当前位置:首页 » 数据仓库 » 数据库性能调优原理技术
扩展阅读
webinf下怎么引入js 2023-08-31 21:54:13
堡垒机怎么打开web 2023-08-31 21:54:11

数据库性能调优原理技术

发布时间: 2022-12-21 13:12:31

数据库性能优化有哪些措施

1、调整数据结构的设计。这一部分在开发信息系统之前完成,程序员需要考虑是否使用ORACLE数据库的分区功能,对于经常访问的数据库表是否需要建立索引等。

2、调整应用程序结构设计。这一部分也是在开发信息系统之前完成,程序员在这一步需要考虑应用程序使用什么样的体系结构,是使用传统的Client/Server两层体系结构,还是使用Browser/Web/Database的三层体系结构。不同的应用程序体系结构要求的数据库资源是不同的。

3、调整数据库sql语句。应用程序的执行最终将归结为数据库中的SQL语句执行,因此SQL语句的执行效率最终决定了ORACLE数据库的性能。ORACLE公司推荐使用ORACLE语句优化器(Oracle Optimizer)和行锁管理器(row-level manager)来调整优化SQL语句。

4、调整服务器内存分配。内存分配是在信息系统运行过程中优化配置的,数据库管理员可以根据数据库运行状况调整数据库系统全局区(SGA区)的数据缓冲区、日志缓冲区和共享池的大小;还可以调整程序全局区(PGA区)的大小。需要注意的是,SGA区不是越大越好,SGA区过大会占用操作系统使用的内存而引起虚拟内存的页面交换,这样反而会降低系统。

5、调整硬盘I/O,这一步是在信息系统开发之前完成的。数据库管理员可以将组成同一个表空间的数据文件放在不同的硬盘上,做到硬盘之间I/O负载均衡。

6、调整操作系统参数,例如:运行在UNIX操作系统上的ORACLE数据库,可以调整UNIX数据缓冲池的大小,每个进程所能使用的内存大小等参数。

数据库(Database)是按照数据结构来组织、存储和管理数据的仓库,它产生于距今六十多年前,随着信息技术和市场的发展,特别是二十世纪九十年代以后,数据管理不再仅仅是存储和管理数据,而转变成用户所需要的各种数据管理的方式。数据库有很多种类型,从最简单的存储有各种数据的表格到能够进行海量数据存储的大型数据库系统都在各个方面得到了广泛的应用。

在信息化社会,充分有效地管理和利用各类信息资源,是进行科学研究和决策管理的前提条件。数据库技术是管理信息系统、办公自动化系统、决策支持系统等各类信息系统的核心部分,是进行科学研究和决策管理的重要技术手段。

在经济管理的日常工作中,常常需要把某些相关的数据放进这样的“仓库”,并根据管理的需要进行相应的处理。

例如,企业或事业单位的人事部门常常要把本单位职工的基本情况(职工号、姓名、年龄、性别、籍贯、工资、简历等)存放在表中,这张表就可以看成是一个数据库。有了这个"数据仓库"我们就可以根据需要随时查询某职工的基本情况,也可以查询工资在某个范围内的职工人数等等。这些工作如果都能在计算机上自动进行,那我们的人事管理就可以达到极高的水平。此外,在财务管理、仓库管理、生产管理中也需要建立众多的这种"数据库",使其可以利用计算机实现财务、仓库、生产的自动化管理。

(1)数据库性能调优原理技术扩展阅读

数据库,简单来说是本身可视为电子化的文件柜--存储电子文件的处所,用户可以对文件中的数据进行新增、截取、更新、删除等操作。

数据库指的是以一定方式储存在一起、能为多个用户共享、具有尽可能小的冗余度的特点、是与应用程序彼此独立的数据集合。

在经济管理的日常工作中,常常需要把某些相关的数据放进这样的"仓库",并根据管理的需要进行相应的处理。

例如,企业或事业单位的人事部门常常要把本单位职工的基本情况(职工号、姓名、年龄、性别、籍贯、工资、简历等)存放在表中,这张表就可以看成是一个数据库。有了这个"数据仓库"我们就可以根据需要随时查询某职工的基本情况,也可以查询工资在某个范围内的职工人数等等。这些工作如果都能在计算机上自动进行,那我们的人事管理就可以达到极高的水平。此外,在财务管理、仓库管理、生产管理中也需要建立众多的这种"数据库",使其可以利用计算机实现财务、仓库、生产的自动化管理。

