❶ Mysql性能调优与架构设计的编辑推荐
支付宝架构师冯大辉、淘宝首席DBA陈吉平、阿里巴巴首席DBA冯春培、网易高级DBA翟振兴、搜狐高级DBA叶金荣、网络高级DBA吴诗展等6位数据库专家作序推荐。
初级DBA到LAMP架构设计师必备利器。
剖析高性能高可用MySQL调优方法,探索低成本数据库系统构建之道。
❷ 优化Derby数据库程序性能的方法有哪些
derby数据库可视化操作工具,该怎么解决
浅谈一下Cognos处理大数据的思路,仅针对10.2.1以下的版本,对于10.2.1当中引入的hadloop等分布式数据仓库等不做介绍。我们主要从一个一般中等项目当中,用怎样的思路来优化我们的查询。
我们主要从3个思路来思考大数据的处理
一、数据库层次
现在主流的Cognos项目,主要的开发模式还是基于rolap的dmr报表建模。因此,数据库的优化就显得由为重要。主要通过以下几个方面优化我们的数据库:
(1)维度id,维度层次id等关键减缩字段建立索引建立、维护。
(2)根据数据量的大小,按时间等进行分区优化。
(3)高速缓冲表MQT的使用
(4)表空间、缓冲池设置等
(5)数据库性能优化
二、Cognos Server优化
Cognos优化包括对配置文件的优化,集群的搭建,服务和日志的开启等基于cognos 软件安装,配置的优化,主要包括以下几个方面:
2.1 apache 配置优化
Timeout(超时)/MaxKeepAliveRequests(最大的请求数)/KeepAliveTimeout(请求超时)的优化配置
2.2Cognos自带tomcat配置调优
(1)可修改TOMCAT配置文件CRN_ROOT\tomcat.\conf\server.xml。其参数集中在行:
可以对maxProcessors(最大进程数)/AcceptCount(最大连接数) ConnectionTimeout(连接超时)进行修改
(2)文件路径:CRN_ROOT\tomcat.\conf\web.xml
可以对session-timeout进行修改.
❸ 数据库调优是什么
一、概述
随着数据库在各个领域的使用不断增长,越来越多的应用提出了高性能的要求。数据库性能调优是知识密集型的学科,需要综合考虑各种复杂的因素:数据库缓冲区的大小、索引的创建、语句改写等等。总之,数据库性能调优的目的在于使系统运行得更快。
调优需要有广泛的知识,这使得它既简单又复杂。
说调优简单,是因为调优者不必纠缠于复杂的公式和规则。许多学术界和业界的研究者都在尝试将调优和查询处理建立在数学基础之上。
称调优复杂,是因为如果要完全理解常识所依赖的原理,还需要对应用、数据库管理系统、操作系统以及硬件有广泛而深刻的理解。
数据库调优技术可以在不同的数据库系统中使用。如果需要调优数据库系统,最好掌握如下知识:1)查询处理、并发控制以及数据库恢复的知识;2)一些调优的基本原则。
这里主要描述索引调优。
二、索引调优
索引是建立在表上的一种数据组织,它能提高访问表中一条或多条记录的特定查询效率。因此,适当的索引调优是很重要的。
对于索引调优存在如下的几个误区:
误区1:索引创建得越多越好?
实际上:创建的索引可能建立后从来未使用。索引的创建也是需要代价的,对于删除、某些更新、插入操作,对于每个索引都要进行相应的删除、更新、插入操作。从而导致删除、某些更新、插入操作的效率变低。
误区2:对于一个单表的查询,可以索引1进行过滤再使用索引2进行过滤?
