『壹』 arm雲終端和x86雲終端有什麼不一樣嗎arm雲終端和x86雲終端哪個更好用
雲終端早期也被稱為 MININPC迷你電腦,由於集成電路技術的進步,可以將電腦的尺寸做到非常小,目前體積最小的MINIPC還有一個成人的巴掌大,主板、CPU、內存、硬碟、各種介面全都具備;目前主要的架構有 ARM和 X86兩種,X86不用講採用的是 i386 (AMD64)指令與普通PC完全一致,可以直接運行Windows /Linux等PC操作系統。
ARM早期主要是為移動設備設計(比如手機、平板電腦等 ),其功耗更低更節能、成本也更低;ARM比同頻的X86至不要便宜一半以上價格。但是ARM並不能直接運行PC桌面系統與應用軟體。主要支持定製板的 Linux或 Android系統,ARM架構支持外設介面比較少,特別是非即插即用設備,比如 LPT 、COM 、PS/2等介面,整體的計算性能也無法與同頻PC相比。
作為雲終端,主要的區別在於 ARM的雲終端會內置一個微型的Linux系統,通電之後linux系統啟動,啟動遠程桌面客戶端通過遠程桌面協議連接雲桌面的伺服器,把伺服器上虛擬機運行產生的畫面傳輸到終端的顯示器上。轉發終端上的鍵盤滑鼠等輸入操作指令。實際 ARM雲終端在此角色為一個輸入輸出轉發設備,所有的計算工作都是在後端的伺服器上進行的。一旦與伺服器斷開連接雲終端就失去了工作能力。
而X86架構的雲終端自帶就具備PC的性能,因此它可以將雲端虛擬機的鏡像緩存到本地存儲中,主要的運算工作可以由前端完成,後端伺服器作為支撐,即前後端混合運算。即使與雲桌面伺服器斷開了連接,雲終端仍然可以持續工作。並且也能像遠程桌面模式一樣,從服務端對終端進行統一更新。
X86架構的雲終端對伺服器配置要求低很多,ARM雲終端平均 50台需要一台伺服器,而X86架構的雲終端平均200台需要一台伺服器,而伺服器配置可以更低。
從整體性能性價比上看,X86架構是雲終端更好的選擇。
『貳』 處理器的線程數是什麼線程數量的多少對處理器核心數量的多少有影響么
線程數就是核心數,跟人的腦子一樣,核心數2就說明CPU有兩個腦子。腦子越多解決問題速度越快。CPU的核心數越高處理速度就越高。核心數2通俗地說就是雙核CPU了。但自超線程技術問世後,一個核心可以同時2個線程了。使CPU性能上升百分之40。
假設從服務端傳送數據到用戶端,把用戶端和服務端比做兩個小島,線程數比做連接兩個小島之間的橋梁,架橋越多,單位時間內傳送的數據越多,但如果橋梁架設超過雙方所能承受的數量時,用戶端將無法接受其他服務端的數據,而服務端將無法為其他用戶端傳送數據,因此,線程數的多少,要根據服務端和用戶端的具體情況而定。
(2)x86前端擴展閱讀
線程可以為操作系統內核調度的內核線程,如Win32線程;由用戶進程自行調度的用戶線程,如Linux平台的POSIXThread;或者由內核與用戶進程,如Windows 7的線程,進行混合調度。
同一進程中的多條線程將共享該進程中的全部系統資源,如虛擬地址空間,文件描述符和信號處理等等。但同一進程中的多個線程有各自的調用棧(call stack),自己的寄存器環境(register context),自己的線程本地存儲(thread-local storage)。
一個進程可以有很多線程,每條線程並行執行不同的任務。在多核或多CPU,或支持Hyper-threading的CPU上使用多線程程序設計的好處是顯而易見,即提高了程序的執行吞吐率。
在單CPU單核的計算機上,使用多線程技術,也可以把進程中負責I/O處理、人機交互而常被阻塞的部分與密集計算的部分分開來執行,編寫專門的workhorse線程執行密集計算,從而提高了程序的執行效率。
『叄』 魯大師檢測我的電腦為 x86 兼容 電腦 幫我看一下比普遍的配置怎麼樣
Z武器」是一款集專業而易用的硬體檢測、系統漏洞掃描和修復、常用軟體安裝和升級的裝機工具,專業而易用的硬體檢測擁有專業而易用的硬體檢測,不僅超級准確,而且向你提供中文廠商信息,讓你的電腦配置一目瞭然,拒絕奸商蒙蔽。它適合於各種品牌台式機、筆記本電腦、DIY兼容機的硬體測試,實時的關鍵性部件的監控預警,全面的電腦硬體信息,有效預防硬體故障,讓您的電腦免受困擾。 電池健康監控:電池狀態、電池損耗、電池質量的檢測,有效的提高電池的使用壽命和電腦的健康。 系統漏洞掃描和修復系統漏洞主要指操作系統中因Bug或疏漏而導致的一些系統程序或組件存在的後門。木馬或者病毒程序通常都是利用它們繞過防火牆等防護軟體,以達到攻擊和控制用戶個人電腦的目的。所以為了系統的安全和穩定,及時下載安裝補丁、修復系統漏洞非常必要。 各類硬體溫度實時監測在硬體溫度監測內,Z武器顯示計算機各類硬體溫度的變化曲線圖表。硬體溫度監測包含以下內容(視當前系統的感測器而定):CPU溫度、顯卡溫度(GPU溫度)、主硬碟溫度、主板溫度。小提示:你可以在運行硬體溫度監測時,最小化Z武器,然後運行3D游戲,待游戲結束後,觀察各硬體溫度的變化。 常用武器(清理武器、驅動武器、優化武器)清理武器掃描、清理系統垃圾迅速、全面,清理武器可以讓電腦運行得更清爽、更快捷、更安全。驅動武器為用戶提供驅動備份、還原和更新等功能。驅動武器具備軟體界面清晰,操作簡單,設置人性化等優點。優化武器提供全智能的一鍵優化和一鍵恢復功能,包括對系統響應速度、用戶界面速度、文件系統、網路等優化。
特點
1、提供國內最領先的計算機硬體信息檢測技術,包含最全面的硬體信息資料庫。與國際知名的Everest相比,」Z武器」給用戶提供更加簡潔的報告,而不是一大堆連很多專業級別的用戶都看不懂的參數。而與其他國際知名的CPU-Z(主要支持CPU信息)、GPU-Z(主要支持顯卡信息)相比,」Z武器」提供更為全面的檢測項目,並支持最新的各種CPU、主板、顯卡等硬體; 2、「Z武器」能掃描定時您的計算機的安全情況,為您提供安全報告,到微軟官方網站為您下載安裝最適合您的機器的漏洞補丁。「Z武器」只會安裝您的機器需要升級的漏洞補丁,並支持下載同時安裝,大幅提高補丁安裝速度,節省熱門軟體推薦安裝您的等待時間。 3、「Z武器」能自動檢測您的機器的軟體安裝信息,推薦最適合的軟體進行下載安裝;還能隨時檢查已經安裝的軟體信息,生成一個升級報告,可以單獨升級任何一款軟體,也可以直接點擊全部升級;並自帶軟體管理器,可以方便的管理與卸載,省事省心。
『肆』 電腦CPU前端匯流排
前端匯流排 :
前端匯流排是處理器與主板北橋晶元或內存控制集線器之間的數據通道,其頻率高低直接影響CPU訪問內存的速度;BIOS可看作是一個記憶電腦相關設定的軟體,可以通過它調整相關設定。BIOS存儲於板卡上一塊晶元中,這塊晶元的名字叫COMS RAM。但就像ATA與IDE一樣,大多人都將它們混為一談。
因為主板直接影響到整個系統的性能、穩定、功能與擴展性,其重要性不言而喻。主板的選購看似簡單,其實要注意的東西很多。選購時當留意產品的晶元組、做工用料、功能介面甚至使用簡便性,這就要求對主板具備透徹的認識,才能選擇到滿意的產品。
匯流排是將信息以一個或多個源部件傳送到一個或多個目的部件的一組傳輸線。通俗的說,就是多個部件間的公共連線,用於在各個部件之間傳輸信息。人們常常以MHz表示的速度來描述匯流排頻率。匯流排的種類很多,前端匯流排的英文名字是Front Side Bus,通常用FSB表示,是將CPU連接到北橋晶元的匯流排。計算機的前端匯流排頻率是由CPU和北橋晶元共同決定的。
