当前位置:首页 » 数据仓库 » 数据库结构设计图
扩展阅读
webinf下怎么引入js 2023-08-31 21:54:13
堡垒机怎么打开web 2023-08-31 21:54:11

数据库结构设计图

发布时间: 2023-01-12 15:13:54

A. 数据库概念模型

一、航空物探数据库定位

数据库是信息系统的基础和核心,把大量的数据信息按一定的模型组织起来存储在数据库中,提供数据维护、数据检索等功能,使信息系统能方便、及时、准确地从数据库中获得所需的信息。因此,数据库结构设计是信息系统开发的重中之重。

经分析航空物探数据具有空间性、海量性、多源性和多尺度的特点,这说明航空物探数据具有典型的空间数据的特点,可以采用空间数据管理方式进行管理。

ESRI公司的Geodatabase(空间数据库)是采用标准关系数据库技术来表现地理信息的面向对象的高级GIS数据模型,是建立在DBMS之上的统一的、智能化的空间数据模型,是以一组相关联的表来表达地理要素之间关系、有效性规则和值域。对于多源、海量的航空物探数据,Geodatabase能在一个统一的模型框架下很好地解决多源数据一体化存储的问题,和采用标准关系数据库技术来表现海量航空物探数据的地理信息特性。Geodatabase引入了地理空间实体的行为、有效性规则和关系,在处理Geodatabase中对象时,对象的基本行为和必须满足的规则无需通过程序编码实现,只需根据需要扩展其有效性规则(Geodatabase面向对象的智能化特性),即可支持航空物探数据模型扩展的需要。

因此,航空物探数据库是空间数据库,在航空物探数据库建模过程中,以空间数据建模为主导,统领属性数据建模。

二、统一空间坐标框架

为了用数学语言描述地球,人们用规则的几何形体来替代地球表面,从地球自然表面、大地水准面、旋转椭球面直到用简单数学函数表达的参考椭球体,以便通过地图投影将三维曲面转化成二维平面。由于地球表面不同地区的地形起伏差异很大,采用单一椭球体势必会造成某地区的误差小而其他地区误差很大的结果。因此,在20世纪初不同国家或地区先后采用了逼近本国或本地区地球表面的椭球体,如中国的克拉索夫斯基椭球体,美国的海福特椭球体、英国的克拉克椭球体等。这又造成了目前世界各国的地理信息空间坐标框架不统一,空间数据信息难以共享被动局面。为此,在实现数字地球计划中,必须规范和统一世界上不同国家和地区的地球参考椭球体。

在小区域表达地球表面时,通常采用平面的方式,即投影坐标系统。如何科学地选择投影坐标,一般要根据具体的地学应用、地理区域和范围、比例尺条件等因素来确定,不同的国家有着不同的规定。

通过对航空物探数据的坐标系统进行分析可知,航空物探图件的坐标框架与国家对基本比例尺制图的规定相一致,即小比例尺编图采用Lambert双标准纬线等角圆锥投影;中比例尺采用Gauss 6°带的分带投影;大比例尺采用Gauss 3°带的分带投影(表2-1);对于低纬度的海上作业区通常采用Mecator等角圆柱投影。地球椭球体分别采用1954北京坐标系的Krassovsky椭球参数、WGS84椭球参数和未来的国家2000坐标系的椭球参数。

表2-1 航空物探地理坐标数据的投影方式

传统的航空物探数据是按测区管理的,根据测区的测量比例尺来确定相应的坐标框架;因此,勘探目标不同的测区测量比例尺是不一致的,地坐标框架也不同。航空物探数据库要将不同测区、不同比例尺、不同坐标框架的数据集中管理和可视表达,若没有统一的空间坐标框架,就不可能正确地表达全国航空物探数据。所以,面对如此复杂的多坐标框架的航空物探数据,如何确定科学合理的空间坐标框架,将全国的航空物探数据整合到统一的空间参考框架下,实现数据的统一存储和数据间无缝拼接,是航空物探数据库建设的关键所在,是组织和管理多维、多格式、大跨度、跨平台的航空物探数据和多目标数字制图的数学基础。

