有八个方面可以对mysql进行优化:
1、选取最适用的字段属性
MySQL可以很好的支持大数据量的存取,但是一般说来,数据库中的表越小,在它上面执行的查询也就会越快。因此,在创建表的时候,为了获得更好的性能,我们可以将表中字段的宽度设得尽可能小。
2. 使用连接(JOIN)来代替子查询(Sub-Queries)
MySQL从4.1开始支持SQL的子查询。这个技术可以使用SELECT语句来创建一个单列的查询结果,然后把这个结果作为过滤条件用在另一个查询中。
3、使用联合(UNION)来代替手动创建的临时表
MySQL从4.0的版本开始支持union查询,它可以把需要使用临时表的两条或更多的select查询合并的一个查询中。在客户端的查询会话结束的时候,临时表会被自动删除,从而保证数据库整齐、高效。
4、事务
尽管我们可以使用子查询(Sub-Queries)、连接(JOIN)和联合(UNION)来创建各种各样的查询,但不是所有的数据库操作都可以只用一条或少数几条SQL语句就可以完成的。更多的时候是需要用到一系列的语句来完成某种工作。但是在这种情况下,当这个语句块中的某一条语句运行出错的时候,整个语句块的操作就会变得不确定起来。设想一下,要把某个数据同时插入两个相关联的表中,可能会出现这样的情况:第一个表中成功更新后,数据库突然出现意外状况,造成第二个表中的操作没有完成,这样,就会造成数据的不完整,甚至会破坏数据库中的数据。要避免这种情况,就应该使用事务,它的作用是:要么语句块中每条语句都操作成功,要么都失败
5、锁定表
尽管事务是维护数据库完整性的一个非常好的方法,但却因为它的独占性,有时会影响数据库的性能,尤其是在很大的应用系统中。由于在事务执行的过程中,数据库将会被锁定,因此其它的用户请求只能暂时等待直到该事务结束。其实,有些情况下我们可以通过锁定表的方法来获得更好的性能。
6、使用外键
锁定表的方法可以维护数据的完整性,但是它却不能保证数据的关联性。这个时候我们就可以使用外键。
7、使用索引
索引是提高数据库性能的常用方法,它可以令数据库服务器以比没有索引快得多的速度检索特定的行,尤其是在查询语句当中包含有MAX(),MIN()和ORDERBY这些命令的时候,性能提高更为明显。
8、优化的查询语句
绝大多数情况下,使用索引可以提高查询的速度,但如果SQL语句使用不恰当的话,索引将无法发挥它应有的作用。
❷ 数据库调优的方法有哪些
1.引言 数据库调优可以使数据库应用运行得更快,它需要综合考虑各种复杂的因素。将数据均 匀分布在磁盘上可以提高I/O 利用率,提高数据的读写性能;适当程度的非规范化可以改善 系统查询性能;建立索引和编写高效的SQL 语句能有效避免低性能操作;通过锁的调优解 决并发控制方面的性能问题。 数据库调优技术可以在不同的数据库系统中使用,它不必纠缠于复杂的公式和规则,然 而它需要对程序的应用、数据库管理系统、查询处理、并发控制、操作系统以及硬件有广泛 而深刻的理解。 2.计算机硬件调优 2.1 数据库对象的放置策略 利用数据库分区技术,均匀地把数据分布在系统的磁盘中,平衡I/O 访问,避免I/O 瓶颈: (1)访问分散到不同的磁盘,即使用户数据尽可能跨越多个设备,多个I/O 运转,避免 I/O 竞争,克服访问瓶颈;分别放置随机访问和连续访问数据。 (2)分离系统数据库I/O 和应用数据库I/O,把系统审计表和临时库表放在不忙的磁盘 上。 (3)把事务日志放在单独的磁盘上,减少磁盘I/O 开销,这还有利于在障碍后恢复,提 高了系统的安全性。 (4)把频繁访问的“活性”表放在不同的磁盘上;把频繁用的表、频繁做Join的表分别 放在单独的磁盘上,甚至把频繁访问的表的字段放在不同的磁盘上,把访问分散到不同的磁 盘上,避免I/O 争夺。 