CPU就是通過前端匯流排(FSB)連接到北橋晶元,進而通過北橋晶元和內存、顯卡交換數據。前端匯流排是CPU和外界交換數據的最主要通道,因此前端匯流排的數據傳輸能力對計算機整體性能作用很大,如果沒足夠快的前端匯流排,再強的CPU也不能明顯提高計算機整體速度。數據傳輸最大帶寬取決於所有同時傳輸的數據的寬度和傳輸頻率,即數據帶寬=(匯流排頻率×數據位寬)÷8。目前PC機上所能達到的前端匯流排頻率有266MHz、333MHz、400MHz、533MHz、800MHz幾種,前端匯流排頻率越大,代表著CPU與北橋晶元之間的數據傳輸能力越大,更能充分發揮出CPU的功能。現在的CPU技術發展很快,運算速度提高很快,而足夠大的前端匯流排可以保障有足夠的數據供給給CPU,較低的前端匯流排將無法供給足夠的數據給CPU,這樣就限制了CPU性能得發揮,成為系統瓶頸。
CPU和北橋晶元間匯流排的速度,更實質性的表示了CPU和外界數據傳輸的速度。而外頻的概念是建立在數字脈沖信號震盪速度基礎之上的,也就是說,100MHz外頻特指數字脈沖信號在每秒鍾震盪一萬萬次,它更多的影響了PIC及其他匯流排的頻率。之所以前端匯流排與外頻這兩個概念容易混淆,主要的原因是在以前的很長一段時間里(主要是在Pentium4出現之前和剛出現Pentium 4時),前端匯流排頻率與外頻是相同的,因此往往直接稱前端匯流排為外頻,最終造成這樣的誤會。隨著計算機技術的發展,人們發現前端匯流排頻率需要高於外頻,因此採用了QDR(Quad Date Rate)技術,或者其他類似的技術實現這個目前。這些技術的原理類似於AGP的2X或者4X,它們使得前端匯流排的頻率成為外頻的2倍、4倍甚至更高,從此之後前端匯流排和外頻的區別才開始被人們重視起來。
前端匯流排頻率
匯流排是將信息以一個或多個源部件傳送到一個或多個目的部件的一組傳輸線。通俗的說,就是多個部件間的公共連線,用於在各個部件之間傳輸信息。人們常常以MHz表示的速度來描述匯流排頻率。匯流排的種類很多,前端匯流排的英文名字是Front Side Bus,通常用FSB表示,是將CPU連接到北橋晶元的匯流排。計算機的前端匯流排頻率是由CPU和北橋晶元共同決定的。
北橋晶元負責聯系內存、顯卡等數據吞吐量最大的部件,並和南橋晶元連接。CPU就是通過前端匯流排(FSB)連接到北橋晶元,進而通過北橋晶元和內存、顯卡交換數據。前端匯流排是CPU和外界交換數據的最主要通道,因此前端匯流排的數據傳輸能力對計算機整體性能作用很大,如果沒足夠快的前端匯流排,再強的CPU也不能明顯提高計算機整體速度。數據傳輸最大帶寬取決於所有同時傳輸的數據的寬度和傳輸頻率,即數據帶寬=(匯流排頻率×數據位寬)÷8。目前PC機上所能達到的前端匯流排頻率有266MHz、333MHz、400MHz、533MHz、800MHz幾種,前端匯流排頻率越大,代表著CPU與北橋晶元之間的數據傳輸能力越大,更能充分發揮出CPU的功能。現在的CPU技術發展很快,運算速度提高很快,而足夠大的前端匯流排可以保障有足夠的數據供給給CPU,較低的前端匯流排將無法供給足夠的數據給CPU,這樣就限制了CPU性能得發揮,成為系統瓶頸。
外頻與前端匯流排頻率的區別:前端匯流排的速度指的是CPU和北橋晶元間匯流排的速度,更實質性的表示了CPU和外界數據傳輸的速度。而外頻的概念是建立在數字脈沖信號震盪速度基礎之上的,也就是說,100MHz外頻特指數字脈沖信號在每秒鍾震盪一萬萬次,它更多的影響了PCI及其他匯流排的頻率。之所以前端匯流排與外頻這兩個概念容易混淆,主要的原因是在以前的很長一段時間里(主要是在Pentium 4出現之前和剛出現Pentium 4時),前端匯流排頻率與外頻是相同的,因此往往直接稱前端匯流排為外頻,最終造成這樣的誤會。隨著計算機技術的發展,人們發現前端匯流排頻率需要高於外頻,因此採用了QDR(Quad Date Rate)技術,或者其他類似的技術實現這個目的。這些技術的原理類似於AGP的2X或者4X,它們使得前端匯流排的頻率成為外頻的2倍、4倍甚至更高,從此之後前端匯流排和外頻的區別才開始被人們重視起來。
顯卡渲染流程:
顯卡的渲染管線是顯示核心(也就是顯卡的CPU,顯卡的心臟,學名叫顯示處理單元)的重要組成部分。現階段的顯卡(主要是針對微軟DIRECTX(驅動和操作系統的介面技術)的版本來說的)都是非統一架構的,也就是分為頂點渲染和像素渲染。那麼在顯示核心的內部就分為兩大區域,一個區域就是頂點渲染單元(也叫頂點著色或頂點著色引擎),主要負責描繪圖形,也就是建立模形。一個就是像素渲染管線(也叫像素渲染管道),主要負責把頂點繪出的圖形填上填色。然後再加上紋理貼圖單元貼上紋理,一個精美的圖形就出來了。如果你還不懂,那我舉個簡單的例子吧:比如現在要顯卡繪出一個茶壺。當這個茶壺的頂點信息從顯存傳到頂點著色單元後,頂點著色單元就會依據這些信息繪出這個茶壺的輪廓。接下來像素渲染管線就會依據這個輪廓,把從顯存中的有關這個茶壺的顏色信息讀出來,給這個茶壺上色,如果這個茶壺是白色的,就上白色的。然後再由紋理貼圖單元貼上精美的圖案,最後這個精美的茶壺就出來了。你想一下,你平時畫畫,是不是也是先畫個大概,然後再進行修改,上色,畫上圖案,最後才畫好呀,其實顯卡工作起來,也和我們畫畫差不多,只不過他的效率很高,每秒可以畫上億個罷了。
從上面我的解答中你就可以發現,渲染管線就是顯示核心中負責給圖形配上顏色的一組專門通道。它是顯示核心中單獨設計的一組電路,擁有單獨的晶體管。渲染管線越多,那麼所繪出的圖形它的填充效率就越高,自然我們看到的畫面也就越流暢越精美。這就是為什麼渲染管線越多越好的原因。如果少了,那麼自然就會使顯卡的性能下降。當然渲染管線越多,顯示核心就會越大,因為它所使用的晶體管數目增加了。
不過在微軟的DIRECTX10出來後,頂點渲染和像素渲染將淡出我們的視線,因為它將採用統一架構。也就是一個核心中是由一組專門的通道既負責頂點渲染又負責像素渲染的。也就是只會有貼圖單元。這個時候是貼圖單元越多越好,畫面越好,越流暢,性能越高。
『伍』 x86兼容台式電腦換CPU
不能換雙核的,建議你換掉CPU,主板,內存和顯卡。
我看你的顯卡還是VAG的吧,這樣顯卡也得換,這四樣你去淘寶二手看看,很便宜,雙核的大概500左右
『陸』 處理器架構的基本概念
Core架構的Merom處理器確實性能強勁。在多項測試中,頻率2GHz的T7200能戰勝頻率2.33GHz的T2700就是最好的證明。但是您同時也注意到了,在移動平台Merom雖然性能強勁,但並沒有給您帶來太大的驚喜。雖然勝過Yonah,但幅度都不大,而且在一些測試項中,頻率稍低的T7200也是輸給了T2700的。因此可能在移動平台Core微架構的優勢不像桌面平台那樣出彩——一顆頻率最低的E6300也可以全殲高頻率的Pentium D。究其原因就是Yonah本身就比較優秀,而不像NetBurst那樣失敗,況且Core微架構本身就是在Yonah微架構改進而來,成績不會形成太大的反差也在情理之中。
Core微架構是Intel的以色列設計團隊在Yonah微架構基礎之上改進而來的新一代微架構。最顯著的變化在於在各個關鍵部分進行強化。為了提高兩個核心的內部數據交換效率採取共享式二級緩存設計,2個核心共享高達4MB的二級緩存。其內核採用較短的14級有效流水線設計,每個核心都內建32KB一級指令緩存與32KB一級數據緩存,2個核心的一級數據緩存之間可以直接傳輸數據。每個核心內建4組指令解碼單元,支持微指令融合與宏指令融合技術,每個時鍾周期最多可以解碼5條X86指令,並擁有改進的分支預測功能。每個核心內建5個執行單元子系統,執行效率頗高。加入對EM64T與SSE4指令集的支持。由於對EM64T的支持使得其可以擁有更大的內存定址空間,彌補了Yonah的不足,在新一代內存消耗大戶——Vista操作系統普及之後,這個優點可以使得Core微架構擁有更長的生命周期。而且使用了Intel最新的五大提升效能和降低功耗的新技術,包括:具有更好的電源管理功能;支持硬體虛擬化技術和硬體防病毒功能;內建數字溫度感測器;提供功率報告和溫度報告等。尤其是這些節能技術的採用對於移動平台意義尤為重大。
