此名稱。
66、SOJ(Small Out-Line J-Leaded Package)
J 形引腳小外型封裝。表面貼裝型封裝之一。引腳從封裝兩側引出向下呈J 字形,故此得名。通常為塑料製品,多數用於DRAM 和SRAM 等存儲器LSI 電路,但絕大部分是DRAM。用SOJ封裝的DRAM 器件很多都裝配在SIMM 上。引腳中心距1.27mm,引腳數從20 至40(見SIMM)。
67、SQL(Small Out-Line L-leaded package)
按照JEDEC(美國聯合電子設備工程委員會)標准對SOP 所採用的名稱(見SOP)。
68、SONF(Small Out-Line Non-Fin)
無散熱片的SOP。與通常的SOP 相同。為了在功率IC 封裝中表示無散熱片的區別,有意增添了NF(non-fin)標記。部分半導體廠家採用的名稱(見SOP)。
69、SOF(small Out-Line package)
小外形封裝。表面貼裝型封裝之一,引腳從封裝兩側引出呈海鷗翼狀(L 字形)。材料有塑料和陶瓷兩種。另外也叫SOL 和DFP。SOP 除了用於存儲器LSI 外,也廣泛用於規模不太大的ASSP 等電路。在輸入輸出端子不超過10~40 的領域,SOP 是普及最廣的表面貼裝封裝。引腳中心距1.27mm,引腳數從8~44。另外,引腳中心距小於1.27mm 的SOP 也稱為SSOP;裝配高度不到1.27mm 的SOP 也稱為TSOP(見SSOP、TSOP)。還有一種帶有散熱片的SOP。
70、SOW (Small Outline Package(Wide-Jype))
寬體SOP。部分半導體廠家採用的名稱.

Ⅳ 哪位高人幫看些下面晶元的封裝工藝是什麼

是QFP封裝吧...... 四方扁平封裝(QFP)其實是微細間距、薄體LCC,在正方或長方形封裝的四周都有引腳。其管腳間距比PLCC的0.050英寸還要細,引腳呈歐翅型與PLCC的J型不同。QFP可以是塑料封裝,可以是陶瓷封裝,塑料QFP通常稱為PQFP。PQFP有二種主要的工業標准,電子工業協會(EIA)的連接電子器件委員會(Joint Electronic Device Committee, JEDEC)注冊的PQFP是角上有凸緣的封裝,以便在運輸和處理過程中保護引腳。在所有的引腳數和各種封裝體尺寸中,其引腳間距是相同的,都為0.025英寸。日本電子工業協會(EIAJ)注冊的PQFP沒有凸緣,其引腳間距用米制單位,並有三種不同的間距:1.0mm,0.8mm和0.65mm,八種不同的封裝體尺寸,從10mm*10mm到40mm*40mm,不規則地分布到三種不同的引腳間距上,提供十五種不同的封裝形式,其引腳數可達232個。隨著引腳數的增加,還可以增加封裝的類型,同一模塊尺寸可以有不同的引腳數目,是封裝技術的一個重要進展,這意味著同一模具、同一切筋打彎工具可用於一系列引腳數的封裝。但是,EIAJ的PQFP沒有凸緣,這可能會引起麻煩,因為在運輸過程中,必須把這些已封裝好的器件放在一個特別設計的運輸盒中,而JEDEC的PQFP只要置於普通的管子里就可以運輸,因為凸緣可以使它們避免互相碰撞。EIAJ的PQFP的長方形結構還為將來高引腳數封裝的互連密度帶來好處。當引腳數大於256時,在0.100英寸間距的電路板上,長方形外形可達到較高的互連密度,這是因為周邊的一些引腳可以通過模塊下的通孔轉換成平面引腳,達到PGA的互連密度。在正方形結構中,並非所有模塊下的通孔均可以插入,必須有一些晶元的連接要轉換到模塊外形的外面,提高其有效互連面積。長方形結構可以使短邊引腳數少於64個、引腳間距不大於0.025英寸(1mm)的所有引腳都插入模塊底下的通孔中。PQFP最常見的引腳數是84、100、132、164和196。 樓上說的BGA技術是指另一種封裝技術.但是BGA的封裝技術是在模塊底部或上表 面焊有許多球狀凸點,通過這些焊料凸點實現封裝體與基板之間互連的.就像電腦的CPU是沒有引腳的!樓主所發的圖片看到的全是引腳,哪來的凸點?

Ⅵ 半導體行業晶元封裝與測試的工藝流程

封裝測試廠從來料(晶圓)開始,經過前道的晶圓表面貼膜(WTP)→晶圓背面研磨(GRD)→晶圓背面拋光(polish)→晶圓背面貼膜(W-M)→晶圓表面去膜(WDP)→晶圓烘烤(WBK)→晶圓切割(SAW)→切割後清洗(DWC)→晶圓切割後檢查(PSI)→紫外線照射(U-V)→晶片粘結(DB)→銀膠固化(CRG)→引線鍵合(WB)→引線鍵合後檢查(PBI);在經過後道的塑封(MLD)→塑封後固化(PMC)→正印(PTP)→背印(BMK)→切筋(TRM)→電鍍(SDP)→電鍍後烘烤(APB)→切筋成型(T-F)→終測(FT1)→引腳檢查(LSI)→最終目檢(FVI)→最終質量控制(FQC)→烘烤去濕(UBK)→包裝(P-K)→出貨檢查(OQC)→入庫(W-H)等工序對晶元進行封裝和測試,最終出貨給客戶

Ⅶ LED的晶元封裝工藝流程是什麼啊

第一步:擴晶。採用擴張機將廠商提供的整張LED晶片薄膜均勻擴張,使附著在薄膜表面緊密排列的LED晶粒拉開,便於刺晶。

第二步:背膠。將擴好晶的擴晶環放在已刮好銀漿層的背膠機面上,背上銀漿。點銀漿。適用於散裝LED晶元。採用點膠機將適量的銀漿點在PCB印刷線路板上。

第三步:將備好銀漿的擴晶環放入刺晶架中,由操作員在顯微鏡下將LED晶片用刺晶筆刺在PCB印刷線路板上。

第四步:將刺好晶的PCB印刷線路板放入熱循環烘箱中恆溫靜置一段時間,待銀漿固化後取出(不可久置,不然LED晶元鍍層會烤黃,即氧化,給邦定造成困難)。如果有LED晶元邦定,則需要以上幾個步驟;如果只有IC晶元邦定則取消以上步驟。

第五步:粘晶元。用點膠機在PCB印刷線路板的IC位置上適量的紅膠(或黑膠),再用防靜電設備(真空吸筆或子)將IC裸片正確放在紅膠或黑膠上。

第六步:烘乾。將粘好裸片放入熱循環烘箱中放在大平面加熱板上恆溫靜置一段時間,也可以自然固化(時間較長)。

第七步:邦定(打線)。採用鋁絲焊線機將晶片(LED晶粒或IC晶元)與PCB板上對應的焊盤鋁絲進行橋接,即COB的內引線焊接。

第八步:前測。使用專用檢測工具(按不同用途的COB有不同的設備,簡單的就是高精密度穩壓電源)檢測COB板,將不合格的板子重新返修。

第九步:點膠。採用點膠機將調配好的AB膠適量地點到邦定好的LED晶粒上,IC則用黑膠封裝,然後根據客戶要求進行外觀封裝。

第十步:固化。將封好膠的PCB印刷線路板放入熱循環烘箱中恆溫靜置,根據要求可設定不同的烘乾時間。

第十一步:後測。將封裝好的PCB印刷線路板再用專用的檢測工具進行電氣性能測試,區分好壞優劣。