2.2 使用磁盘硬件优化数据库 RAID (独立磁盘冗余阵列)是由多个磁盘驱动器(一个阵列)组成的磁盘系统。通过将磁盘阵列当作一个磁盘来对待,基于硬件的RAID允许用户管理多个磁盘。使用基于硬件的 RAID与基于操作系统的RAID相比较,基于硬件的RAID能够提供更佳的性能。如果使用基于操作系统的RAID,那么它将占据其他系统需求的CPU周期;通过使用基于硬件的RAID, 用户在不关闭系统的情况下能够替换发生故障的驱动器。 SQL Server 一般使用RAID等级0、1 和5。 RAID 0 是传统的磁盘镜象,阵列中每一个磁盘都有一个或多个磁盘拷贝,它主要用来 提供最高级的可靠性,使RAID 0成倍增加了写操作却可以并行处理多个读操作,从而提高 了读操作的性能。 RAID 1 是磁盘镜像或磁盘双工,能够为事务日志保证冗余性。 RAID 5带奇偶的磁盘条带化,即将数据信息和校验信息分散到阵列的所有磁盘中,它可以消除一个校验盘的瓶颈和单点失效问题,RAID 5 也会增加写操作,也可以并行处理一个读操作,还 可以成倍地提高读操作的性能。 相比之下,RAID 5 增加的写操作比RAID 0 增加的要少许多。在实际应用中,用户的读操作要求远远多于写操作请求,而磁盘执行写操作的速度很快,以至于用户几乎感觉不到增加的时间,所以增加的写操作负担不会带来什么问题。在性能较好的服务器中一般都会选择使用RAID 5 的磁盘阵列卡来实现,对于性能相对差一些的服务器也可利用纯软件的方式来实现RAID 5。 3.关系系统与应用程序调优 3.1 应用程序优化 从数据库设计者的角度来看,应用程序无非是实现对数据的增加、修改、删除、查询和体现数据的结构和关系。设计者在性能方面的考虑因素,总的出发点是:把数据库当作奢侈 的资源看待,在确保功能的同时,尽可能少地动用数据库资源。包括如下原则: (1)不访问或少访问数据库; (2)简化对数据库的访问; (3)使访问最优; (4)对前期及后续的开发、部署、调整提出要求,以协助实现性能目标。 另外,不要直接执行完整的SQL 语法,尽量通过存储过程来调用SQL Server。客户与服务器连接时,建立连接池,让连接尽量得以重用,以避免时间与资源的损耗。非到不得已, 不要使用游标结构,确实使用时,注意各种游标的特性。
❸ 如何对数据库性能进行优化
1.数据库I/O方面硬件性能
最有可能影响性能的是磁盘和网络吞吐量。解决办法:
扩大虚拟内存,并保证有足够可以扩充的空间
把数据库服务器上的不必要服务关闭掉
把SQL数据库服务器的吞吐量调为最大
若对该表的查询频率比较高,则建立索引。
分区(如MySQL,按时间分区)
尽量使用固定长度字段和限制字段长度(如 varchar(10))优势:
降低物理存储空间
提高数据库处理速度
附带校验数据库是否合法功能优化sql语句,减少比较次数
限制返回条目数(mysql中使用limit)
尽可能的少创造对象
合理摆正系统设计的位置。大量数据操作,和少量数据操作一定是分开的。
合理利用内存,有的数据要缓存。让数据流起来,而不是全部读到内存再处理,而是边读取边处理。
2.调整数据库
3.使用存储过程
应用程序的实现过程中,能够采用存储过程实现的对数据库的操作尽量通过存储过程来实现。
因为存储过程是存放在数据库服务器上的一次性被设计、编码、测试,并被再次使用,需要执行该任务的应用可以简单地执行存储过程,并且只返回结果集或者数值。
这样不仅可以使程序模块化,同时提高响应速度,减少网络流量,并且通过输入参数接受输入,使得在应用中完成逻辑的一致性实现。
4.SQL语句方面