② 数据库性能优化指的是什么

1、数据库优化是一个很广的范围,涉及到的东西比较多,并且每个特定的数据库,其具体的优化过程也是不一样的.因为优化的很大一部分最终都要跟具体的数据库系统细节打交道,在此不可能针对所有的数据库都一一详细阐述,如果那样,恐怕写几本书都写不完.只能针对一些比较通用的,经常用到的的东西进行一个讨论
2、一般情况下,数据库的优化指的就是查询性能的优化(虽然严格上来说不应该是这样的),让数据库对查询的响应尽可能的快.
3、仅对数据库系统本身而言,影响到查询性能的因素从理论上来讲,包括数据库参数设置(其实就是通过参数控制数据库系统的内存,i/o,缓存,备份等一些管理性的东西),索引,分区,sql语句.数据库参数设置本身是一个很复杂的东西,分区则主要是针对大数据量的情况下,它分散了数据文件的分布,减少磁盘竞争,使效率得到提升。

③ MySQL数据库性能优化之分区分表分库

分表是分散数据库压力的好方法。

分表,最直白的意思,就是将一个表结构分为多个表,然后,可以再同一个库里,也可以放到不同的库。

当然,首先要知道什么情况下,才需要分表。个人觉得单表记录条数达到百万到千万级别时就要使用分表了。

分表的分类

**1、纵向分表**

将本来可以在同一个表的内容,人为划分为多个表。(所谓的本来,是指按照关系型数据库的第三范式要求,是应该在同一个表的。)

分表理由:根据数据的活跃度进行分离,(因为不同活跃的数据,处理方式是不同的)

案例:

对于一个博客系统,文章标题,作者,分类,创建时间等,是变化频率慢,查询次数多,而且最好有很好的实时性的数据,我们把它叫做冷数据。而博客的浏览量,回复数等,类似的统计信息,或者别的变化频率比较高的数据,我们把它叫做活跃数据。所以,在进行数据库结构设计的时候,就应该考虑分表,首先是纵向分表的处理。

这样纵向分表后:

首先存储引擎的使用不同,冷数据使用MyIsam 可以有更好的查询数据。活跃数据,可以使用Innodb ,可以有更好的更新速度。

其次,对冷数据进行更多的从库配置,因为更多的操作时查询,这样来加快查询速度。对热数据,可以相对有更多的主库的横向分表处理。

其实,对于一些特殊的活跃数据,也可以考虑使用memcache ,redis之类的缓存,等累计到一定量再去更新数据库。或者mongodb 一类的nosql 数据库,这里只是举例,就先不说这个。

**2、横向分表**

字面意思,就可以看出来,是把大的表结构,横向切割为同样结构的不同表,如,用户信息表,user_1,user_2等。表结构是完全一样,但是,根据某些特定的规则来划分的表,如根据用户ID来取模划分。

分表理由:根据数据量的规模来划分,保证单表的容量不会太大,从而来保证单表的查询等处理能力。

案例:同上面的例子,博客系统。当博客的量达到很大时候,就应该采取横向分割来降低每个单表的压力,来提升性能。例如博客的冷数据表,假如分为100个表,当同时有100万个用户在浏览时,如果是单表的话,会进行100万次请求,而现在分表后,就可能是每个表进行1万个数据的请求(因为,不可能绝对的平均,只是假设),这样压力就降低了很多很多。

延伸:为什么要分表和分区?

日常开发中我们经常会遇到大表的情况,所谓的大表是指存储了百万级乃至千万级条记录的表。这样的表过于庞大,导致数据库在查询和插入的时候耗时太长,性能低下,如果涉及联合查询的情况,性能会更加糟糕。分表和表分区的目的就是减少数据库的负担,提高数据库的效率,通常点来讲就是提高表的增删改查效率。

什么是分表?

分表是将一个大表按照一定的规则分解成多张具有独立存储空间的实体表,我们可以称为子表,每个表都对应三个文件,MYD数据文件,.MYI索引文件,.frm表结构文件。这些子表可以分布在同一块磁盘上,也可以在不同的机器上。app读写的时候根据事先定义好的规则得到对应的子表名,然后去操作它。

什么是分区?

分区和分表相似,都是按照规则分解表。不同在于分表将大表分解为若干个独立的实体表,而分区是将数据分段划分在多个位置存放,可以是同一块磁盘也可以在不同的机器。分区后,表面上还是一张表,但数据散列到多个位置了。app读写的时候操作的还是大表名字,db自动去组织分区的数据。

**MySQL分表和分区有什么联系呢?**

1、都能提高mysql的性高,在高并发状态下都有一个良好的表现。

2、分表和分区不矛盾,可以相互配合的,对于那些大访问量,并且表数据比较多的表,我们可以采取分表和分区结合的方式(如果merge这种分表方式,不能和分区配合的话,可以用其他的分表试),访问量不大,但是表数据很多的表,我们可以采取分区的方式等。