实际上:假设查询语句如下select * from t1 where c1=1 and c2=2,c1列和c2列上分别建有索引ic1、ic2。先使用ic1(或ic2)进行过滤,产生的结果集是临时数据,不再具有索引,所以不可使用ic2(或ic1)进行再次过滤。
索引优化的基本原则:
1、将索引和数据存放到不同的文件组
没有将表数据和索引数据存储到不同的文件组,而不加区别地将它们存储到同一文件组。这样,不但会造成I/O竞争,也为数据库的维护工作带来不变。
2、组合索引的使用
假设存在组合索引it1c1c2(c1,c2),查询语句select * from t1 where c1=1 and c2=2能够使用该索引。查询语句select * from t1 where c1=1也能够使用该索引。但是,查询语句select * from t1 where c2=2不能够使用该索引,因为没有组合索引的引导列,即,要想使用c2列进行查找,必需出现c1等于某值。
根据where条件的不同,归纳如下:
1) c1=1 and c2=2:使用索引it1c1c2进行等值查找。
2) c1=1 and c2>2:使用索引it1c1c2进行范围查找,可以有两种方法。
方法1,使用通过索引键(1,2)在B树中命中一条记录,然后向后扫描找出 第一条符合条件的记录,从此记录往后的每一条记录都是符合条件的。这种方法的弊端在于:如果c1=1 and c2=2对应的记录数很多,会产生很多无效的扫描。
方法2,如果c2对应的int型数据,可以使用索引键(1,3)在B树中命中一条记录,从此记录往后的每一条记录都是符合条件的。
本文中的例子均采用方法1。
3)c1>1 and c2=2:因为索引的第一个列不是等于号的,索引即使后面出现了c2=2,也不能将c2=2应用于索引查找。这里,通过索引键(1,- ∞)在B树中命中一条记录,向后扫描找出第一条符合c1>1的记录,此后的每一条记录判断是否符合c2=2,如果符合则输出,否则过滤掉。这里我们称c2=2没有参与到索引运算中去。这种情况在实际应用中经常出现。
4)c1>1:通过索引键(1,- ∞) 在B树中命中一条记录,以此向后扫描找出第一条符合c1>1的记录,此后的每条记录都是符合条件的。
3、唯一索引与非唯一索引的差异
假设索引int1c1(c1)是唯一索引,对于查询语句select c1 from t1 where c1=1,达梦数据库使用索引键(1)命中B树中一条记录,命中之后直接返回该记录(因为是唯一索引,所以最多只能有一条c1=1的记录)。
假设索引it1c2(c2)是非唯一索引,对于查询语句select c2 from t2 where c2=2,达梦数据库使用索引键(2)命中B树中一条记录,返回该记录,并继续向后扫描,如果该记录是满足c=2,返回该记录,继续扫描,直到遇到第一条不符合条件c2=2的记录。
于是,我们可以得知,对于不存在重复值的列,创建唯一索引优于创建非唯一索引。
4、非聚集索引的作用
每张表只可能一个聚集索引,聚集索引用来组织真实数据。语句“create table employee (id int cluster primary key,name varchar(20),addr varchar(20))”。表employee的数据用id来组织。如果要查找id=1000的员工记录,只要用索引键(1000)命中该聚集索引。但是,对于要查找name=’张三’的员工记录就不能使用该索引了,需要进行全表扫描,对于每一条记录判断是否满足name=’张三’,这样会导致查询效率非常低。
要使用聚集索引,必需提供id,我们只能提供name,于是需要引入一个辅助结构实现name到id的转换,这就是非聚集索引的作用。该非聚集索引的键是name,值是id。于是语句“select * from employee where name=’张三’”的执行流程是:通过键(’张三’)命中非聚集索引,得到对应的id值3(假设’张三’对应的id为3),然后用键(3)命中聚集索引,得到相应的记录。
5、是不是使用非聚集索引的查询都需要进行聚集的查询?