建立查询条件索引仅仅是提高速度的前提条件,响应速度的提高还依赖于对索引的使用。不良的SQL往往来自于不恰当的索引设计、不充份的连接条件和不可优化的where子句。
5.Java方面
❹ 数据库性能优化主要包括哪些方面
包括网络、硬件、操作系统、数据库参数和应用程序。
数据库的优化通常可以通过对网络、硬件、操作系统、数据库参数和应用程序的优化来进行。最常见的优化手段就是对硬件的升级。
根据统计,对网络、硬件、操作系统、数据库参数进行优化所获得的性能提升,全部加起来只占数据库系统性能提升的40%左右,其余的60%系统性能提升来自对应用程序的优化。许多优化专家认为,对应用程序的优化可以得到80%的系统性能的提升。
(4)数据库配置调优扩展阅读
数据库性能优化法则归纳为5个层次:
1、减少数据访问(减少磁盘访问)
2、返回更少数据(减少网络传输或磁盘访问)
3、减少交互次数(减少网络传输)
4、减少服务器CPU开销(减少CPU及内存开销)
5、利用更多资源(增加资源)
由于每一层优化法则都是解决其对应硬件的性能问题,所以带来的性能提升比例也不一样。传统数据库系统设计是也是尽可能对低速设备提供优化方法,因此针对低速设备问题的可优化手段也更多,优化成本也更低。
任何一个SQL的性能优化都应该按这个规则由上到下来诊断问题并提出解决方案,而不应该首先想到的是增加资源解决问题。
❺ 超详细MySQL数据库优化
数据库优化一方面是找出系统的瓶颈,提高MySQL数据库的整体性能,而另一方面需要合理的结构设计和参数调整,以提高用户的相应速度,同时还要尽可能的节约系统资源,以便让系统提供更大的负荷.
1. 优化一览图
2. 优化
笔者将优化分为了两大类,软优化和硬优化,软优化一般是操作数据库即可,而硬优化则是操作服务器硬件及参数设置.
2.1 软优化
2.1.1 查询语句优化
1.首先我们可以用EXPLAIN或DESCRIBE(简写:DESC)命令分析一条查询语句的执行信息.
2.例:
显示:
其中会显示索引和查询数据读取数据条数等信息.
2.1.2 优化子查询
在MySQL中,尽量使用JOIN来代替子查询.因为子查询需要嵌套查询,嵌套查询时会建立一张临时表,临时表的建立和删除都会有较大的系统开销,而连接查询不会创建临时表,因此效率比嵌套子查询高.
2.1.3 使用索引
索引是提高数据库查询速度最重要的方法之一,关于索引可以参高笔者<MySQL数据库索引>一文,介绍比较详细,此处记录使用索引的三大注意事项:
2.1.4 分解表
对于字段较多的表,如果某些字段使用频率较低,此时应当,将其分离出来从而形成新的表,
2.1.5 中间表
对于将大量连接查询的表可以创建中间表,从而减少在查询时造成的连接耗时.
2.1.6 增加冗余字段
类似于创建中间表,增加冗余也是为了减少连接查询.
2.1.7 分析表,,检查表,优化表
分析表主要是分析表中关键字的分布,检查表主要是检查表中是否存在错误,优化表主要是消除删除或更新造成的表空间浪费.
1. 分析表: 使用 ANALYZE 关键字,如ANALYZE TABLE user;
2. 检查表: 使用 CHECK关键字,如CHECK TABLE user [option]
option 只对MyISAM有效,共五个参数值:
3. 优化表:使用OPTIMIZE关键字,如OPTIMIZE [LOCAL|NO_WRITE_TO_BINLOG] TABLE user;
LOCAL|NO_WRITE_TO_BINLOG都是表示不写入日志.,优化表只对VARCHAR,BLOB和TEXT有效,通过OPTIMIZE TABLE语句可以消除文件碎片,在执行过程中会加上只读锁.
2.2 硬优化
2.2.1 硬件三件套
1.配置多核心和频率高的cpu,多核心可以执行多个线程.