另外 酷睿支持64位
基於Core架構處理器面對不同消費群族,Core處理器出現了小小的分工,專門面對台式機使用的Conroe,筆記本使用Merom,伺服器使用WoodCrest,這三款處理器全部基於Core核心架構。
英特爾處理器包括Core系列桌面型、移動型,以及Xeon處理器,甚至嵌入式處理器,全都將相繼進入32納米製程,逐漸代替了現今的45納米製程。 隨著CES腳步接近,英特爾已透露將在CES上發表多款Core i3、i5桌上型與筆記型處理器,包括筆電的Arrandale與桌電Clarkdale相繼採用32納米製程,強調更小的體積與功耗設計。2009年12月23日英特爾揭露,2010年第一季將推出的嵌入式Xeon處理器也將採用新製程。 09底開始投產的32納米製程,相較於2008年底的45納米製程,採用了第二代high-k金屬閘極晶體管與浸潤式微影技術( immersion lithography),強化對處理器內部用電控管,也比45納米製程尺寸小30%,簡化系統設計。根據英特爾的藍圖,2010第一季將針對嵌入式市場推出32納米製程,代號為Jasper Forest的嵌入式Xeon處理器,比採用舊製程處理器高出30%到70%的每瓦效能,支持PCI 2.0及I/O虛擬化能力。而企業用的伺服器Xeon處理器,隨著2010年桌上型處理器Clarkdale的推出,與高階桌上型市場關系密切的入門級Xeon 3000處理器也會在2009年進入32納米新製程。
至於2009年採用Nehalem-EP架構的Xeon 5000,雖然一樣採用Nehalem架構,但將在2010年上半年開始採用32納米新製程,推出Westmere-EP處理器。而原來提供6核心的Xeon 7000處理器也會在2010上半年推出最多8核心的Nehalem-EX,在2010下半年同樣進入新製程的Westmere-EX。
除了嵌入式系統、伺服器、筆電與桌上型相繼進入新製程後,目前就只剩下低功耗設計的Atom處理器尚未進入,仍採用45納米製程。
相較於英特爾在2010年進入新製程,AMD則是要到2011年開始進入32納米製程,屆時將採用新的Bulldozer核心架構設計,包括效能級12至16核心的Interlagos,以及強調能源效益6至8核心的Valencia。
8核心的CPU 現在不可能對應現在的主板所以不可能大張旗鼓的宣傳, 最便宜的8核CPU應該是SONY PS3的CELL, 擁有8個核心浮點性能是酷睿雙核的N多倍,而現在4核心都沒有普及, AMD INTEL是不會著急大量生產他們的8核CPU的,可以說現在的INTEL 4核心只是把2個酷睿內核封裝在一個核心裏面, 2個核心之間並沒用直接通信, AMD倒是出了真4核,只是現在賣的不好還不能成為主流。總結一下5年之後4核心基本可以替換現在的雙核成為主流,而8核心甚至16核心CPU將會成為那時候的高端產品! 1、X86
雖然上面說了按處理器架構分的話,目前就術語本身來說主要有四種說法,即IA-32、IA-64、x86-32、x86-64,但是其實它們分屬於兩類,IA-32、x86-32都屬於x86,即英特爾的32位x86架構,x86-64是AMD在其最新的Athlon 64處理器系列中採用的新架構,但這一處理器基礎架構還是IA-32(因英特爾的x86架構並未申請專利保護,所以絕大多數處理器廠商為了保持與Intel的主流處理器兼容,都不得不採用這一x86架構),只是在此架構基礎之上作了一些擴展,以支持64位程序的應用,進一步提高處理器的運算性能。x86-64相比Intel的64位伺服器處理器產品Itanium和 Itanium 2系列處理器產品來說最大的優點就是可以全面兼容以前的32位x86架構的應用程序,以保護用戶以前的投資;而Intel的Itanium和Itanium 2系列處理器需要另外通過軟體或硬體來實現對以前32位程序的兼容。
正因如此,以後我們看到諸如IA-32、x86-32、x86-64要清楚,其實它們都是一類型的,都屬於x86架構的。如Intel的32位伺服器Xeon(至強)處理器系列、AMD的全系列,還有VIA的全系列處理器產品都屬於x86架構的。
2、IA64
IA-64架構是英特爾為了全面提高以前IA-32位處理器的運算性能,是Intel和Hp共同開發了6年的64位CPU架構,是專為伺服器市場開發的一種全新的處理器架構,它放棄了以前的x86架構,認為它嚴重阻礙了處理器的性能提高。它的最初應用是英特爾的Itanium(安騰)系列伺服器處理器,2009年最新的Itanium 2系列處理器也是採用這一架構的。由於它不能很好地解決與以前32位應用程序的兼容,所以應用受到較大的限制,盡管目前Intel採取了各種軟、硬方法來彌補這一不足,但隨著AMD Operon處理器的全面投入,Intel的IA-64架構的這兩款處理器前景不容樂觀。
3、RISC
除了以上所介紹的兩類IA架構的伺服器處理器外,還有一種主流的處理器架構,也可稱之為「RISC」(其實它是一種按處理器指令執行方式劃分的類型)。採用這一架構的仍是IBM、SUN和HP等。不過近幾年由於這一處理器架構標准沒有完全統一、處理器的發展和應用非常緩慢,使得原來本佔有的絕大多數中高檔伺服器市場被IA架構瓜分了大部分江山,已是日趨衰落。目前連這幾家伺服器廠商也開始了自己放棄,轉投IA旗下,推出越來越多的IA架構伺服器,以保生存。
目前採用這一架構的主要伺服器處理器有IBM的Power4、Compaq Alpha213 64、HP PA-8X00、Sun的UltraSPARC III、SGI的MIPS 64 20Kc等。
4、Intel
簡介
Intel 常見伺服器CPU分類。處理器技術發展真是日新月異,上一代產品還沒被大家分清,馬上就要被下一代產品替代了。在這里根據個人的一些了解,幫大家做個劃分。
一,Xeon(至強)
目前全部Intel IA架構的雙路,四路伺服器,全部在採用Xeon(至強)CPU,它是基於X86架構的一種伺服器專用的CPU 。早期的處理器名稱是以數字來表示,並以「86」作為結尾,包括Intel 8086、80186、80286、80386、80486、80586、奔騰系列等等,因此其架構被稱為「x86」,至今全部Xeon,包括雙核、四核的,全部是基於X86架構的產品。
二,Itanium(安騰)
安騰處理器也常被稱為IA-64位處理器,是Intel公司面向最頂級的高端應用開發一款純64位處理器產品,具有64位定址能力和64位寬的寄存器,它所具備的一系列特性,如EPIC指令等,都是為要求最苛刻的計算及企業級需求而設計的。對於最苛求性能的企業或者需要高性能運算功能支持的應用(包括電子交易安全處理、超大型資料庫、電腦輔助機械引擎、尖端科學運算等)而言,Itanium處理器很好的滿足了用戶的要求。