3、分表技术是比较麻烦的,需要手动去创建子表,app服务端读写时候需要计算子表名。采用merge好一些,但也要创建子表和配置子表间的union关系。

4、表分区相对于分表,操作方便,不需要创建子表。

我们知道对于大型的互联网应用,数据库单表的数据量可能达到千万甚至上亿级别,同时面临这高并发的压力。Master-Slave结构只能对数据库的读能力进行扩展,写操作还是集中在Master中,Master并不能无限制的挂接Slave库,如果需要对数据库的吞吐能力进行进一步的扩展,可以考虑采用分库分表的策略。

**1、分表**

在分表之前,首先要选中合适的分表策略(以哪个字典为分表字段,需要将数据分为多少张表),使数据能够均衡的分布在多张表中,并且不影响正常的查询。在企业级应用中,往往使用org_id(组织主键)做为分表字段,在互联网应用中往往是userid。在确定分表策略后,当数据进行存储及查询时,需要确定到哪张表里去查找数据,

数据存放的数据表 = 分表字段的内容 % 分表数量

**2、分库**

分表能够解决单表数据量过大带来的查询效率下降的问题,但是不能给数据库的并发访问带来质的提升,面对高并发的写访问,当Master无法承担高并发的写入请求时,不管如何扩展Slave服务器,都没有意义了。我们通过对数据库进行拆分,来提高数据库的写入能力,即所谓的分库。分库采用对关键字取模的方式,对数据库进行路由。

数据存放的数据库=分库字段的内容%数据库的数量

**3、即分表又分库**

数据库分表可以解决单表海量数据的查询性能问题,分库可以解决单台数据库的并发访问压力问题。

当数据库同时面临海量数据存储和高并发访问的时候,需要同时采取分表和分库策略。一般分表分库策略如下:

中间变量 = 关键字%(数据库数量*单库数据表数量)

库 = 取整(中间变量/单库数据表数量)

表 = (中间变量%单库数据表数量)

实例:

1、分库分表

很明显,一个主表(也就是很重要的表,例如用户表)无限制的增长势必严重影响性能,分库与分表是一个很不错的解决途径,也就是性能优化途径,现在的案例是我们有一个1000多万条记录的用户表members,查询起来非常之慢,同事的做法是将其散列到100个表中,分别从members0到members99,然后根据mid分发记录到这些表中,牛逼的代码大概是这样子:

复制代码 代码如下:

<?php

for($i=0;$i< 100; $i++ ){

//echo "CREATE TABLE db2.members{$i} LIKE db1.members
";

echo "INSERT INTO members{$i} SELECT * FROM members WHERE mid%100={$i}
";

}

?>

2、不停机修改mysql表结构

同样还是members表,前期设计的表结构不尽合理,随着数据库不断运行,其冗余数据也是增长巨大,同事使用了下面的方法来处理:

先创建一个临时表:

/*创建临时表*/

CREATE TABLE members_tmp LIKE members

然后修改members_tmp的表结构为新结构,接着使用上面那个for循环来导出数据,因为1000万的数据一次性导出是不对的,mid是主键,一个区间一个区间的导,基本是一次导出5万条吧,这里略去了

接着重命名将新表替换上去:

/*这是个颇为经典的语句哈*/

RENAME TABLE members TO members_bak,members_tmp TO members;

就是这样,基本可以做到无损失,无需停机更新表结构,但实际上RENAME期间表是被锁死的,所以选择在线少的时候操作是一个技巧。经过这个操作,使得原先8G多的表,一下子变成了2G多。

④ 数据库的性能优化有哪些

在数据库优化上有两个主要方面:
安全:数据可持续性。
性能:数据的高性能访问。
优化的范围有哪些
存储、主机和操作系统方面:
主机架构稳定性
I/O 规划及配置
Swap 交换分区
OS 内核参数和网络问题
应用程序方面:
应用程序稳定性
SQL 语句性能
串行访问资源
性能欠佳会话管理
这个应用适不适合用 MySQL
数据库优化方面:
内存
数据库结构(物理&逻辑)
实例配置
说明:不管是设计系统、定位问题还是优化,都可以按照这个顺序执行。
数据库优化维度有如下四个:
硬件
系统配置
数据库表结构
SQL 及索引
优化选择:
优化成本:硬件>系统配置>数据库表结构>SQL 及索引。
优化效果:硬件<系统配置<数据库表结构