2.配置大内存,提高内存,即可提高缓存区容量,因此能减少磁盘I/O时间,从而提高响应速度.
3.配置高速磁盘或合理分布磁盘:高速磁盘提高I/O,分布磁盘能提高并行操作的能力.
2.2.2 优化数据库参数
优化数据库参数可以提高资源利用率,从而提高MySQL服务器性能.MySQL服务的配置参数都在my.cnf或my.ini,下面列出性能影响较大的几个参数.
2.2.3 分库分表
因为数据库压力过大,首先一个问题就是高峰期系统性能可能会降低,因为数据库负载过高对性能会有影响。另外一个,压力过大把你的数据库给搞挂了怎么办?所以此时你必须得对系统做分库分表 + 读写分离,也就是把一个库拆分为多个库,部署在多个数据库服务上,这时作为主库承载写入请求。然后每个主库都挂载至少一个从库,由从库来承载读请求。
2.2.4 缓存集群
如果用户量越来越大,此时你可以不停的加机器,比如说系统层面不停加机器,就可以承载更高的并发请求。然后数据库层面如果写入并发越来越高,就扩容加数据库服务器,通过分库分表是可以支持扩容机器的,如果数据库层面的读并发越来越高,就扩容加更多的从库。但是这里有一个很大的问题:数据库其实本身不是用来承载高并发请求的,所以通常来说,数据库单机每秒承载的并发就在几千的数量级,而且数据库使用的机器都是比较高配置,比较昂贵的机器,成本很高。如果你就是简单的不停的加机器,其实是不对的。所以在高并发架构里通常都有缓存这个环节,缓存系统的设计就是为了承载高并发而生。所以单机承载的并发量都在每秒几万,甚至每秒数十万,对高并发的承载能力比数据库系统要高出一到两个数量级。所以你完全可以根据系统的业务特性,对那种写少读多的请求,引入缓存集群。具体来说,就是在写数据库的时候同时写一份数据到缓存集群里,然后用缓存集群来承载大部分的读请求。这样的话,通过缓存集群,就可以用更少的机器资源承载更高的并发。
一个完整而复杂的高并发系统架构中,一定会包含:各种复杂的自研基础架构系统。各种精妙的架构设计.因此一篇小文顶多具有抛砖引玉的效果,但是数据库优化的思想差不多就这些了.
❻ 数据库调优是什么
一、概述
随着数据库在各个领域的使用不断增长,越来越多的应用提出了高性能的要求。数据库性能调优是知识密集型的学科,需要综合考虑各种复杂的因素:数据库缓冲区的大小、索引的创建、语句改写等等。总之,数据库性能调优的目的在于使系统运行得更快。
调优需要有广泛的知识,这使得它既简单又复杂。
说调优简单,是因为调优者不必纠缠于复杂的公式和规则。许多学术界和业界的研究者都在尝试将调优和查询处理建立在数学基础之上。
称调优复杂,是因为如果要完全理解常识所依赖的原理,还需要对应用、数据库管理系统、操作系统以及硬件有广泛而深刻的理解。
数据库调优技术可以在不同的数据库系统中使用。如果需要调优数据库系统,最好掌握如下知识:1)查询处理、并发控制以及数据库恢复的知识;2)一些调优的基本原则。
这里主要描述索引调优。
二、索引调优
索引是建立在表上的一种数据组织,它能提高访问表中一条或多条记录的特定查询效率。因此,适当的索引调优是很重要的。
对于索引调优存在如下的几个误区:
误区1:索引创建得越多越好?
实际上:创建的索引可能建立后从来未使用。索引的创建也是需要代价的,对于删除、某些更新、插入操作,对于每个索引都要进行相应的删除、更新、插入操作。从而导致删除、某些更新、插入操作的效率变低。
误区2:对于一个单表的查询,可以索引1进行过滤再使用索引2进行过滤?