Intel 伺服器處理器列表 系列 Xeon3000 Xeon3200 Xeon3300 Xeon5000 Xeon5100 Xeon5300 Xeon5200 Xeon5400 Xeon7100 Xeon7300 Itanium9000 Itanium9100 CPU代號 ? ? ? Dempsey Woodcrest Clovertown Wolfdale-DP Harpertown Tulsa Tigerton Montecito Montvale 製造工藝 65nm 65nm 45nm 65nm 65nm 65nm 45nm 45nm 65nm 65nm 90nm 90nm 指令集 X86 X86 X86 X86 X86 X86 X86 X86 X86 X86 EPIC EPIC 酷睿微架構 √ √ √ × √ √ √ √ × √ × × 系統最大處理器數量 1 1 1 2 2 2 2 2 32 32 512 512 主頻(GHz) 1.86/2.13/
2.33/2.4/
2.66/3.0 2.13/2.4/
2.66 2.5/2.83/
3.0 2.67/3.0/
3.2/3.73 1.6/1.86/
2.0/2.33/
2.66/3.0 1.6/1.86/
2.0/2.33/
2.66/3.0 1.86/3.4/
3.33 2.0/2.33/
2.5/2.66/
2.8/2.83/
3.0/3.16/
3.2 2.5/2.6/
3.0/3.16/
3.2/3.33/
3.4/3.5 1.6/1.86/
2.13/2.4/
2.93 1.4/1.42/
1.6 1.42/1.6/
1.66 二級緩存(MB) 2/4 8 6/12 4 4 8 6 12 2*1 8 ? ? 三級緩存(MB Technorati 標簽: 處理器,CPU
) 54234 56456 564646 768678 978978 978978 87987 980898 4/8/16 8797 6/8/12/18/24 8/12/18/24 前端匯流排(MHZ) 1066/
1333 1066 1333 667/
1066 1066/
1333 1066/
1333 1066/
1333/
1600 1333/
1600 667/800 1066 400/533 400/533/667 功耗(W) 65 95 95 95/130 40/65/80 50/80/120 65/80 80/120/150 95/150 80/130 75/104 75/104 雙核 √ ? ? √ √ ? √ ? √ ? √ √ 四核 ? √ √ ? ? √ ? √ ? √ ? ? 超線程 × × × √ × × × × √ × √ √ 64位運算 EM64T EM64T EM64T EM64T EM64T EM64T EM64T EM64T EM64T EM64T 純64位 純64位 三,處理器點評
1,首先看單路處理器,包括Xeon3000、3200、3300系列,其中3000和3200系列的單路處理器全部都採用了酷睿微架構,性能、功耗都非常理想,可以根據應用情況來選擇主頻,雙核或四核。另外的3300系列採用了最新的45nm製造工藝,採用增強型酷睿微架構,性能更強,功耗更低。
2,雙路處理器,Xeon5000系列功耗高,性能差,現在已經基本絕跡;5100,5300系列開始使用酷睿微架構,性能,功耗都非常好,可以說是Intel超級成功的一款處理器產品,性能相對於上代處理器有數倍提升,並且功耗有所降低,長時間讓競爭對手根本就沒有能與之抗衡的產品。而新推出的5200,5400系列更在已經基礎上,採用了45nm製造工藝,採用增強型酷睿微架構,性能較5100、5300系列平均提高20%,功耗降低近38%,更為要命的是,價格還很低,簡直是現階段伺服器CPU不二的選擇。
3,多路至強處理器,在Intel官方的列表上,Xeon7100,7300處理器被標注可以單系統內支持到32處理器,但在國內市場上,能經常見到的只有4路的至強伺服器。而Xeon7100處理器,因為當時還沒有採用先進的酷睿微架構,所以4顆7100系列的CPU加起來還沒有2顆5300系列的雙路處理器跑的快,而且價格還很高,所以十分不推薦使用,況且Xeon7100也很快就要在市場上消失了。新的Xeon7300系列是一款非常優秀的多路至強CPU,採用了酷睿微架構,每CPU4核心,如果把4顆CPU組合在一起,搭配上大容量的內存,性能將會非常強勁,足以滿足高性能,大數據量的計算需求。
4,安騰處理器,其實安騰處理器的主要競爭對手是IBM、SUN等品牌的高端的小型機CPU,如果您一直在使用高端小型機,比如安裝IBM Power CPU的,那麼我覺得您很有必要去了解一下安騰,去了解一下這款新一代開放性的高端CPU產品,也許您會發現,原來高穩定,高性能,不一定非得是高成本。除此外,在一些科學運算中,安騰也會給您帶來意想不到的效果。
5、CORE
2006年3月上旬,Intel 於美國舊金山舉辦了2006年度的春季 IDF 大會(Intel Developer Forum)。在這屆 IDF 大會上,有一個萬眾矚目的焦點:Intel 宣布下一代處理器將採用的 Core 微架構。這也使得2009年的 IDF 大會成為近幾年來最激動人心的一次。在2008年秋季的 IDF 大會的開幕主題演講中,Intel 的執行長官 Paul Otellini 就曾經指出,未來處理器的技術發展重點將是「性能功耗比」(Performance per Watt)。而這屆 IDF 大會的主題更加明確:功耗最優化平台(Power-Optimized Platforms)——與 Core 微架構緊密相關。根據 Intel 的說法,採用新的 Core 微架構的處理器將在整數性能和商業計算方面得到極大的飛躍,肯定將超過競爭對手 AMD 的產品。更加美妙的是,擁有這樣強悍性能的 Core 微架構在功耗方面將比前任大幅下降,從而完美的體現了這屆 IDF 大會的主題。
Core 微架構是由 Intel 位於以色列海法的研發團隊負責設計的。該以色列團隊早在2003年就因為設計出兼具高性能與低功耗的 Banias 處理器而聞名天下,Core 微架構也是他們在 Yonah 微架構之後的最新傑作。Core 微架構很早就出現在 Intel 的計劃之中了,早在2003年夏天 Intel 就曾經隱約提到過,原定是 Centrino 平台的第三代 Napa 平台後期和第四代 Santa Rosa 平台所採用的處理器。沒想到由於 NetBurst 微架構的失敗,Core 微架構被 Intel 改弦易轍,推上前台,被賦予了取代 NetBurst 微架構、一統桌面、移動與伺服器平台的歷史使命。
作為 Intel 的新旗艦,Core 微架構擁有雙核心、64bit指令集、4發射的超標量體系結構和亂序執行機制等技術,使用65nm製造工藝生產,支持36bit的物理定址和48bit的虛擬內存定址,支持 Intel 所有的擴展指令集。Core 微架構的每個內核擁有 32KB 的一級指令緩存、32KB 的雙埠一級數據緩存,然後2個內核共同擁有 4MB 的共享式二級緩存。Core 微架構在2009年內發布的最高頻率將是 Conroe XE 的3.33GHz。每種產品擁有自己的最高 TDP:Merom 最高35W,Conroe 最高65W,Woodcrest 最高80W。此外,針對不同客戶的要求也可以提供低功耗的版本。例如,低電壓版本的 Woodcrest 將會定位於刀片系統,通過降低頻率等方法使 TDP 低達40W。
Intel 聲稱 Core 微架構擁有14級「有效」流水線。與 Banias 同出於一個設計團隊,Core 微架構僅有14級的整數流水線,並不讓人意外。但是,究竟什麼是14級「有效」流水線?