⑤ SQL数据库性能和数据库调优

连接数量有三种方法查看 1.通过系统的逗性能地来查看: 开始->管理工具->性能(或者是运行里面输入 mmc)然后通过 添加计数器添加 SQL 的常用统计 然后在下面列出的项目里面选择用户连接就可以时时查询到sql server数据库连接数了。 不过此方法的话需要有访问那台计算机的权限,就是要通过windows账户登陆进去才可以添加此计数器。 2.通过系统表来查询: SELECT * FROM [Master].[dbo].[SYSPROCESSES] WHERE [DBID] IN ( SELECT [DBID] FROM [Master].[dbo].[SYSDATABASES] WHERE NAME='databaseName' ) databaseName 是需要查看的数据库,然后查询出来的行数,就是当前的sql server数据库连接数。不过里面还有一些别的状态可以做参考用。 3.通过系统过程来查询: SP_WHO 'loginName' loginName 是当然登陆Sql的用户名,一般程序里面都会使用一个username来登陆SQL这样通过这个用户名就能查看到此用户名登陆之后占用的连接了。 如果不写loginName,那么返回的就是所有的sql server数据库连接。 至于如何改善数据库性能,就是属于数据库调优方面的工作了,通常有以下几种调优方法: 1 查看数据库中造成数据库访问变慢的语句,通常是执行数量较多,执行速度慢的语句,对这些语句进行执行计划分析,并重写语句来优化,最常见的就是not in语句使用外连接语句代替; 2 根据语句中查询访问条件中的谓词,创建对应的索引,以提高查询的执行效率; 3 在数据存储上优化,将数据文件根据某个频繁访问属性的属性值进行水平分片,提高对应表的访问效率(oracle支持,sql server2000没有此功能) 4 重新设计业务逻辑结构,避免执行代价高的查询语句 5 服务器和数据库软件的能力终究还是有限的,无论如何优化当达到一定的访问数量是还是会超出负载,此时就需要考虑可扩展规模的分布式并行数据存储架构了。

⑥ 如何优化数据库的性能

--数据库性能调优
--1.聚集索引、主键
--2.尽量不要用临时表
--3.多多使用事务
--4.表设计要规范
--5.不要使用游标
--6.避免死锁
--7.不要打开大数据集
--8.最好不要select *
--9.不要使用text数据类型,用varchar
--10.不要给诸如“性别”列创建索引
--11.不要使用Insert插入大量的数据
--12.尽量用join代替where,因为where进行全表搜索

⑦ 怎样进行sql数据库的优化

1、数据库空间是个概述,在sqlserver里,使用语句 exec sp_spaceused 'TableName' 这个语句来查。

⑧ 数据库调优是什么

一、概述

随着数据库在各个领域的使用不断增长,越来越多的应用提出了高性能的要求。数据库性能调优是知识密集型的学科,需要综合考虑各种复杂的因素:数据库缓冲区的大小、索引的创建、语句改写等等。总之,数据库性能调优的目的在于使系统运行得更快。

调优需要有广泛的知识,这使得它既简单又复杂。

说调优简单,是因为调优者不必纠缠于复杂的公式和规则。许多学术界和业界的研究者都在尝试将调优和查询处理建立在数学基础之上。

称调优复杂,是因为如果要完全理解常识所依赖的原理,还需要对应用、数据库管理系统、操作系统以及硬件有广泛而深刻的理解。

数据库调优技术可以在不同的数据库系统中使用。如果需要调优数据库系统,最好掌握如下知识:1)查询处理、并发控制以及数据库恢复的知识;2)一些调优的基本原则。

这里主要描述索引调优。

二、索引调优

索引是建立在表上的一种数据组织,它能提高访问表中一条或多条记录的特定查询效率。因此,适当的索引调优是很重要的。

对于索引调优存在如下的几个误区:

误区1:索引创建得越多越好?

实际上:创建的索引可能建立后从来未使用。索引的创建也是需要代价的,对于删除、某些更新、插入操作,对于每个索引都要进行相应的删除、更新、插入操作。从而导致删除、某些更新、插入操作的效率变低。

误区2:对于一个单表的查询,可以索引1进行过滤再使用索引2进行过滤?

实际上:假设查询语句如下select * from t1 where c1=1 and c2=2,c1列和c2列上分别建有索引ic1、ic2。先使用ic1(或ic2)进行过滤,产生的结果集是临时数据,不再具有索引,所以不可使用ic2(或ic1)进行再次过滤。

索引优化的基本原则:

1、将索引和数据存放到不同的文件组

没有将表数据和索引数据存储到不同的文件组,而不加区别地将它们存储到同一文件组。这样,不但会造成I/O竞争,也为数据库的维护工作带来不变。

2、组合索引的使用

假设存在组合索引it1c1c2(c1,c2),查询语句select * from t1 where c1=1 and c2=2能够使用该索引。查询语句select * from t1 where c1=1也能够使用该索引。但是,查询语句select * from t1 where c2=2不能够使用该索引,因为没有组合索引的引导列,即,要想使用c2列进行查找,必需出现c1等于某值。