统一的空间坐标框架必须支持我国领土覆盖的海域和陆域航空物探数据的存储和表达。我国领土东西跨度达70°,南北达55°,显然采用任何投影坐标系都是不合适的。Gauss 6°投影适合6°带内空间数据表达,若全国航物探数据采用6°分带表达,在高纬度地区会造成6°带间数据裂缝问题;Lambert投影可满足数据的无缝表达,但对大比例尺数据变形较大,无法满足数据制图的精度要求;Mecator投影也可满足数据的无缝表达,低纬度地区也能满足大比例尺数据制图的精度要求,但在我国中高纬度区存在着严重变形问题。所以,航空物探数据模型采用地理坐标(无投影,图2-1)格式存放,可根据实际应用的需要将航空物探数据变换到任何方式的投影坐标系统。

航空物探数据库模型采用Beijing_1954地理坐标系,相关参数如下:

角度单位:°(0.017453292519943299rad)

零经线:格林尼治(0.000000000000000000)

基准:D_Beijing_1954

椭球:Krasovsky_1940

长轴半径:6378245.000 m

短轴半径:6356863.019 m

建立统一坐标框架是空间数据库建设的一项基础性工作,采用Beijing_1954 地理坐标系作为航空物探数据库统一空间坐标框架具有以下优点。

图2-1 统一空间坐标框架示意图

(一)无缝空间数据存储

统一空间坐标框架解决了复杂的航空物探数据的坐标系统、投影、比例尺等不统一的问题,实现同一性质的物探数据在同一个主题中进行管理。如全国的航磁异常数据可放在一个图层上进行管理。

(二)适合多尺度表达

按测区管理的多尺度、多框架的航空物探数据是处于一个相对坐标系统中,各个测区间相对位置关系会发生错位。采用统一的Beijing_1954地理坐标框架,恢复了各测区间正确的位置关系,实现不同尺度数据的集成和正确表达,易于多源异构空间数据的融合。

(三)大区域数据集成

我国海陆面积近1300×104km2,地域跨度较大。在进行小比例尺的航空物探编图时,需要选用与之相适应的投影坐标;在陆地和海域进行大比例尺制图时,同样需要选用合适投影系统。航空物探制图的实践也证明了这一点。1995 年6 月由中国、加拿大、美国、爱尔兰和俄罗斯等国科学家共同编制的1∶1000万欧亚东北地区磁异常与大地构造图,采用横轴Mercator投影。中心编制的1∶500 万全国航磁图采用Lambert投影。2008 年,由中国和吉尔吉斯斯坦科学家编制的1∶100万中吉天山金属矿产成矿规律图,采用Lambert投影,将两个国家不同时期、不同尺度的数据进行了有效的集成,是地质、地球物理等综合应用的典范。

随着航空物探数据应用领域的不断扩展,陆地、海域,甚至于洲际和全球航空物探数据的整体表达都需对坐标投影提出要求。采用统一的地理坐标框架的航空物探数据非常容易变换到指定的投影坐标框架,满足多样化的制图要求。

三、要素类和对象类的划分

Geodatabase空间数据库模型结构(图2-2)分为空间数据库、要素数据集(Feature dataset)、要素类(Feature classes)、要素(Feature)4个层次。为了建立航空物探Geodatabase空间数据模型,我们依据Geodatabase模型关于要素类和对象类的划分原则,结合相关的国家标准和地球物理行业标准,制定了《航空物探数据要素类和对象类划分标准》,对航空物探数据进行数据分类。