在過去的幾年裡,有關流水線級數的幾個概念經常被混淆。我們首先澄清一下,流水線的「條數」與「級數」是完全不同的概念。能夠完整執行各種指令的一系列功能單元組成「一條」流水線。而關於流水線級數,可以這樣簡單理解:在傳統意義上,一條流水線所包含的功能單元一般可以被劃分為多個部分,它可以被劃分成幾個部分,就稱這條流水線是「幾級」的。然後讓我們來了解一下「有效流水線」的定義,這也是在過去容易造成誤解之處。簡而言之,所謂的有效流水線,就是指發生分支預測錯誤時,所需要重新執行的流水線級數。以採用 NetBurst 微架構的處理器來說,Willamette、Northwood與Prescott核心的有效流水線級數分別是20、20和31,而原始的P6 微架構的處理器則是10級。
不過,對於現代的普遍採用亂序執行方式的X86處理器來說,有效流水線級數並不能代表真正意義上的流水線級數。NetBurst 微架構的處理器僅僅是 Trace Cache 的 Trace 建立過程,就有起碼10級;P6 微架構的完整流水線級數應該是12至15(10級有效流水線加上指令執行完畢後的 Retire 動作,與可能出現的 Reorder Buffer延遲)。隨著亂序執行引擎的工作方式越來越復雜,X86處理器流水線級數的概念也日益模糊。換言之,Core 微架構真正意義上的流水線級數並不會只有14。
Core 微架構的14級有效流水線與 Prescott 核心的31級有效流水線的對比,也只有參考意義。那些僅僅根據這個數字的對比就斷言 Core 微架構只能達到很低的頻率的說法是不具有足夠的說服力的。Conroe XE 3.33GHz 處理器的存在已經讓很多相信這個說法的用戶大吃一驚。而實際上,已經有玩家聲稱,Conroe 處理器可以在風冷的情況下達到4GHz以上的頻率。Core 微架構的頻率到底能夠到達什麼樣的高度,讓我們拭目以待。
core與conroe的區別
我們把Core音譯為酷睿,它是Intel下一代處理器產品將統一採用的微架構,而Conroe只是對基於Core微架構的Intel下一代桌面平台級產品的代號。除Conroe處理器之外,Core微架構還包括代號為Merom的移動平台處理器和代號為Woodcrest的伺服器平台處理器。採用Core的處理器將被統一命名。由於上一代採用Yonah微架構的處理器產品被命名為Core Duo,因此為了便於與前代Intel雙核處理器區分,Intel下一代桌面處理器Conroe以及下一代筆記本處理器Merom都將被統一叫做Core 2 Duo。另外,Intel的頂級桌面處理器被命名為Core 2 Extreme,以區別於主流處理器產品。
此次發布的Conroe/Merom共計10款,其中代號以E和X開頭的5款面向台式機,以T開頭的4款面向筆記本。
英特爾初期發布Core微架構處理器包含E6000桌面系列和T7000、T5000移動系列,E6000系列處理器外頻為266MHz,前端匯流排頻率為1066MHz,擁有2MB(E6300、E6320、E6400)或4MB(E6600、E6550、E6700) 二級緩存,面向高性能市場;稍後推出的E4000系列外頻相對低一些,為200MHz,前端匯流排800MHz,定位低於E6000系列,發布時間將延後至2007年第一季度。除普通版Conroe之外,Intel還將發布Conroe XE處理器取代現有的旗艦產品Pentium XE——即X6800。
雖然桌面平台的Conroe的前端匯流排為1066MHz,但這次的主角移動版處理器Merom前端匯流排均為667MHz(Merom處理器原本是屬於下一代移動平台Santa Rosa上的處理器產品,現在不得不在Santa Rosa平台推出之前先把Merom處理器推向市場,並可以順利地植入目前的Napa平台上面。為了在Intel 945晶元組上面運行,其前端匯流排為了適合於Intel 945晶元組,而仍然保留667MHz的前端匯流排設計。而今後出現的Santa Rosa平台上的Merom處理器其前端匯流排就改為800MHz。這種情景與當年推出400MHz的Dothan為適應Intel 855晶元組的做法十分相似)。二級緩存則加大為4MB(低端的T5000系列仍為2MB),意味著緩存中可以寄存更多等待處理數據,減少處理器與內存以及外圍設備間數據傳輸的瓶頸,提高指令的命中率,大大提高執行效能。
隨著Napa平台上Yonah處理器被替換成Merom處理器,這也意味著英特爾移動處理器開始進入64位元雙核技術時代,Yonah作為雙核移動處理器的首戰英雄將開始退居其後
『柒』 NGD繼任VDI的四個前提條件
1. 原先的使用的傳統技術,因為業務增長已經無法滿足用戶的需求。比如早期磁碟容量只有1.44M ,在新的移動存儲設備出現後迅速被替代。
2. 新技術相對原先的技術有質的超越,可以幾何量的提升用戶的體驗。如原先需幾個小時才能完成的計算,在新設備中僅需幾秒鍾。
3. 更換新技術的成本低,消耗小。 並能保留用戶的一般性使用習慣。數據可以平穩的過渡。比如將原先5400PM 的機械式硬碟更換成SSD 快閃記憶體硬碟,數據必須可以無損的過渡到新存儲中。
4. 有具備後續強大研發實力的機構不斷為此技術提供支持。否則就是曇花一現。用戶更換新技術後,無法得到必要的技術支持與後續後級將成為致命的風險。如一年以來多家提供雲服務的廠商前後宣布結束一樣。
『捌』 只有X86架構的伺服器能玩游戲嗎
g Unit/中央處理器」的縮寫,CPU一般由邏輯運算單元、控制單元和存儲單元組成。在邏輯運算和控制單元中包括一些寄存器,這些寄存器用於CPU在處理數據過程中數據的暫時保存。
CPU主要的性能指標有:
1.主頻
主頻也叫時鍾頻率,用來表示CPU內核工作的時鍾頻率(CPU Clock Speed),即CPU內數字脈沖信號震盪的速度。
2.外頻
外頻是CPU與主板之間同步運行的速度。
3.前端匯流排(FSB)頻率
匯流排是將計算機微處理器與內存晶元以及與之通信的設備連接起來的硬體通道。前端匯流排將CPU連接到主內存和通向磁碟驅動器、數據機以及網卡這類系統部件的外設匯流排。人們常常以MHz表示的速度來描述匯流排頻率。
前端匯流排(FSB)頻率是直接影響CPU與內存直接數據交換速度。由於數據傳輸最大帶寬取決於所有同時傳輸的數據的寬度和傳輸頻率,即數據帶寬=(匯流排頻率×數據位寬)÷8。
4、CPU的位和字長
位:在數字電路和電腦技術中採用二進制,代碼只有「0」和「1」,其中無論是 「0」或是「1」在CPU中都是 一「位」。
字長:電腦技術中對CPU在單位時間內(同一時間)能一次處理的二進制數的位數叫字長。所以能處理字長為8位數據的CPU通常就叫8位的CPU。同理32位的CPU就能在單位時間內處理字長為32位的二進制數據。位元組和字長的區別:由於常用的英文字元用8位二進制就可以表示,所以通常就將8位稱為一個位元組。字長的長度是不固定的,對於不同的CPU、字長的長度也不一樣。8位的CPU一次只能處理一個位元組,而32位的CPU一次就能處理4個位元組,同理字長為64位的CPU一次可以處理8個位元組。
5.倍頻系數