根据where条件的不同,归纳如下:

1) c1=1 and c2=2:使用索引it1c1c2进行等值查找。

2) c1=1 and c2>2:使用索引it1c1c2进行范围查找,可以有两种方法。

方法1,使用通过索引键(1,2)在B树中命中一条记录,然后向后扫描找出 第一条符合条件的记录,从此记录往后的每一条记录都是符合条件的。这种方法的弊端在于:如果c1=1 and c2=2对应的记录数很多,会产生很多无效的扫描。

方法2,如果c2对应的int型数据,可以使用索引键(1,3)在B树中命中一条记录,从此记录往后的每一条记录都是符合条件的。

本文中的例子均采用方法1。

3)c1>1 and c2=2:因为索引的第一个列不是等于号的,索引即使后面出现了c2=2,也不能将c2=2应用于索引查找。这里,通过索引键(1,- ∞)在B树中命中一条记录,向后扫描找出第一条符合c1>1的记录,此后的每一条记录判断是否符合c2=2,如果符合则输出,否则过滤掉。这里我们称c2=2没有参与到索引运算中去。这种情况在实际应用中经常出现。

4)c1>1:通过索引键(1,- ∞) 在B树中命中一条记录,以此向后扫描找出第一条符合c1>1的记录,此后的每条记录都是符合条件的。

3、唯一索引与非唯一索引的差异

假设索引int1c1(c1)是唯一索引,对于查询语句select c1 from t1 where c1=1,达梦数据库使用索引键(1)命中B树中一条记录,命中之后直接返回该记录(因为是唯一索引,所以最多只能有一条c1=1的记录)。

假设索引it1c2(c2)是非唯一索引,对于查询语句select c2 from t2 where c2=2,达梦数据库使用索引键(2)命中B树中一条记录,返回该记录,并继续向后扫描,如果该记录是满足c=2,返回该记录,继续扫描,直到遇到第一条不符合条件c2=2的记录。

于是,我们可以得知,对于不存在重复值的列,创建唯一索引优于创建非唯一索引。

4、非聚集索引的作用

每张表只可能一个聚集索引,聚集索引用来组织真实数据。语句“create table employee (id int cluster primary key,name varchar(20),addr varchar(20))”。表employee的数据用id来组织。如果要查找id=1000的员工记录,只要用索引键(1000)命中该聚集索引。但是,对于要查找name=’张三’的员工记录就不能使用该索引了,需要进行全表扫描,对于每一条记录判断是否满足name=’张三’,这样会导致查询效率非常低。

要使用聚集索引,必需提供id,我们只能提供name,于是需要引入一个辅助结构实现name到id的转换,这就是非聚集索引的作用。该非聚集索引的键是name,值是id。于是语句“select * from employee where name=’张三’”的执行流程是:通过键(’张三’)命中非聚集索引,得到对应的id值3(假设’张三’对应的id为3),然后用键(3)命中聚集索引,得到相应的记录。

5、是不是使用非聚集索引的查询都需要进行聚集的查询?

不是的,虽然在上一点中查询转换为聚集索引的查找,有时候可以只需要使用非聚集索引。

创建表并创建相应的索引:create table t1(c1 int,c2 int,c3 int);create index it1c2c3 on t1(c2,c3)。查询语句为:select c3 from t1 where c2=1。

因为索引it1c2c3(c2,c3)覆盖查询语句中的列(c2,c3)。所以,该查询语句的执行流程为:通过索引键(1,- ∞)命中索引it1c2c3,对于该记录直接返回c3对应的值,继续向后扫描,如果索引记录中c1还是等于1,那么输出c3,以此类推,直到出现第一条c1不等于1的索引记录,结束查询。

6、创建索引的规则

创建索引首先要考虑的是列的可选择性。比较一下列中唯一键的数量和表中记录的行数,就可以判断该列的可选择性。如果该列的“唯一键的数量/表中记录行数”的比值越接近于1,则该列的可选择行越高。在可选择性高的列上进行查询,返回的数据就较少,比较适合索引查询。相反,比如性别列上只有两个值,可选择行就很小,不适合索引查询。

⑨ MySQL性能调优 – 你必须了解的15个重要变量

前言:

MYSQL 应该是最流行了 WEB 后端数据库。虽然 NOSQL 最近越来越多的被提到,但是相信大部分架构师还是会选择 MYSQL 来做数据存储。本文作者总结梳理MySQL性能调优的15个重要变量,又不足需要补充的还望大佬指出。