图2-2 空间数据库模型结构

1)按照航空物探数据的空间特征,将其划分为5个要素数据集,即勘查项目概况要素数据集、基础数据要素数据集、异常要素数据集、解释要素数据集和评价要素数据集。

2)根据航空物探测量方法、数据处理过程以及推断解释方法和过程,进一步把航空物探数据划分为若干要素类和对象类,定义了要素类的主题特征和表达方式,确定子类和属性域;定义对象类的结构和联接字段,建立了关系类。

3)定义要素类的内容、字段名称和存储结构。在航空物探数据采集过程中,不同类型的数据采样率不同,坐标数据采样2次/s,重力场数据采样2次/s,磁场数据采样10次/s,这就造成了场值数据与坐标数据无法一一对应问题。若按场值数据采样率内插坐标数据,将导致数据量成倍增长;若按坐标数据采样率抽稀场值数据,将降低航空物探测量对地质体的分辨能力,影响测量效果。在综合分析航空物探数据应用基础上,提出了采用要素数据与属性数据分置的方式,将测线坐标数据与地球物理场数据分离,分别建立独立共享的航迹线数据要素类模型,磁场、重力场等数据对象类模型(图2-3),很好地解决了航空物探数据的存储问题。

图2-3 要素数据与属性数据分置示意图

采用要素数据与属性数据分置方式,不仅是基于航空物探数据属性数据的多源性、不同采样频率等特点的考虑,还考虑到数据的综合查询和检索的速度,特别是通过ArcSDE访问空间数据库的效率的问题。再者,对于大部分用户来说,需求是属性数据的综合应用,因此在数据库建模过程中,将属性数据采用对象类的方式进行管理,不但提高了空间数据的操作能力,同时在ArcSDE的配置上采用直接访问数据库(对象类)方式,并且加快了数据查询和统计的速度。

四、数据库概念模型

用户需求是数据库建设的约束条件之一。航空物探数据的空间特性决定航空物探数据库必须是空间数据库,采用数据库管理数据,利用GIS技术提供可视化服务,这是各个层次用户的一致要求。因此,我们从现实世界出发,对航空物探数据的多源性、多尺度和不同采样等问题进行了描述,提出了解决方案。此方案是不依赖于任何具体的硬件环境和数据库管理系统(DBMS),建立了客观反映现实世界的航空物探数据库概念模型,把用户需要管理的信息统一到整体概念结构中,表达了用户需要。

在全面分析航空物探业务流程和数据流程,以及航空物探数据特性的基础上,按照《航空物探数据要素类和对象类划分标准》,以及空间实体点、线、面要素特征的基本原则,对航空物探数据库所涉及的实体进行归类,划分成12个主题。根据空间数据分主题表达的特点和航空物探空间数据坐标框架的定义,确定航空物探数据库空间数据概念模型,明确各个主题的用途、数据来源、表达方式、空间参考、比例尺和精度等内容,按照ArcGIS定义空间数据库的数据分层表达方式(图2-4),完成航空物探数据库概念模型设计(图2-5)。