倍頻系數是指CPU主頻與外頻之間的相對比例關系。在相同的外頻下,倍頻越高CPU的頻率也越高。但實際上,在相同外頻的前提下,高倍頻的CPU本身意義並不大。這是因為CPU與系統之間數據傳輸速度是有限的,一味追求高倍頻而得到高主頻的CPU就會出現明顯的「瓶頸」效應—CPU從系統中得到數據的極限速度不能夠滿足CPU運算的速度。一般除了工程樣版的Intel的CPU都是鎖了倍頻的,而AMD之前都沒有鎖。
6.緩存
緩存大小也是CPU的重要指標之一,而且緩存的結構和大小對CPU速度的影響非常大,CPU內緩存的運行頻率極高,一般是和處理器同頻運作,工作效率遠遠大於系統內存和硬碟。實際工作時,CPU往往需要重復讀取同樣的數據塊,而緩存容量的增大,可以大幅度提升CPU內部讀取數據的命中率,而不用再到內存或者硬碟上尋找,以此提高系統性能。但是由於CPU晶元面積和成本的因素來考慮,緩存都很小。
L1 Cache(一級緩存)是CPU第一層高速緩存,分為數據緩存和指令緩存。內置的L1高速緩存的容量和結構對CPU的性能影響較大,不過高速緩沖存儲器均由靜態RAM組成,結構較復雜,在CPU管芯面積不能太大的情況下,L1級高速緩存的容量不可能做得太大。一般伺服器CPU的L1緩存的容量通常在32—256KB。
L2 Cache(二級緩存)是CPU的第二層高速緩存,分內部和外部兩種晶元。內部的晶元二級緩存運行速度與主頻相同,而外部的二級緩存則只有主頻的一半。L2高速緩存容量也會影響CPU的性能,原則是越大越好,現在家庭用CPU容量最大的是512KB,而伺服器和工作站上用CPU的L2高速緩存更高達256-1MB,有的高達2MB或者3MB。
L3 Cache(三級緩存),分為兩種,早期的是外置,現在的都是內置的。而它的實際作用即是,L3緩存的應用可以進一步降低內存延遲,同時提升大數據量計算時處理器的性能。降低內存延遲和提升大數據量計算能力對游戲都很有幫助。而在伺服器領域增加L3緩存在性能方面仍然有顯著的提升。比方具有較大L3緩存的配置利用物理內存會更有效,故它比較慢的磁碟I/O子系統可以處理更多的數據請求。具有較大L3緩存的處理器提供更有效的文件系統緩存行為及較短消息和處理器隊列長度。
其實最早的L3緩存被應用在AMD發布的K6-III處理器上,當時的L3緩存受限於製造工藝,並沒有被集成進晶元內部,而是集成在主板上。在只能夠和系統匯流排頻率同步的L3緩存同主內存其實差不了多少。後來使用L3緩存的是英特爾為伺服器市場所推出的Itanium處理器。接著就是P4EE和至強MP。Intel還打算推出一款9MB L3緩存的Itanium2處理器,和以後24MB L3緩存的雙核心Itanium2處理器。
但基本上L3緩存對處理器的性能提高顯得不是很重要,比方配備1MB L3緩存的Xeon MP處理器卻仍然不是Opteron的對手,由此可見前端匯流排的增加,要比緩存增加帶來更有效的性能提升。
7.CPU擴展指令集
CPU依靠指令來計算和控制系統,每款CPU在設計時就規定了一系列與其硬體電路相配合的指令系統。指令的強弱也是CPU的重要指標,指令集是提高微處理器效率的最有效工具之一。從現階段的主流體系結構講,指令集可分為復雜指令集和精簡指令集兩部分,而從具體運用看,如Intel的MMX(Multi Media Extended)、SSE、 SSE2(Streaming-Single instruction multiple data-Extensions 2)、SEE3和AMD的3DNow!等都是CPU的擴展指令集,分別增強了CPU的多媒體、圖形圖象和Internet等的處理能力。我們通常會把CPU的擴展指令集稱為"CPU的指令集"。SSE3指令集也是目前規模最小的指令集,此前MMX包含有57條命令,SSE包含有50條命令,SSE2包含有144條命令,SSE3包含有13條命令。目前SSE3也是最先進的指令集,英特爾Prescott處理器已經支持SSE3指令集,AMD會在未來雙核心處理器當中加入對SSE3指令集的支持,全美達的處理器也將支持這一指令集。
8.CPU內核和I/O工作電壓
從586CPU開始,CPU的工作電壓分為內核電壓和I/O電壓兩種,通常CPU的核心電壓小於等於I/O電壓。其中內核電壓的大小是根據CPU的生產工藝而定,一般製作工藝越小,內核工作電壓越低;I/O電壓一般都在1.6~5V。低電壓能解決耗電過大和發熱過高的問題。
9.製造工藝
製造工藝的微米是指IC內電路與電路之間的距離。製造工藝的趨勢是向密集度愈高的方向發展。密度愈高的IC電路設計,意味著在同樣大小面積的IC中,可以擁有密度更高、功能更復雜的電路設計。現在主要的180nm、130nm、90nm。最近官方已經表示有65nm的製造工藝了。
10.指令集
(1)CISC指令集
CISC指令集,也稱為復雜指令集,英文名是CISC,(Complex Instruction Set Computer的縮寫)。在CISC微處理器中,程序的各條指令是按順序串列執行的,每條指令中的各個操作也是按順序串列執行的。順序執行的優點是控制簡單,但計算機各部分的利用率不高,執行速度慢。其實它是英特爾生產的x86系列(也就是IA-32架構)CPU及其兼容CPU,如AMD、VIA的。即使是現在新起的X86-64(也被成AMD64)都是屬於CISC的范疇。
要知道什麼是指令集還要從當今的X86架構的CPU說起。X86指令集是Intel為其第一塊16位CPU(i8086)專門開發的,IBM1981年推出的世界第一台PC機中的CPU—i8088(i8086簡化版)使用的也是X86指令,同時電腦中為提高浮點數據處理能力而增加了X87晶元,以後就將X86指令集和X87指令集統稱為X86指令集。
雖然隨著CPU技術的不斷發展,Intel陸續研製出更新型的i80386、i80486直到過去的PII至強、PIII至強、Pentium 3,最後到今天的Pentium 4系列、至強(不包括至強Nocona),但為了保證電腦能繼續運行以往開發的各類應用程序以保護和繼承豐富的軟體資源,所以Intel公司所生產的所有CPU仍然繼續使用X86指令集,所以它的CPU仍屬於X86系列。由於Intel X86系列及其兼容CPU(如AMD Athlon MP、)都使用X86指令集,所以就形成了今天龐大的X86系列及兼容CPU陣容。x86CPU目前主要有intel的伺服器CPU和AMD的伺服器CPU兩類。
(2)RISC指令集
RISC是英文「Reced Instruction Set Computing 」 的縮寫,中文意思是「精簡指令集」。它是在CISC指令系統基礎上發展起來的,有人對CISC機進行測試表明,各種指令的使用頻度相當懸殊,最常使用的是一些比較簡單的指令,它們僅占指令總數的20%,但在程序中出現的頻度卻佔80%。復雜的指令系統必然增加微處理器的復雜性,使處理器的研製時間長,成本高。並且復雜指令需要復雜的操作,必然會降低計算機的速度。基於上述原因,20世紀80年代RISC型CPU誕生了,相對於CISC型CPU ,RISC型CPU不僅精簡了指令系統,還採用了一種叫做「超標量和超流水線結構」,大大增加了並行處理能力。RISC指令集是高性能CPU的發展方向。它與傳統的CISC(復雜指令集)相對。相比而言,RISC的指令格式統一,種類比較少,定址方式也比復雜指令集少。當然處理速度就提高很多了。目前在中高檔伺服器中普遍採用這一指令系統的CPU,特別是高檔伺服器全都採用RISC指令系統的CPU。RISC指令系統更加適合高檔伺服器的操作系統UNIX,現在Linux也屬於類似UNIX的操作系統。RISC型CPU與Intel和AMD的CPU在軟體和硬體上都不兼容。