1.DEFAULT_STORAGE_ENGINE

如果你已经在用MySQL 5.6或者5.7,并且你的数据表都是InnoDB,那么表示你已经设置好了。如果没有,确保把你的表转换为InnoDB并且设置default_storage_engine为InnoDB。

为什么?简而言之,因为InnoDB是MySQL(包括Percona Server和MariaDB)最好的存储引擎 – 它支持事务,高并发,有着非常好的性能表现(当配置正确时)。这里有详细的版本介绍为什么

2.INNODB_BUFFER_POOL_SIZE

这个是InnoDB最重要变量。实际上,如果你的主要存储引擎是InnoDB,那么对于你,这个变量对于MySQL是最重要的。

基本上,innodb_buffer_pool_size指定了MySQL应该分配给InnoDB缓冲池多少内存,InnoDB缓冲池用来存储缓存的数据,二级索引,脏数据(已经被更改但没有刷新到硬盘的数据)以及各种内部结构如自适应哈希索引。

根据经验,在一个独立的MySQL服务器应该分配给MySQL整个机器总内存的80%。如果你的MySQL运行在一个共享服务器,或者你想知道InnoDB缓冲池大小是否正确设置,详细请看这里。

3.INNODB_LOG_FILE_SIZE

InnoDB重做日志文件的设置在MySQL社区也叫做事务日志。直到MySQL 5.6.8事务日志默认值innodb_log_file_size=5M是唯一最大的InnoDB性能杀手。从MySQL 5.6.8开始,默认值提升到48M,但对于许多稍繁忙的系统,还远远要低。

根据经验,你应该设置的日志大小能在你服务器繁忙时能存储1-2小时的写入量。如果不想这么麻烦,那么设置1-2G的大小会让你的性能有一个不错的表现。这个变量也相当重要,更详细的介绍请看这里。

当然,如果你有大量的大事务更改,那么,更改比默认innodb日志缓冲大小更大的值会对你的性能有一定的提高,但是你使用的是autocommit,或者你的事务更改小于几k,那还是保持默认的值吧。

4.INNODB_FLUSH_LOG_AT_TRX_COMMIT

默认下,innodb_flush_log_at_trx_commit设置为1表示InnoDB在每次事务提交后立即刷新同步数据到硬盘。如果你使用autocommit,那么你的每一个INSERT, UPDATE或DELETE语句都是一个事务提交。

同步是一个昂贵的操作(特别是当你没有写回缓存时),因为它涉及对硬盘的实际同步物理写入。所以如果可能,并不建议使用默认值。

两个可选的值是0和2:

* 0表示刷新到硬盘,但不同步(提交事务时没有实际的IO操作)

* 2表示不刷新和不同步(也没有实际的IO操作)

所以你如果设置它为0或2,则同步操作每秒执行一次。所以明显的缺点是你可能会丢失上一秒的提交数据。具体来说,你的事务已经提交了,但服务器马上断电了,那么你的提交相当于没有发生过。

显示的,对于金融机构,如银行,这是无法忍受的。不过对于大多数网站,可以设置为innodb_flush_log_at_trx_commit=0|2,即使服务器最终崩溃也没有什么大问题。毕竟,仅仅在几年前有许多网站还是用MyISAM,当崩溃时会丢失30s的数据(更不要提那令人抓狂的慢修复进程)。

那么,0和2之间的实际区别是什么?性能明显的差异是可以忽略不计,因为刷新到操作系统缓存的操作是非常快的。所以很明显应该设置为0,万一MySQL崩溃(不是整个机器),你不会丢失任何数据,因为数据已经在OS缓存,最终还是会同步到硬盘的。

5.SYNC_BINLOG

已经有大量的文档写到sync_binlog,以及它和innodb_flush_log_at_trx_commit的关系,下面我们来简单的介绍下:

a) 如果你的服务器没有设置从服务器,而且你不做备份,那么设置sync_binlog=0将对性能有好处。

b) 如果你有从服务器并且做备份,但你不介意当主服务器崩溃时在二进制日志丢失一些事件,那么为了更好的性能还是设置为sync_binlog=0.

c) 如果你有从服务器并且备份,你非常在意从服务器的一致性,以及能及时恢复到一个时间点(通过使用最新的一致性备份和二进制日志将数据库恢复到特定时间点的能力),那么你应该设置innodb_flush_log_at_trx_commit=1,并且需要认真考虑使用sync_binlog=1。

问题是sync_binlog=1代价比较高 – 现在每个事务也要同步一次到硬盘。你可能会想为什么不把两次同步合并成一次,想法正确 – 新版本的MySQL(5.6和5.7,MariaDB和Percona Server)已经能合并提交,那么在这种情况下sync_binlog=1的操作也不是这么昂贵了,但在旧的mysql版本中仍然会对性能有很大影响。