不是的,虽然在上一点中查询转换为聚集索引的查找,有时候可以只需要使用非聚集索引。
创建表并创建相应的索引:create table t1(c1 int,c2 int,c3 int);create index it1c2c3 on t1(c2,c3)。查询语句为:select c3 from t1 where c2=1。
因为索引it1c2c3(c2,c3)覆盖查询语句中的列(c2,c3)。所以,该查询语句的执行流程为:通过索引键(1,- ∞)命中索引it1c2c3,对于该记录直接返回c3对应的值,继续向后扫描,如果索引记录中c1还是等于1,那么输出c3,以此类推,直到出现第一条c1不等于1的索引记录,结束查询。
6、创建索引的规则
创建索引首先要考虑的是列的可选择性。比较一下列中唯一键的数量和表中记录的行数,就可以判断该列的可选择性。如果该列的“唯一键的数量/表中记录行数”的比值越接近于1,则该列的可选择行越高。在可选择性高的列上进行查询,返回的数据就较少,比较适合索引查询。相反,比如性别列上只有两个值,可选择行就很小,不适合索引查询。
❹ MySQL 5.7中新增sys schema有什么好处
性能优化利器:剖析MySQL 5.7新特征 sys schema
导读:很多团队在评估合适的时机切换到 MySQL 5.7,本文是在高可用架构群的分享,介绍 MySQL 5.7 新的性能分析利器。
李春,现任科技 MySQL 负责人,高级 MySQL 数据库专家,从事 MySQL 开发和运维工作 8 年。在担任 MySQL 数据库 leader 期间,主要负责应用架构的优化和部署,实现了阿里巴巴 3 亿 产品 从 Oracle 小型机到 64 台 MySQL 的平滑迁移。专注于研究 MySQL 复制、高可用、分布式和运维自动化相关领域。在大规模、分布式 MySQL 集群管理、调优、快速定位和解决问题方面有丰富经验。管理超过 1400 台 MySQL 服务器,近 3000 个实例。完成 MySQL 自动装机系统、MySQL 标准化文档和操作手册、MySQL 自动规范性检查系统、MySQL 自动信息采集系统等标准化文档和自动化运维工具。
sys schema 由来
Performance schema 引入
Oracle 早就有了 v$ 等一系列方便诊断数据库性能的工具,MySQL DBA 只有羡慕嫉妒恨的份,但是 5.7 引入的 sys schema 缓解了这个问题,让我们可以通过 sys schema 一窥 MySQL 性能损耗,诊断 MySQL 的各种问题。
说到诊断 MySQL 性能问题,不得不提在 MySQL 5.5 引入的 performance_schema,最开始引入时,MySQL 的 performance_schema 性能消耗巨大,随着版本的更新和代码优化,5.7 的 performance_schema 对 MySQL 服务器额外的消耗越来越少,我们可以放心的打开 performance_shema 来收集 MySQL 数据库的性能损耗。Tarique Saleem 同学测试了一下 sys schema 对 CPU 和 IO的额外消耗,基本在 1% - 3% 之间,有兴趣的同学可以参考他的这篇 blog:
(CPU Bound, Sysbench Read Only Mode)
performance_schema 不仅由于他的性能消耗大着名,还由于其复杂难用而臭名昭着。5.7 上的 performance schema 已经有 87 张表了,每个表都是各种统计信息的罗列;另外,他的这些表和 information_schema 中的部分表也缠夹不清,让大家用得很不习惯。
sys schema VS performance schema VS information schema
现在 MySQL 在 5.7 又新增了sys schema,它和 performance_schema 和 information schema 到底是什么关系?
Information_schema 定位基本是 MySQL 元数据信息,比如:TABLES 记录了 MySQL 有哪些表,COLUMNS 记录了各个表有哪些列 。
performance_schema 记录了 MySQL 实时底层性能消耗情况,比如:events_waits_current 记录了 MySQL 各个线程当前在等待的 event。
虽然他们之间的这个定位区别并没有那么明显:比如,Information_schema 的 innodb_locks 就记录了 innodb 当前锁的信息,它并不是 MySQL 的元数据信息。sys schema 最开始是 MarkLeith 同学为了方便读取和诊断 MySQL 性能引入到 MySQL 的。所以 sys schema 定位应该是最清晰的:它包含一系列对象,这些对象能够辅助 DBA 和开发人员了解 performance schema 和 information_schema 采集的数据。
sys schema 包含了什么?