图2-4 航空物探数据库空间数据分层模型

图2-5 航空物探数据库空间数据概念模型

B. 数据库的逻辑结构设计的图向关系

模型的转换 E-R图如何转换为关系模型呢?我们先看一个例子。
图2.1是学生和班级的E-R图,学生与班级构成多对一的联系。根据实际应用,我们可以做出这个简单例子的关系模式:
学生(学号,姓名,班级)
班级(编号,名称)
“学生.班级”为外键,参照“班级.编号”取值。
这个例子我们是凭经验转换的,那么里面有什么规律呢?在2.2节,我们将这些经验总结成一些规则,以供转换使用。 (1)一个实体型转换为一个关系模式
一般E-R图中的一个实体转换为一个关系模式,实体的属性就是关系的属性,实体的码就是关系的码。
(2)一个1:1联系可以转换为一个独立的关系模式,也可以与任意一端对应的关系模式合并。
图2.2是一个一对一联系的例子。根据规则(2),有三种转换方式。
(i) 联系单独作为一个关系模式
此时联系本身的属性,以及与该联系相连的实体的码均作为关系的属性,可以选择与该联系相连的任一实体的码属性作为该关系的码。结果如下:
职工(工号,姓名)
产品(产品号,产品名)
负责(工号,产品号)
其中“负责”这个关系的码可以是工号,也可以是产品号。
(ii) 与职工端合并
职工(工号,姓名,产品号)
产品(产品号,产品名)
其中“职工.产品号”为外码。
(iii) 与产品端合并
职工(工号,姓名)
产品(产品号,产品名,负责人工号)
其中“产品.负责人工号”为外码。
(3)一个1:n联系可以转换为一个独立的关系模式,也可以与n端对应的关系模式合并。
(i) 若单独作为一个关系模式
此时该单独的关系模式的属性包括其自身的属性,以及与该联系相连的实体的码。该关系的码为n端实体的主属性。
顾客(顾客号,姓名)
订单(订单号,……)
订货(顾客号,订单号)
(ii) 与n端合并
顾客(顾客号,姓名)
订单(订单号,……,顾客号)
(4)一个m:n联系可以转换为一个独立的关系模式。
该关系的属性包括联系自身的属性,以及与联系相连的实体的属性。各实体的码组成关系码或关系码的一部分。
教师(教师号,姓名)
学生(学号,姓名)
教授(教师号,学号)
(5)一个多元联系可以转换为一个独立的关系模式。
与该多元联系相连的各实体的码,以及联系本身的属性均转换为关系的属性,各实体的码组成关系的码或关系码的一部分。
(6)具有相同码的关系模式可以合并。
(7)有些1:n的联系,将属性合并到n端后,该属性也作为主码的一部分
这类问题多出现在聚集类的联系中,且部分实体的码只能在某一个整体中作为码,而在全部整体中不能作为码的情况下才出现(其它情况本人还没碰到,呵呵,欢迎指教)。
比如上篇文章介绍的管理信息系统中订单与订单细节的联系。
关于什么是聚集,2.3节介绍。 这部分本应在概念设计中介绍的,用到了才想起来,这里补充一下。
关于现实世界的抽象,一般分为三类:
(1) 分类:即对象值与型之间的联系,可以用“is member of”判定。如张英、王平都是学生,他们与“学生”之间构成分类关系。
(2) 聚集:定义某一类型的组成成分,是“is part of”的联系。如学生与学号、姓名等属性的联系。
(3) 概括:定义类型间的一种子集联系,是“is subset of”的联系。如研究生和本科生都是学生,而且都是集合,因此它们之间是概括的联系。
例:猫和动物之间是概括的联系,《Tom and Jerry》中那只名叫Tom的猫与猫之间是分类的联系,Tom的毛色和Tom之间是聚集的联系。
订单细节和订单之间,订单细节肯定不是一个订单,因此不是概括或分类。订单细节是订单的一部分,因此是聚集。 有了关系模型,可以进一步优化,方法为:
(1) 确定数据依赖。
(2) 对数据依赖进行极小化处理,消除冗余联系(参看范式理论)。
(3) 确定范式级别,根据应用环境,对某些模式进行合并或分解。
以上工作理论性比较强,主要目的是设计一个数据冗余尽量少的关系模式。下面这步则是考虑效率问题了:
(4) 对关系模式进行必要的分解。
如果一个关系模式的属性特别多,就应该考虑是否可以对这个关系进行垂直分解。如果有些属性是经常访问的,而有些属性是很少访问的,则应该把它们分解为两个关系模式。
如果一个关系的数据量特别大,就应该考 虑是否可以进行水平分解。如一个论坛中,如果设计时把会员发的主贴和跟贴设计为一个关系,则在帖子量非常大的情况下,这一步就应该考虑把它们分开了。因为 显示的主贴是经常查询的,而跟贴则是在打开某个主贴的情况下才查询。又如手机号管理软件,可以考虑按省份或其它方式进行水平分解。 这部分主要是考虑使用方便性和效率问题,主要借助视图手段实现,包括:
(1) 建立视图,使用更符合用户习惯的别名。
(2)对不同级别的用户定义不同的视图,以保证系统的安全性。
(3)对复杂的查询操作,可以定义视图,简化用户对系统的使用。
物理设计主要工作是选择存取方法(索引),以及确定数据库的存储结构,这里就不说明了。