6.INNODB_FLUSH_METHOD

将innodb_flush_method设置为O_DIRECT以避免双重缓冲.唯一一种情况你不应该使用O_DIRECT是当你操作系统不支持时。但如果你运行的是Linux,使用O_DIRECT来激活直接IO。

不用直接IO,双重缓冲将会发生,因为所有的数据库更改首先会写入到OS缓存然后才同步到硬盘 – 所以InnoDB缓冲池和OS缓存会同时持有一份相同的数据。特别是如果你的缓冲池限制为总内存的50%,那意味着在写密集的环境中你可能会浪费高达50%的内存。如果没有限制为50%,服务器可能由于OS缓存的高压力会使用到swap。

简单地说,设置为innodb_flush_method=O_DIRECT。

7.INNODB_BUFFER_POOL_INSTANCES

MySQL 5.5引入了缓冲实例作为减小内部锁争用来提高MySQL吞吐量的手段。

在5.5版本这个对提升吞吐量帮助很小,然后在MySQL 5.6版本这个提升就非常大了,所以在MySQL5.5中你可能会保守地设置innodb_buffer_pool_instances=4,在MySQL 5.6和5.7中你可以设置为8-16个缓冲池实例。

你设置后观察会觉得性能提高不大,但在大多数高负载情况下,它应该会有不错的表现。

对了,不要指望这个设置能减少你单个查询的响应时间。这个是在高并发负载的服务器上才看得出区别。比如多个线程同时做许多事情。

8.INNODB_THREAD_CONCURRENCY

InnoDB有一种方法来控制并行执行的线程数 – 我们称为并发控制机制。大部分是由innodb_thread_concurrency值来控制的。如果设置为0,并发控制就关闭了,因此InnoDB会立即处理所有进来的请求(尽可能多的)。

在你有32CPU核心且只有4个请求时会没什么问题。不过想象下你只有4CPU核心和32个请求时 – 如果你让32个请求同时处理,你这个自找麻烦。因为这些32个请求只有4 CPU核心,显然地会比平常慢至少8倍(实际上是大于8倍),而然这些请求每个都有自己的外部和内部锁,这有很大可能堆积请求。

下面介绍如何更改这个变量,在mysql命令行提示符执行:

对于大多数工作负载和服务器,设置为8是一个好开端,然后你可以根据服务器达到了这个限制而资源使用率利用不足时逐渐增加。可以通过show engine innodb statusG来查看目前查询处理情况,查找类似如下行:

9.SKIP_NAME_RESOLVE

这一项不得不提及,因为仍然有很多人没有添加这一项。你应该添加skip_name_resolve来避免连接时DNS解析。

大多数情况下你更改这个会没有什么感觉,因为大多数情况下DNS服务器解析会非常快。不过当DNS服务器失败时,它会出现在你服务器上出现“unauthenticated connections” ,而就是为什么所有的请求都突然开始慢下来了。

所以不要等到这种事情发生才更改。现在添加这个变量并且避免基于主机名的授权。

10.INNODB_IO_CAPACITY, INNODB_IO_CAPACITY_MAX

* innodb_io_capacity:用来当刷新脏数据时,控制MySQL每秒执行的写IO量。

* innodb_io_capacity_max: 在压力下,控制当刷新脏数据时MySQL每秒执行的写IO量

首先,这与读取无关 – SELECT查询执行的操作。对于读操作,MySQL会尽最大可能处理并返回结果。至于写操作,MySQL在后台会循环刷新,在每一个循环会检查有多少数据需要刷新,并且不会用超过innodb_io_capacity指定的数来做刷新操作。这也包括更改缓冲区合并(在它们刷新到磁盘之前,更改缓冲区是辅助脏页存储的关键)。

第二,我需要解释一下什么叫“在压力下”,MySQL中称为”紧急情况”,是当MySQL在后台刷新时,它需要刷新一些数据为了让新的写操作进来。然后,MySQL会用到innodb_io_capacity_max。

那么,应该设置innodb_io_capacity和innodb_io_capacity_max为什么呢?