sys schema 包含一些对象,这些对象主要用于调优和故障分析。包括:
将 performance schema 和 information schema 中的数据用更容易理解的方式来总结归纳出来的“视图”。
提供 performance schema 和 information schema 配置或者生成分析报告类似操作的“存储过程”
sys schema 本身不采集和存储什么信息,它只是为程序或者用户提供一个更加方便的诊断系统性能和排除故障的“接口”。也就是说,查询 performance schema 和 information schema 配置和提供格式化服务的“存储函数”。
避免用户在 information schema 和 performance schema 中写各种复杂的查询来获得到底谁锁了谁,每个线程消耗的内存是多少 ( 视图 memory_by_thread_by_current_bytes ),每个 SQL 执行了多少次,大致的执行时间是多少( 视图 statements_with_runtimes_in_95th_percentile )等,这些 sys schema 都直接帮你写好,你只需要直接查询就好了。
编写了一些现成的存储过程,方便你:直接使用 diagnostics() 存储过程创建用于诊断当前服务器状态的报告;使用 ps_trace_thread() 存储过程创建对应线程的图形化( .dot类型 )性能数据。
编写了一些现成的存储函数,方便你:直接使用 ps_thread_account() 存储函数获得发起这个线程的用户,使用 ps_thread_trx_info() 来获得某线程当前事务或者历史执行过的语句( JSON 格式返回 )。
当然,你也可以在 sys schema 下增加自己用于诊断 MySQL 性能的“视图”、“存储过程”和“存储函数”。
sys schema 举例
怎么利用 sys schema 来定位问题和诊断数据库性能?这里简单举一个 innodb 行锁的例子来说明。
模拟行锁
拿一个实际的场景来说 sys schema 能够辅助我们分析当前数据库上哪个 session 被锁住了,并且提供“清理”锁的语句。我们模拟一个表的某一行被锁住的情况,假设表创建语句如下:
CREATE TABLE `test2` (
`id` int(11) NOT NULL,
`name` varchar(16) DEFAULT NULL,
`age` int(11) DEFAULT NULL,
`sex` int(11) DEFAULT NULL,
PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1
有一条数据如下:
mysql > select * from test2;
+----+---------+------+------+
| id | name | age | sex |
+----+---------+------+------+
| 2 | pickup1 | 1 | 1 |
+----+---------+------+------+
我们分别在 session 1 和 session 2 上同时操作这条数据,这样的话必然对同一行记录相互有锁死的情况,然后我们通过 session 3 来查看 sys schema 里面的 innodb_lock_waits,确定到底是谁锁了谁,怎么解锁?操作步骤如下:
通过 sys.innodb_lock_waits 查看 innodb 锁表情况
对应的在 session 3上查看到的记录:
mysql > select * from sys.innodb_lock_waitsG
*************************** 1. row ***************************
wait_started: 2016-05-04 01:04:38
wait_age: 00:00:02
wait_age_secs: 2
locked_table: `test`.`test2`
locked_index: PRIMARY
locked_type: RECORD
waiting_trx_id: 5382
waiting_trx_started: 2016-05-04 00:24:21
waiting_trx_age: 00:40:19
waiting_trx_rows_locked: 4
waiting_trx_rows_modified: 0
waiting_pid: 3
waiting_query: update test2 set name='pickup3' where id=2
waiting_lock_id: 5382:31:3:3
waiting_lock_mode: X
blocking_trx_id: 5381
blocking_pid: 2
blocking_query: NULL
blocking_lock_id: 5381:31:3:3
blocking_lock_mode: X
blocking_trx_started: 2016-05-04 00:23:49
blocking_trx_age: 00:40:51
blocking_trx_rows_locked: 1
blocking_trx_rows_modified: 1
sql_kill_blocking_query: KILL QUERY 2
sql_kill_blocking_connection: KILL 2
这里我们可以看到 3 号线程( waiting_pid: 3 )在等待 2 号线程( blocking_pid: 2 )的 X 锁( blocking_lock_mode: X ),如果需要解锁,需要杀掉 2 号线程( sql_kill_blocking_connection: KILL 2 )。
innodb_lock_waits 本质
其实 sys schema 的 innodb_lock_waits 只是 information schema 的视图而已。
CREATE ALGORITHM = TEMPTABLE DEFINER = `mysql.sys`@`localhost` SQL SECURITY INVOKER VIEW `innodb_lock_waits` AS
SELECT
`r`.`trx_wait_started` AS `wait_started`,
TIMEDIFF(NOW(),
`r`.`trx_wait_started`) AS `wait_age`,
TIMESTAMPDIFF(
SECOND,
`r`.`trx_wait_started`,
NOW()) AS `wait_age_secs`,
`rl`.`lock_table` AS `locked_table`,
`rl`.`lock_index` AS `locked_index`,
`rl`.`lock_type` AS `locked_type`,