实际上:假设查询语句如下select * from t1 where c1=1 and c2=2,c1列和c2列上分别建有索引ic1、ic2。先使用ic1(或ic2)进行过滤,产生的结果集是临时数据,不再具有索引,所以不可使用ic2(或ic1)进行再次过滤。
索引优化的基本原则:
1、将索引和数据存放到不同的文件组
没有将表数据和索引数据存储到不同的文件组,而不加区别地将它们存储到同一文件组。这样,不但会造成I/O竞争,也为数据库的维护工作带来不变。
2、组合索引的使用
假设存在组合索引it1c1c2(c1,c2),查询语句select * from t1 where c1=1 and c2=2能够使用该索引。查询语句select * from t1 where c1=1也能够使用该索引。但是,查询语句select * from t1 where c2=2不能够使用该索引,因为没有组合索引的引导列,即,要想使用c2列进行查找,必需出现c1等于某值。
根据where条件的不同,归纳如下:
1) c1=1 and c2=2:使用索引it1c1c2进行等值查找。
2) c1=1 and c2>2:使用索引it1c1c2进行范围查找,可以有两种方法。
方法1,使用通过索引键(1,2)在B树中命中一条记录,然后向后扫描找出 第一条符合条件的记录,从此记录往后的每一条记录都是符合条件的。这种方法的弊端在于:如果c1=1 and c2=2对应的记录数很多,会产生很多无效的扫描。
方法2,如果c2对应的int型数据,可以使用索引键(1,3)在B树中命中一条记录,从此记录往后的每一条记录都是符合条件的。
本文中的例子均采用方法1。
3)c1>1 and c2=2:因为索引的第一个列不是等于号的,索引即使后面出现了c2=2,也不能将c2=2应用于索引查找。这里,通过索引键(1,- ∞)在B树中命中一条记录,向后扫描找出第一条符合c1>1的记录,此后的每一条记录判断是否符合c2=2,如果符合则输出,否则过滤掉。这里我们称c2=2没有参与到索引运算中去。这种情况在实际应用中经常出现。
4)c1>1:通过索引键(1,- ∞) 在B树中命中一条记录,以此向后扫描找出第一条符合c1>1的记录,此后的每条记录都是符合条件的。
3、唯一索引与非唯一索引的差异
假设索引int1c1(c1)是唯一索引,对于查询语句select c1 from t1 where c1=1,达梦数据库使用索引键(1)命中B树中一条记录,命中之后直接返回该记录(因为是唯一索引,所以最多只能有一条c1=1的记录)。
假设索引it1c2(c2)是非唯一索引,对于查询语句select c2 from t2 where c2=2,达梦数据库使用索引键(2)命中B树中一条记录,返回该记录,并继续向后扫描,如果该记录是满足c=2,返回该记录,继续扫描,直到遇到第一条不符合条件c2=2的记录。
于是,我们可以得知,对于不存在重复值的列,创建唯一索引优于创建非唯一索引。
4、非聚集索引的作用
每张表只可能一个聚集索引,聚集索引用来组织真实数据。语句“create table employee (id int cluster primary key,name varchar(20),addr varchar(20))”。表employee的数据用id来组织。如果要查找id=1000的员工记录,只要用索引键(1000)命中该聚集索引。但是,对于要查找name=’张三’的员工记录就不能使用该索引了,需要进行全表扫描,对于每一条记录判断是否满足name=’张三’,这样会导致查询效率非常低。
要使用聚集索引,必需提供id,我们只能提供name,于是需要引入一个辅助结构实现name到id的转换,这就是非聚集索引的作用。该非聚集索引的键是name,值是id。于是语句“select * from employee where name=’张三’”的执行流程是:通过键(’张三’)命中非聚集索引,得到对应的id值3(假设’张三’对应的id为3),然后用键(3)命中聚集索引,得到相应的记录。
5、是不是使用非聚集索引的查询都需要进行聚集的查询?