最好的方法是测量你的存储设置的随机写吞吐量,然后给innodb_io_capacity_max设置为你的设备能达到的最大IOPS。innodb_io_capacity就设置为它的50-75%,特别是你的系统主要是写操作时。

通常你可以预测你的系统的IOPS是多少。例如由8 15k硬盘组成的RAID10能做大约每秒1000随机写操作,所以你可以设置innodb_io_capacity=600和innodb_io_capacity_max=1000。许多廉价企业SSD可以做4,000-10,000 IOPS等。

这个值设置得不完美问题不大。但是,要注意默认的200和400会限制你的写吞吐量,因此你可能偶尔会捕捉到刷新进程。如果出现这种情况,可能是已经达到你硬盘的写IO吞吐量,或者这个值设置得太小限制了吞吐量。

11.INNODB_STATS_ON_METADATA

如果你跑的是MySQL 5.6或5.7,你不需要更改innodb_stats_on_metadata的默认值,因为它已经设置正确了。

不过在MySQL 5.5或5.1,强烈建议关闭这个变量 – 如果是开启,像命令show table status会立即查询INFORMATION_SCHEMA而不是等几秒再执行,这会使用到额外的IO操作。

从5.1.32版本开始,这个是动态变量,意味着你不需要重启MySQL服务器来关闭它。

12.INNODB_BUFFER_POOL_DUMP_AT_SHUTDOWN & INNODB_BUFFER_POOL_LOAD_AT_STARTUP

innodb_buffer_pool_mp_at_shutdown和innodb_buffer_pool_load_at_startup这两个变量与性能无关,不过如果你偶尔重启mysql服务器(如生效配置),那么就有关。当两个都激活时,MySQL缓冲池的内容(更具体地说,是缓存页)在停止MySQL时存储到一个文件。当你下次启动MySQL时,它会在后台启动一个线程来加载缓冲池的内容以提高预热速度到3-5倍。

两件事:

第一,它实际上没有在关闭时复制缓冲池内容到文件,仅仅是复制表空间ID和页面ID – 足够的信息来定位硬盘上的页面了。然后它就能以大量的顺序读非常快速的加载那些页面,而不是需要成千上万的小随机读。

第二,启动时是在后台加载内容,因为MySQL不需要等到缓冲池内容加载完成再开始接受请求(所以看起来不会有什么影响)。

从MySQL 5.7.7开始,默认只有25%的缓冲池页面在mysql关闭时存储到文件,但是你可以控制这个值 – 使用innodb_buffer_pool_mp_pct,建议75-100。

这个特性从MySQL 5.6才开始支持。

13.INNODB_ADAPTIVE_HASH_INDEX_PARTS

如果你运行着一个大量SELECT查询的MySQL服务器(并且已经尽可能优化),那么自适应哈希索引将下你的下一个瓶颈。自适应哈希索引是InnoDB内部维护的动态索引,可以提高最常用的查询模式的性能。这个特性可以重启服务器关闭,不过默认下在mysql的所有版本开启。

这个技术非常复杂,在大多数情况下它会对大多数类型的查询直到加速的作用。不过,当你有太多的查询往数据库,在某一个点上它会花过多的时间等待AHI锁和闩锁。

如果你的是MySQL 5.7,没有这个问题 – innodb_adaptive_hash_index_parts默认设置为8,所以自适应哈希索引被切割为8个分区,因为不存在全局互斥。

不过在mysql 5.7前的版本,没有AHI分区数量的控制。换句话说,有一个全局互斥锁来保护AHI,可能导致你的select查询经常撞墙。

所以如果你运行的是5.1或5.6,并且有大量的select查询,最简单的方案就是切换成同一版本的Percona Server来激活AHI分区。

14.QUERY_CACHE_TYPE

如果人认为查询缓存效果很好,肯定应该使用它。好吧,有时候是有用的。不过这个只在你在低负载时有用,特别是在低负载下大多数是读取,小量写或者没有。

如果是那样的情况,设置query_cache_type=ON和query_cache_size=256M就好了。不过记住不能把256M设置更高的值了,否则会由于查询缓存失效时,导致引起严重的服务器停顿。

如果你的MySQL服务器高负载动作,建议设置query_cache_size=0和query_cache_type=OFF,并重启服务器生效。那样Mysql就会停止在所有的查询使用查询缓存互斥锁。

15.TABLE_OPEN_CACHE_INSTANCES

从MySQL 5.6.6开始,表缓存能分割到多个分区。

表缓存用来存放目前已打开表的列表,当每一个表打开或关闭互斥体就被锁定 – 即使这是一个隐式临时表。使用多个分区绝对减少了潜在的争用。

从MySQL 5.7.8开始,table_open_cache_instances=16是默认的配置。

欢迎做Java的工程师朋友们私信我资料免费获取免费的Java架构学习资料(里面有高可用、高并发、高性能及分布式、Jvm性能调优、Spring源码,MyBatis,Netty,Redis,Kafka,Mysql,Zookeeper,Tomcat,Docker,Dubbo,Nginx等多个知识点的架构资料)

其中覆盖了互联网的方方面面,期间碰到各种产品各种场景下的各种问题,很值得大家借鉴和学习,扩展自己的技术广度和知识面。