`r`.`trx_id` AS `waiting_trx_id`,
`r`.`trx_started` AS `waiting_trx_started`,
TIMEDIFF(NOW(),
`r`.`trx_started`) AS `waiting_trx_age`,
`r`.`trx_rows_locked` AS `waiting_trx_rows_locked`,
`r`.`trx_rows_modified` AS `waiting_trx_rows_modified`,
`r`.`trx_mysql_thread_id` AS `waiting_pid`,
`sys`.`format_statement`(`r`.`trx_query`) AS `waiting_query`,
`rl`.`lock_id` AS `waiting_lock_id`,
`rl`.`lock_mode` AS `waiting_lock_mode`,
`b`.`trx_id` AS `blocking_trx_id`,
`b`.`trx_mysql_thread_id` AS `blocking_pid`,
`sys`.`format_statement`(`b`.`trx_query`) AS `blocking_query`,
`bl`.`lock_id` AS `blocking_lock_id`,
`bl`.`lock_mode` AS `blocking_lock_mode`,
`b`.`trx_started` AS `blocking_trx_started`,
TIMEDIFF(NOW(),
`b`.`trx_started`) AS `blocking_trx_age`,
`b`.`trx_rows_locked` AS `blocking_trx_rows_locked`,
`b`.`trx_rows_modified` AS `blocking_trx_rows_modified`,
CONCAT(
'KILL QUERY ',
`b`.`trx_mysql_thread_id`
) AS `sql_kill_blocking_query`,
CONCAT('KILL ',
`b`.`trx_mysql_thread_id`) AS `sql_kill_blocking_connection`
FROM
(
(
(
(
`information_schema`.`innodb_lock_waits` `w`
JOIN
`information_schema`.`innodb_trx` `b` ON((`b`.`trx_id` = `w`.`blocking_trx_id`))
)
JOIN
`information_schema`.`innodb_trx` `r` ON(
(`r`.`trx_id` = `w`.`requesting_trx_id`)
)
)
JOIN
`information_schema`.`innodb_locks` `bl` ON(
(
`bl`.`lock_id` = `w`.`blocking_lock_id`
)
)
)
JOIN
`information_schema`.`innodb_locks` `rl` ON(
(
`rl`.`lock_id` = `w`.`requested_lock_id`
)
)
)
ORDER BY
`r`.`trx_wait_started`
innodb_lock_waits和x$innodb_lock_waits区别
有心的同学可能会注意到,sys schema 里面有 innodb_lock_waits 和 x$innodb_lock_waits。其实 sys schema 的这些视图大部分都成对出现,其中一个的名字除了 x$ 前缀以外跟另外一个是一模一样的。例如,host_summmary_by_file_io 视图分析汇总的是根据主机汇总的文件 IO 情况,并将延迟从皮秒( picoseconds )转换成更加易读值( 带单位 )显示出来:
mysql> SELECT * FROM host_summary_by_file_io;
+------------+-------+------------+
| host | ios | io_latency |
+------------+-------+------------+
| localhost | 67570 | 5.38 s |
| background | 3468 | 4.18 s |
+------------+-------+------------+
而 x$host_summary_by_file_io 视图分析汇总的是同样的数据,但是显示的是未格式化过的皮秒( picosecond )延迟值
mysql> SELECT * FROM x$host_summary_by_file_io;
+------------+-------+---------------+
| host | ios | io_latency |
+------------+-------+---------------+
| localhost | 67574 | 5380678125144 |
| background | 3474 | 4758696829416 |
+------------+-------+---------------+
没有 x$ 前缀的视图是为了提供更加友好,对人更加易读的输出格式。带 x$ 前缀的视图显示了数据原始格式,它方便其他工具基于这些数据进行自己的处理。需要了解非 x$ 和 x$ 视图的不同点的进一步信息。
Q&A
提问:sys schema 只是在 performance_schema 和 information_schema 之上创建视图和存储过程?
李春:对,sys schema 主要针对的其实是 iperformance schema,有部分 information schema 的表也会整理到 sys schema 中统一展现。
提问:运行 KILL 2 杀掉 2 线程?blocking_lock_mode: X 的 X 什么意思?
李春:blocking_lock_mode 的 X 是指 X 锁,exclusive 锁,排它锁,跟它对应的是 S 锁,共享锁。kill 2 是杀掉 2 号线程,这样可以将锁释放,让被锁的这个线程正常执行下去。
提问:可以放心的打开 performance_schema,为何不使用 performance_schema 再造一个 sys schema?
李春:performance schema 是 MySQL 采集数据库性能的存储空间。sys schema 其实只是对 performance schema 多个表 join 和整合。两者的定位有所不同,如果直接放在 performance schema 中,分不清哪些是基表,哪些是视图,会比较混淆。
提问:pt-query-digest 这些工具的有开始使用 sys schema 吗?