C. 如何通过E-R图设计关系数据库的概念模式

如果你已经建立了E-R图,那么转化为关系模式的方法是:
1 每个实体转换为一个关系模式,实体的属性就是关系的属性。
2 实体之间的联系转换比较复杂,请查阅王珊“数据库系统概论”(第4版)P225上面有详细转换原则。

D. 数据库表结构设计(如下图所示)用什么工具画

先建空白excel--在左侧找到该表,右键--设计--然后右侧显示出表结构,鼠标左键单击右侧空白处--Ctrl+A全选--Ctrl+C复制--打开excel--Ctrl+V粘贴。

E. 急求数据库设计 报刊发行管理系统ER图

网络一下,找到的~~
另外,校园网用户使用“知网”上的论文是免费的,另存就好了~
注册|登录|我的账户高级搜索:用"
邮政管理
计算机..
"到知网平台检索,点击这里搜索更多...
《南京邮电大学学报(自然科学版)》
1993年04期
加入收藏
获取最新
报刊发行管理系统的设计刘一凡
【摘要】:介绍了一个实用的报刊发行管理系统,讨论了设计中的问题,并提出解决方法。还详细描述了系统的数据库结构、程序框图和设计。
【作者单位】:
【关键词】:
邮政管理
计算机管理系统
数据库
【分类号】:TP399;;F614
【DOI】:CNKI:SUN:NJYD.0.1993-04-010
【正文快照】:
1引言!〕.,月卫.叨门Jl.,...
目前,相当一部分邮电局的报刊发行工作还处于手工管理阶段。从向用户征订报刊起,然后进行分类统计,向省会局要数,直到将报刊分发给用户,这一工作流程繁琐复杂,且受到时间的限制。本文所设计的报刊发行微机管理系统可代替人工去完成这些繁琐复杂的……
这个行吗?
行就留邮箱……

F. 数据库技术ER图如何画

如何画数据库ER图

数据库设计中重要的一环首先就是概念设计,也就是说,要从实际问题出发,排除非本质的东西,抽象出现实的数据结构之客观规律——即画出数据结构图——ER图。这是数据库设计的重点,也是数据库设计的难点。

那么,如何才能正确地反映客观现实,将ER图画好呢?

答案是,必须进行正确的需求分析。那么如何进行需求分析呢?需求分析一般有两种方法,一种是结构化分析(SA),一种是面向对象分析(OOA).通过这两种方法的实施以后,都可以得到比较正确的ER图。现在以下面的实际问题为例,通过结构化分析(SA)方法的应用,讲述如何得到比较正确的ER图。

(一)校务管理系统

在要建立的系统中,有以下功能:

1.管理老师的功能:录入老师情况(姓名.地址.所教课程),老师缺课记录(名字.时间.原因.课程)

2.管理学生的功能:录入学生情况(姓名.所选课程.成绩)

3.教务主任的功能:查询统计1:教师情况2:学生总成绩3:学生平均成绩

要求:

1)用结构化方法画出系统顶层图、0层图,数据字典。

2)画出该系统的数据模型ER图。

一、结构化分析的需求分析

1)分析实际情况

根据实际情况,我们得到一下情况:

(一)教师任课流程:

G. 请问这个数据库表结构怎么设计

1,A表为销售表,可拆分为A1(商品表),A2销售主表,A3销售从表,结构如下:
A1(商品编号,品名规格,...),A2(销售单号,销售时间,....),A3(销售单号,商品编号,数量,价格,....)
2,B表为统计表,一般通过查询实现,不用建议实体表。
他们的关系是A2对A3为1对多。