目前,在中高檔伺服器中採用RISC指令的CPU主要有以下幾類:PowerPC處理器、SPARC處理器、PA-RISC處理器、MIPS處理器、Alpha處理器。
(3)IA-64
EPIC(Explicitly Parallel Instruction Computers,精確並行指令計算機)是否是RISC和CISC體系的繼承者的爭論已經有很多,單以EPIC體系來說,它更像Intel的處理器邁向RISC體系的重要步驟。從理論上說,EPIC體系設計的CPU,在相同的主機配置下,處理Windows的應用軟體比基於Unix下的應用軟體要好得多。
Intel採用EPIC技術的伺服器CPU是安騰Itanium(開發代號即Merced)。它是64位處理器,也是IA-64系列中的第一款。微軟也已開發了代號為Win64的操作系統,在軟體上加以支持。在Intel採用了X86指令集之後,它又轉而尋求更先進的64-bit微處理器,Intel這樣做的原因是,它們想擺脫容量巨大的x86 ISA架構,從而引入精力充沛而又功能強大的指令集,於是採用EPIC指令集的IA-64架構便誕生了。IA-64 在很多方面來說,都比x86有了長足的進步。突破了傳統IA32架構的許多限制,在數據的處理能力,系統的穩定性、安全性、可用性、可觀理性等方面獲得了突破性的提高。
IA-64微處理器最大的缺陷是它們缺乏與x86的兼容,而Intel為了IA-64處理器能夠更好地運行兩個朝代的軟體,它在IA-64處理器上(Itanium、Itanium2 ……)引入了x86-to-IA-64的解碼器,這樣就能夠把x86指令翻譯為IA-64指令。這個解碼器並不是最有效率的解碼器,也不是運行x86代碼的最好途徑(最好的途徑是直接在x86處理器上運行x86代碼),因此Itanium 和Itanium2在運行x86應用程序時候的性能非常糟糕。這也成為X86-64產生的根本原因。
(4)X86-64 (AMD64 / EM64T)
AMD公司設計,可以在同一時間內處理64位的整數運算,並兼容於X86-32架構。其中支持64位邏輯定址,同時提供轉換為32位定址選項;但數據操作指令默認為32位和8位,提供轉換成64位和16位的選項;支持常規用途寄存器,如果是32位運算操作,就要將結果擴展成完整的64位。這樣,指令中有「直接執行」和「轉換執行」的區別,其指令欄位是8位或32位,可以避免欄位過長。
x86-64(也叫AMD64)的產生也並非空穴來風,x86處理器的32bit定址空間限制在4GB內存,而IA-64的處理器又不能兼容x86。AMD充分考慮顧客的需求,加強x86指令集的功能,使這套指令集可同時支持64位的運算模式,因此AMD把它們的結構稱之為x86-64。在技術上AMD在x86-64架構中為了進行64位運算,AMD為其引入了新增了R8-R15通用寄存器作為原有X86處理器寄存器的擴充,但在而在32位環境下並不完全使用到這些寄存器。原來的寄存器諸如EAX、EBX也由32位擴張至64位。在SSE單元中新加入了8個新寄存器以提供對SSE2的支持。寄存器數量的增加將帶來性能的提升。與此同時,為了同時支持32和64位代碼及寄存器,x86-64架構允許處理器工作在以下兩種模式:Long Mode(長模式)和Legacy Mode(遺傳模式),Long模式又分為兩種子模式(64bit模式和Compatibility mode兼容模式)。該標准已經被引進在AMD伺服器處理器中的Opteron處理器。
而今年也推出了支持64位的EM64T技術,再還沒被正式命為EM64T之前是IA32E,這是英特爾64位擴展技術的名字,用來區別X86指令集。Intel的EM64T支持64位sub-mode,和AMD的X86-64技術類似,採用64位的線性平面定址,加入8個新的通用寄存器(GPRs),還增加8個寄存器支持SSE指令。與AMD相類似,Intel的64位技術將兼容IA32和IA32E,只有在運行64位操作系統下的時候,才將會採用IA32E。IA32E將由2個sub-mode組成:64位sub-mode和32位sub-mode,同AMD64一樣是向下兼容的。Intel的EM64T將完全兼容AMD的X86-64技術。現在Nocona處理器已經加入了一些64位技術,Intel的Pentium 4E處理器也支持64位技術。
應該說,這兩者都是兼容x86指令集的64位微處理器架構,但EM64T與AMD64還是有一些不一樣的地方,AMD64處理器中的NX位在Intel的處理器中將沒有提供。
11.超流水線與超標量
在解釋超流水線與超標量前,先了解流水線(pipeline)。流水線是Intel首次在486晶元中開始使用的。流水線的工作方式就象工業生產上的裝配流水線。在CPU中由5—6個不同功能的電路單元組成一條指令處理流水線,然後將一條X86指令分成5—6步後再由這些電路單元分別執行,這樣就能實現在一個CPU時鍾周期完成一條指令,因此提高CPU的運算速度。經典奔騰每條整數流水線都分為四級流水,即指令預取、解碼、執行、寫回結果,浮點流水又分為八級流水。
超標量是通過內置多條流水線來同時執行多個處理器,其實質是以空間換取時間。而超流水線是通過細化流水、提高主頻,使得在一個機器周期內完成一個甚至多個操作,其實質是以時間換取空間。例如Pentium 4的流水線就長達20級。將流水線設計的步(級)越長,其完成一條指令的速度越快,因此才能適應工作主頻更高的CPU。但是流水線過長也帶來了一定副作用,很可能會出現主頻較高的CPU實際運算速度較低的現象,Intel的奔騰4就出現了這種情況,雖然它的主頻可以高達1.4G以上,但其運算性能卻遠遠比不上AMD 1.2G的速龍甚至奔騰III。
12.封裝形式
CPU封裝是採用特定的材料將CPU晶元或CPU模塊固化在其中以防損壞的保護措施,一般必須在封裝後CPU才能交付用戶使用。CPU的封裝方式取決於CPU安裝形式和器件集成設計,從大的分類來看通常採用Socket插座進行安裝的CPU使用PGA(柵格陣列)方式封裝,而採用Slot x槽安裝的CPU則全部採用SEC(單邊接插盒)的形式封裝。現在還有PLGA(Plastic Land Grid Array)、OLGA(Organic Land Grid Array)等封裝技術。由於市場競爭日益激烈,目前CPU封裝技術的發展方向以節約成本為主。
13、多線程