李春:没有,pt-query-digest 主要用于分析慢查和 tcpmp 的结果,跟 sys schema 的定位有部分重叠的地方,sys schema 会分析得更细,更内核,更偏底层一些,pt-query-digest 主要还是从慢查和 tcpmp 中抽取 SQL 来格式化展现。
提问:阿里这么多数据库实例,使用什么运维工具?分布式事务又是怎么解决的呢?
李春:阿里内部有非常多的运维工具,dbfree,idb 等,用于数据库资源池管理,数据库脱敏,开发测试库同步,数据库订正,表结构变更等。分布式事务主要通过业务上的修改去屏蔽掉,比如:电影买票并不是你选了座位和付款就必须在一个事务里面,抢票,选座,付款分别是自己的子事务,系统耦合性比较弱,相互通知解决问题。
提问:Oracle 有 v$,MySQL 有 x$ ?两个 $ 是完成相似功能的吗?
李春:MySQL 的 x$ 可以说是仿照 Oracle 的 v$ 来做的,但是目前离 Oracle 的那么强大的数据库诊断功能还有一些距离。
提问:数据库脱敏能否简单介绍下实现方式?
李春:开发测试人员无法访问线上数据库,需要通过一个专门的 idb 来访问,而 idb 系统每个字段都有密级定义,满足权限的才能被访问;这个系统页控制了用户是否可以访问某个表,可以访问数据表的行数,只有主管同意了,用户才能访问某个表的数据,并且加密数据是以*显示的。
❺ SQL数据库性能和数据库调优
连接数量有三种方法查看 1.通过系统的逗性能地来查看: 开始->管理工具->性能(或者是运行里面输入 mmc)然后通过 添加计数器添加 SQL 的常用统计 然后在下面列出的项目里面选择用户连接就可以时时查询到sql server数据库连接数了。 不过此方法的话需要有访问那台计算机的权限,就是要通过windows账户登陆进去才可以添加此计数器。 2.通过系统表来查询: SELECT * FROM [Master].[dbo].[SYSPROCESSES] WHERE [DBID] IN ( SELECT [DBID] FROM [Master].[dbo].[SYSDATABASES] WHERE NAME='databaseName' ) databaseName 是需要查看的数据库,然后查询出来的行数,就是当前的sql server数据库连接数。不过里面还有一些别的状态可以做参考用。 3.通过系统过程来查询: SP_WHO 'loginName' loginName 是当然登陆Sql的用户名,一般程序里面都会使用一个username来登陆SQL这样通过这个用户名就能查看到此用户名登陆之后占用的连接了。 如果不写loginName,那么返回的就是所有的sql server数据库连接。 至于如何改善数据库性能,就是属于数据库调优方面的工作了,通常有以下几种调优方法: 1 查看数据库中造成数据库访问变慢的语句,通常是执行数量较多,执行速度慢的语句,对这些语句进行执行计划分析,并重写语句来优化,最常见的就是not in语句使用外连接语句代替; 2 根据语句中查询访问条件中的谓词,创建对应的索引,以提高查询的执行效率; 3 在数据存储上优化,将数据文件根据某个频繁访问属性的属性值进行水平分片,提高对应表的访问效率(oracle支持,sql server2000没有此功能) 4 重新设计业务逻辑结构,避免执行代价高的查询语句 5 服务器和数据库软件的能力终究还是有限的,无论如何优化当达到一定的访问数量是还是会超出负载,此时就需要考虑可扩展规模的分布式并行数据存储架构了。
❻ 数据库性能优化主要包括哪些方面
数据库性能优化主要包括以下几个方面:
1、sql语句的执行计划是否正常;
2、减少应用和数据库的交互次数、同一个sql语句的执行次数;
3、数据库实体的碎片的整理;
4、减少表之间的关联,特别对于批量数据处理,尽量单表查询数据,统一在内存中进行逻辑处理,减少数据库压力;
5、对访问频繁的数据,充分利用数据库cache和应用的缓存;
6、数据量比较大的,在设计过程中,为了减少其他表的关联,增加一些冗余字段,提高查询性能。
在应用系统开发初期,由于开发数据库数据比较少,对于查询SQL语句,复杂视图的的编写等体会不出SQL语句各种写法的性能优劣,但是如果将应用系统提交实际应用后,随着数据库中数据的增加,系统的响应速度就成为目前系统需要解决的最主要的问题之一。