不是的,虽然在上一点中查询转换为聚集索引的查找,有时候可以只需要使用非聚集索引。
创建表并创建相应的索引:create table t1(c1 int,c2 int,c3 int);create index it1c2c3 on t1(c2,c3)。查询语句为:select c3 from t1 where c2=1。
因为索引it1c2c3(c2,c3)覆盖查询语句中的列(c2,c3)。所以,该查询语句的执行流程为:通过索引键(1,- ∞)命中索引it1c2c3,对于该记录直接返回c3对应的值,继续向后扫描,如果索引记录中c1还是等于1,那么输出c3,以此类推,直到出现第一条c1不等于1的索引记录,结束查询。
6、创建索引的规则
创建索引首先要考虑的是列的可选择性。比较一下列中唯一键的数量和表中记录的行数,就可以判断该列的可选择性。如果该列的“唯一键的数量/表中记录行数”的比值越接近于1,则该列的可选择行越高。在可选择性高的列上进行查询,返回的数据就较少,比较适合索引查询。相反,比如性别列上只有两个值,可选择行就很小,不适合索引查询。
❼ 数据库如何优化
body{
line-height:200%;
}
如何优化MySQL数据库
当MySQL数据库邂逅优化,它有好几个意思,今天我们所指的是性能优化。
我们究竟该如何对MySQL数据库进行优化呢?下面我就从MySQL对硬件的选择、Mysql的安装、my.cnf的优化、MySQL如何进行架构设计及数据切分等方面来说明这个问题。
1.服务器物理硬件的优化
1)磁盘(I/O),MySQL每一秒钟都在进行大量、复杂的查询操作,对磁盘的读写量可想而知,所以推荐使用RAID1+0磁盘阵列,如果资金允许,可以选择固态硬盘做RAID1+0;
2)cpu对Mysql的影响也是不容忽视的,建议选择运算能力强悍的CPU。
2.MySQL应该采用编译安装的方式
MySQL数据库的线上环境安装,我建议采取编译安装,这样性能会较大的提升。
3.MySQL配置文件的优化
1)skip
-name
-resolve,禁止MySQL对外部连接进行DNS解析,使用这一选项可以消除MySQL进行DNS解析的时间;
2)back_log
=
384,back_log指出在MySQL暂时停止响应新请求之前,短时间内的多少个请求可以被存在堆栈中,对于Linux系统而言,推荐设置小于512的整数。
3)如果key_reads太大,则应该把my.cnf中key_buffer_size变大,保持key_reads/key_read_requests至少在1/100以上,越小越好。
4.MySQL上线后根据status状态进行适当优化
1)打开慢查询日志可能会对系统性能有一点点影响,如果你的MySQL是主-从结构,可以考虑打开其中一台从服务器的慢查询日志,这样既可以监控慢查询,对系统性能影响也会很小。
2)MySQL服务器过去的最大连接数是245,没有达到服务器连接数的上限256,应该不会出现1040错误。比较理想的设置是:Max_used_connections/max_connections
*
100%
=85%
5.MySQL数据库的可扩展架构方案
1)MySQL
cluster,其特点为可用性非常高,性能非常好,但它的维护非常复杂,存在部分Bug;
2)DRBD磁盘网络镜像方案,其特点为软件功能强大,数据可在底层块设备级别跨物理主机镜像,且可根据性能和可靠性要求配置不同级别的同步。
❽ 数据库该如何优化
数据库优化可以从以下几个方面进行:
1.结构层: web服务器采用负载均衡服务器,mysql服务器采用主从复制,读写分离
2.储存层: 采用合适的存储引擎,采用三范式
3.设计层: 采用分区分表,索引,表的字段采用合适的字段属性,适当的采用逆范式,开启mysql缓存
4.sql语句层:结果一样的情况下,采用效率高,速度快节省资源的sql语句执行
❾ 关于DB2数据库的参数调优技巧
在开始前 请关闭IBM目录服务器 将上下文切换到IBM目录服务器DB 实例拥有者 一般是ldapdb 用户 比如
在Unix系统里 输入
su ldapdb
在Windows系统里 输入
db cmdset DB INSTANCE=ldapdb
为了调节DB 参数 运行db tunings sh脚本 你可以在这里下载:// sofare ibm /ibmdl/pub/sofare/tivoli_support/misc/Security/AMeB/_am /tuning_guide_scripts tar
或者通过ftp地址
ftp://ftp sofare ibm /sofare/tivoli_support/misc/Security/AMeB/am /tuning_guide_scripts tar