同時多線程Simultaneous multithreading,簡稱SMT。SMT可通過復制處理器上的結構狀態,讓同一個處理器上的多個線程同步執行並共享處理器的執行資源,可最大限度地實現寬發射、亂序的超標量處理,提高處理器運算部件的利用率,緩和由於數據相關或Cache未命中帶來的訪問內存延時。當沒有多個線程可用時,SMT處理器幾乎和傳統的寬發射超標量處理器一樣。SMT最具吸引力的是只需小規模改變處理器核心的設計,幾乎不用增加額外的成本就可以顯著地提升效能。多線程技術則可以為高速的運算核心准備更多的待處理數據,減少運算核心的閑置時間。這對於桌面低端系統來說無疑十分具有吸引力。Intel從3.06GHz Pentium 4開始,所有處理器都將支持SMT技術。
14、多核心
多核心,也指單晶元多處理器(Chip multiprocessors,簡稱CMP)。CMP是由美國斯坦福大學提出的,其思想是將大規模並行處理器中的SMP(對稱多處理器)集成到同一晶元內,各個處理器並行執行不同的進程。與CMP比較, SMT處理器結構的靈活性比較突出。但是,當半導體工藝進入0.18微米以後,線延時已經超過了門延遲,要求微處理器的設計通過劃分許多規模更小、局部性更好的基本單元結構來進行。相比之下,由於CMP結構已經被劃分成多個處理器核來設計,每個核都比較簡單,有利於優化設計,因此更有發展前途。目前,IBM 的Power 4晶元和Sun的 MAJC5200晶元都採用了CMP結構。多核處理器可以在處理器內部共享緩存,提高緩存利用率,同時簡化多處理器系統設計的復雜度。
2005年下半年,Intel和AMD的新型處理器也將融入CMP結構。新安騰處理器開發代碼為Montecito,採用雙核心設計,擁有最少18MB片內緩存,採取90nm工藝製造,它的設計絕對稱得上是對當今晶元業的挑戰。它的每個單獨的核心都擁有獨立的L1,L2和L3 cache,包含大約10億支晶體管。
15、SMP
SMP(Symmetric Multi-Processing),對稱多處理結構的簡稱,是指在一個計算機上匯集了一組處理器(多CPU),各CPU之間共享內存子系統以及匯流排結構。在這種技術的支持下,一個伺服器系統可以同時運行多個處理器,並共享內存和其他的主機資源。像雙至強,也就是我們所說的二路,這是在對稱處理器系統中最常見的一種(至強MP可以支持到四路,AMD Opteron可以支持1-8路)。也有少數是16路的。但是一般來講,SMP結構的機器可擴展性較差,很難做到100個以上多處理器,常規的一般是8個到16個,不過這對於多數的用戶來說已經夠用了。在高性能伺服器和工作站級主板架構中最為常見,像UNIX伺服器可支持最多256個CPU的系統。
構建一套SMP系統的必要條件是:支持SMP的硬體包括主板和CPU;支持SMP的系統平台,再就是支持SMP的應用軟體。
為了能夠使得SMP系統發揮高效的性能,操作系統必須支持SMP系統,如WINNT、LINUX、以及UNIX等等32位操作系統。即能夠進行多任務和多線程處理。多任務是指操作系統能夠在同一時間讓不同的CPU完成不同的任務;多線程是指操作系統能夠使得不同的CPU並行的完成同一個任務。
要組建SMP系統,對所選的CPU有很高的要求,首先、CPU內部必須內置APIC(Advanced Programmable Interrupt Controllers)單元。Intel 多處理規范的核心就是高級可編程中斷控制器(Advanced Programmable Interrupt Controllers--APICs)的使用;再次,相同的產品型號,同樣類型的CPU核心,完全相同的運行頻率;最後,盡可能保持相同的產品序列編號,因為兩個生產批次的CPU作為雙處理器運行的時候,有可能會發生一顆CPU負擔過高,而另一顆負擔很少的情況,無法發揮最大性能,更糟糕的是可能導致死機。
16、NUMA技術
NUMA即非一致訪問分布共享存儲技術,它是由若干通過高速專用網路連接起來的獨立節點構成的系統,各個節點可以是單個的CPU或是SMP系統。在NUMA中,Cache 的一致性有多種解決方案,需要操作系統和特殊軟體的支持。圖2中是Sequent公司NUMA系統的例子。這里有3個SMP模塊用高速專用網路聯起來,組成一個節點,每個節點可以有12個CPU。像Sequent的系統最多可以達到64個CPU甚至256個CPU。顯然,這是在SMP的基礎上,再用NUMA的技術加以擴展,是這兩種技術的結合。
17、亂序執行技術
亂序執行(out-of-orderexecution),是指CPU允許將多條指令不按程序規定的順序分開發送給各相應電路單元處理的技術。這樣將根據個電路單元的狀態和各指令能否提前執行的具體情況分析後,將能提前執行的指令立即發送給相應電路單元執行,在這期間不按規定順序執行指令,然後由重新排列單元將各執行單元結果按指令順序重新排列。採用亂序執行技術的目的是為了使CPU內部電路滿負荷運轉並相應提高了CPU的運行程序的速度。分枝技術:(branch)指令進行運算時需要等待結果,一般無條件分枝只需要按指令順序執行,而條件分枝必須根據處理後的結果,再決定是否按原先順序進行。
18、CPU內部的內存控制器
許多應用程序擁有更為復雜的讀取模式(幾乎是隨機地,特別是當cache hit不可預測的時候),並且沒有有效地利用帶寬。典型的這類應用程序就是業務處理軟體,即使擁有如亂序執行(out of order execution)這樣的CPU特性,也會受內存延遲的限制。這樣CPU必須得等到運算所需數據被除數裝載完成才能執行指令(無論這些數據來自CPU cache還是主內存系統)。當前低段系統的內存延遲大約是120-150ns,而CPU速度則達到了3GHz以上,一次單獨的內存請求可能會浪費200-300次CPU循環。即使在緩存命中率(cache hit rate)達到99%的情況下,CPU也可能會花50%的時間來等待內存請求的結束- 比如因為內存延遲的緣故。
你可以看到Opteron整合的內存控制器,它的延遲,與晶元組支持雙通道DDR內存控制器的延遲相比來說,是要低很多的。英特爾也按照計劃的那樣在處理器內部整合內存控制器,這樣導致北橋晶元將變得不那麼重要。但改變了處理器訪問主存的方式,有助於提高帶寬、降低內存延時和提升處理器性能。
CPU就像一個人的大腦,你要做一件事必須得經過大腦的思考,電腦也是這樣。
『玖』 前端需要編譯器嗎vscode這個不是編譯器嗎
編譯器就是將「一種語言(通常為高級語言)」翻譯為「另一種語言(通常為低級語言)」的程序。一個現代編譯器的主要工作流程:源代碼 (source code) → 預處理器 (preprocessor) → 編譯器 (compiler) → 目標代碼 (object code) → 鏈接器 (Linker) → 可執行程序 (executables)
從這個意義上來說,前端是沒有編譯器的,但是會有開發環境(IDE)一說,前端雖然是純文本,可以用普通的記事本或者editplus之類來的編輯,但會缺少象語法補全、代碼格式化、腳本調試、語法高亮這些功能,所以才會需要有這些功能的IDE存在,vscode不是編譯器,它只是一個代碼編輯器,僅就前端來說,如果不用vscode,也可以用象hbuilderX這類軟體。