系统优化中一个很重要的方面就是SQL语句的优化。对于海量数据,劣质SQL语句和优质SQL语句之间的速度差别可以达到上百倍,可见对于一个系统不是简单地能实现其功能就可,而是要写出高质量的SQL语句,提高系统的可用性。
❼ 数据库性能优化有哪些措施
1、调整数据结构的设计。这一部分在开发信息系统之前完成,程序员需要考虑是否使用ORACLE数据库的分区功能,对于经常访问的数据库表是否需要建立索引等。
2、调整应用程序结构设计。这一部分也是在开发信息系统之前完成,程序员在这一步需要考虑应用程序使用什么样的体系结构,是使用传统的Client/Server两层体系结构,还是使用Browser/Web/Database的三层体系结构。不同的应用程序体系结构要求的数据库资源是不同的。
3、调整数据库SQL语句。应用程序的执行最终将归结为数据库中的SQL语句执行,因此SQL语句的执行效率最终决定了ORACLE数据库的性能。ORACLE公司推荐使用ORACLE语句优化器(Oracle Optimizer)和行锁管理器(row-level manager)来调整优化SQL语句。
4、调整服务器内存分配。内存分配是在信息系统运行过程中优化配置的,数据库管理员可以根据数据库运行状况调整数据库系统全局区(SGA区)的数据缓冲区、日志缓冲区和共享池的大小;还可以调整程序全局区(PGA区)的大小。需要注意的是,SGA区不是越大越好,SGA区过大会占用操作系统使用的内存而引起虚拟内存的页面交换,这样反而会降低系统。
5、调整硬盘I/O,这一步是在信息系统开发之前完成的。数据库管理员可以将组成同一个表空间的数据文件放在不同的硬盘上,做到硬盘之间I/O负载均衡。
6、调整操作系统参数,例如:运行在UNIX操作系统上的ORACLE数据库,可以调整UNIX数据缓冲池的大小,每个进程所能使用的内存大小等参数。
数据库(Database)是按照数据结构来组织、存储和管理数据的仓库,它产生于距今六十多年前,随着信息技术和市场的发展,特别是二十世纪九十年代以后,数据管理不再仅仅是存储和管理数据,而转变成用户所需要的各种数据管理的方式。数据库有很多种类型,从最简单的存储有各种数据的表格到能够进行海量数据存储的大型数据库系统都在各个方面得到了广泛的应用。
在信息化社会,充分有效地管理和利用各类信息资源,是进行科学研究和决策管理的前提条件。数据库技术是管理信息系统、办公自动化系统、决策支持系统等各类信息系统的核心部分,是进行科学研究和决策管理的重要技术手段。
在经济管理的日常工作中,常常需要把某些相关的数据放进这样的“仓库”,并根据管理的需要进行相应的处理。
例如,企业或事业单位的人事部门常常要把本单位职工的基本情况(职工号、姓名、年龄、性别、籍贯、工资、简历等)存放在表中,这张表就可以看成是一个数据库。有了这个"数据仓库"我们就可以根据需要随时查询某职工的基本情况,也可以查询工资在某个范围内的职工人数等等。这些工作如果都能在计算机上自动进行,那我们的人事管理就可以达到极高的水平。此外,在财务管理、仓库管理、生产管理中也需要建立众多的这种"数据库",使其可以利用计算机实现财务、仓库、生产的自动化管理。
(7)数据库性能调优利器扩展阅读
数据库,简单来说是本身可视为电子化的文件柜--存储电子文件的处所,用户可以对文件中的数据进行新增、截取、更新、删除等操作。
数据库指的是以一定方式储存在一起、能为多个用户共享、具有尽可能小的冗余度的特点、是与应用程序彼此独立的数据集合。
在经济管理的日常工作中,常常需要把某些相关的数据放进这样的"仓库",并根据管理的需要进行相应的处理。
例如,企业或事业单位的人事部门常常要把本单位职工的基本情况(职工号、姓名、年龄、性别、籍贯、工资、简历等)存放在表中,这张表就可以看成是一个数据库。有了这个"数据仓库"我们就可以根据需要随时查询某职工的基本情况,也可以查询工资在某个范围内的职工人数等等。这些工作如果都能在计算机上自动进行,那我们的人事管理就可以达到极高的水平。此外,在财务管理、仓库管理、生产管理中也需要建立众多的这种"数据库",使其可以利用计算机实现财务、仓库、生产的自动化管理。