Web页面需要注册用户名和密码
这个脚本的文件系统拥有者必须是DB 实例拥有者 一般就是ldapdb 用户 文件系统组应该和实例拥有者相同(一般是dbsysadm) 脚本必须在DB 实例拥有者的上下文中使用
脚本中的ibmdefaultbp和ldapbp参数控制着DB 的缓冲池 db _turnings sh脚本 设置了DB 缓冲池的建议大小 其他一些可选的设置在脚本的注释里写明了 IBM目录服务器的性能随着DB 缓冲池的增长而提高 然而在大多数情况下 通过这样的参数调节方式 你可以预见不超过 %的性能提高
DB 缓冲池是DB 缓存数据表和索引的地方 DB 用户使用索引来在查询时迅速找到该获取哪个表行项 需要更多信息 请参考IBM Directory Server Tuning Guide
显示和验证当前设置
输入如下命令来显示当前的DB 参数调节设置的结果
db get database configuration for ldapdb |
egrep DBHEAP|SORTHEAP|MAXLOCKS|MINMIT|UTIL_HEAP_SZ|APPLHEAPSZ
db connect to ldapdb
db select bpname npages pagesize from syscat bufferpools
db terminate
如果某个堆配置参数过低 就将出现一些功能性的问题 输入如下命令来显示当前的堆参数设置
db get db cfg for ldapdb | grep HEAP
下面是一个使用了推荐值的多种堆参数的输出例子显示
Database heap ( KB) (DBHEAP) =
Utilities heap size ( KB) (UTIL_HEAP_SZ) =
Max appl control heap size ( KB) (APP_CTL_HEAP_SZ) =
Sort list heap ( KB) (SORTHEAP) =
SQL statement heap ( KB) (STMTHEAP) =
Default application heap ( KB) (APPLHEAPSZ) =
Statistics heap size ( KB ) (STAT_HEAP_SZ) =
如果一个堆参数小于最小值 输入如下命令将其增大到最小值
db update db cfg for ldapdb using parm_name parm_value
这里parm_name是上文输出中的第三栏的字样(无括号) parm_value是最后一栏的值
如果堆参数设置的过高或者过低 IBM的目录服务器都会以失效来提示出现了问题 在这种情况下 需要查看诸如IBM Directory Server V (IDS )的cli error文件或者IBM Tivoli Directory Server V (IDS v )的db cli log或者其他一些文件 在IDS v 系统中 该文件缺省目录在Solaris的/var/ldap/和AIX的/tmp中 在IDS v 和后来系统中 Solaris和AIX的缺省目录都是/var/ldap
注意db look能够在一条命令下提供关于数据库及其配置的足够多的信息 例子如下
db look d ldapdb u ldapdb p o output_file
output_file是存储结果的文件位置
关于IBM目录服务器运行的警告
DB 参数调节使用了db terminate 如果当该命令发出 IBM目录服务器slapd或ibmslapd进程在运行 它将阻止服务器的部分功能 所有缓存的搜索看起来反应正常 其他的搜索将会简单的变为无结果或者出现错误信息 恢复功能将会重启IBM目录服务器 因此最好是在调节DB 参数时关闭IBM目录服务器
关于缓冲池内存使用的警告
如果任何的缓冲池被设置过高 DB 将会因为缺少足够内存而无法启动 如果出现该问题将会有一个核心转储的文件 但是通常没有错误信息
在AIX系统里 系统错误日志将会报告一个内存分配失败 查看这个日志请输入
errpt a | more
使用太大的缓冲池大小来恢复一个被分在系统里的数据库将会导致恢复失败 查看//publib boulder ibm /infocenter/tivihelp/v r /topic/ ibm itame doc_ /am _perftune #idtrouble来解决这个问题
如果DB 因为缓冲池过大而无法启动 请重新调节DB 参数
关于MINMIT的警告
lishixin/Article/program/DB2/201311/11229