当前位置:首页 » 数据仓库 » gis数据库空库更新
扩展阅读
webinf下怎么引入js 2023-08-31 21:54:13
堡垒机怎么打开web 2023-08-31 21:54:11

gis数据库空库更新

发布时间: 2023-04-24 21:38:29

A. arcgis连接gdb数据库无效或已过期

arcgis连接gdb数据库无效或已过期可能存在多种原因。
一、有很多种原因:
1、数据库帐号密码错误
2、TCP/IP协议未启动
二、解决方法:
1.新建空白地图文档,给整个数据框定义上目标图层相同的地理坐标系。不要设置投影坐标系。由于导入的多为经纬度数据,给数据框设置单位为度(或者度分秒皆可)。
2.添加表数据。添加XY点数据(格式需为.xls)。
3.导出点数据,选择与数据框相同。
4.添加数据到目标数据图层,即可正常显示。

B. 描述地理信息系统与数据库管理系统的区别与联系。

区别:目的不同、数据模型不同、库的结构不同,联系:数据存储、数据处握友理、数据可视化,具体如下。
1、目的不同:GIS旨在处理地理空间数据,通过将地理坐标与地图或其他空间数据相结合来分析和管理这些数据。而DBMS则是为了管理非空间数据,它提供了高效的方式来存储、访问、组织和更新各种类型的数据。
2、数据模型不同:GIS使用一种称为“空间数据模型”的衡伏数据模型来处理地理空间数据,该模型可以将数据组织为点、线、面等的几何对象。而DBMS则使用关系模型,其中数据在表格中以行和列的形式存储。
3、库的结构不同:GIS使用空间数据库存储地图和地理信息数据,而DBMS使用传统的关系数据库存储数据。
4、数据存储:GIS和DBMS都需要存储大量的数据,GIS使用空间数据库存储空间数据,DBMS常常使用关系数据库存储非空间数据,两者都需要高效的数据存储、查询和更新方法。
5、数据处理:GIS通过对空间数据进行分析和建模来生成具有时空属性的信息,DBMS也可以对数据进行处理和分析,如数据的清洗、整合等操作。
6、数据可视化:GIS和DBMS都可以以各种形式展示数据,GIS通过地图、图表等形式,展咐皮携现具有空间属性的数据,DBMS则通过各种报表、图表等方式展现非空间数据。

C. arcgis无法绘制一个或多个图层

当 ArcGIS 中无法绘制一个或多个嫌颤图层时,可能是以下几个原因导致的:

1. 数据源的连接出贺颤现问题:需要检查连接到数据源的路径和权限是否正确,如果连接不上,可以尝试重新连接或更换数据源。

2. 数据源中没有数据或数据不完整:需要检查数据源中是否包含有有效数据,如果数据不全可以尝试重新获取或更新数据。

3. 数据源及其相关组件不兼容:需要检查数据源及其相关组件的版本,是否都支持当前版本的 ArcGIS。

4. 数据源格式不支持:需要检查数据源格式是否与 ArcGIS 的支持格式一致,如不一致则需要转换格式或更新 ArcGIS。

建议具体问题具体分析,根禅者败据提示错误信息信息和情况进行针对性的解决。

D. GIS数据库的定义

数据:是通过数字化并记录下来可以被识别的符号,用以定性或定量地描述事物的特征和状况。
数据库:是长期存储在计算机内的,有组织、可共享的数据集合。
空间数据:也就是地理数据。它以点、线、面等方式采用编码技术对空间物体进行特征描述及在物体间建立相互联系的数据集。(其最根本的特点就是:每一个地理实体都按统一的地理坐标进行记录)
空间数据库:也就是地理信息系统数据库,或地理数据库。是某一区域内关于一定地理要素特征的数据集合,为GIS提供空间数据的存储和管理方法。
数据库管理系统(DBMS):用于管理综合的和共享的数据库的一套计算机程序,能完成数据输入、查找、检索、操作、和输出等任务。
(网络:是一种操纵和管理数据库的大型软件,是用于建立、使用和维护数据库,简称dbms。它对数据库进行统一的管理和控制,以保证数据库的安全性和完整性。)
关系数据库:是建立在关系模型基础上的数据库,借助于集合代数等数学概念和方法来处理数据库中的数据。现实世界中的各种实体以及实体之间的各种联系均用关系模型来表示。(关系模型:是基于谓词逻辑和集合论的一种数据模型)
关系数据库管理系统:就是管理关系数据库的数据库管理系统。(将数据组织为相关的行和列的系统。比如:SQL
Server
是一个关系数据库管理系统)
空间数据库管理系统:是指能够对介质上存储的地理空间数据进行语义和逻辑上的定义,提供必需的空间数据查询和存取功能,以及能够对空间数据进行有效的维护和更新的一套软件系统。(实际上就是在常规的数据库管理系统之上,提供特定的针对空间数据的管理功能)

E. 哪些新型数据库系统与gis空间数据库有关

当前GIS的功能进展2006/12/31 11:35 A.M. 地理信息系统GIS(Geographic Information System)是近20年来发展起来的一门综合性的技术,它涉及到地理学、测绘学、计算机科学与技术等学科。它的概念和基础是地理和测绘,它的技术支撑是计算机技术,它的应用领域是地理、规划与棚拦管理等许多行业和部门。随着信息技术尤其是计算机技术的快速发展、数字地球的提出与实施,GIS应用程度的不断深入和应用范围的逐渐扩大,正处于急剧变化与发展之中。 1.1 空间信息的获取与处理 空间信息的获取技术包括:野外全站仪测量、GPS测量、地图扫描数字化、数字摄影测量、从遥感影像进行目标测量等。野外全站仪测量、GPS测量的软件已基本普及。 地图扫描数字化技术及转化成矢量数笑和伏据库的技术日趋成熟并已商品化,如ESRI公司的ArcScan。目前的技术大多采用交互和自动相结合,在自动消除噪音和色斑后,可自动跟踪单线和多边形边界,并自动识别断点、虚线、符号线,自动角度取直,交互时可以进行栅格-矢量一体化编辑。虽然扫描数字化大大提高了图形数据输入的效率和精度,但数字化后的编辑和属性数据的输入依然很繁重。 GPS集成到GIS中和GIS用于野外,使实时获取野外数据取得重大进展。遥感影像正在被用来作为一种基本地图,使之成为GIS最重要的一层。 用数字摄影测量方法自动获取DEM、数字正射影像,人工交互获取矢量线划数据的技术已得到广泛使用。在我国,该项技术处于世界领先水平,仪器设备和软件出口,而且承担国外的数据采集任务。 用遥感制作数字正射影像,并用交互式方法进行目标提取的技术也已基本成熟,已生产出大量遥感数字正射影像数据。 在空间信息获取方面,剩下的是地物目标的自动识别和自动测量问题,包括扫描地图的要素识别、数字摄影测量和遥感目标的自动提取。这是一个需要长期研究的课题,短期内难以取得突破。 从技术角度讲,空间数据处理的方法与技术已基本成熟,但是仍缺少效率高、自动化程度好的空间数据处理专用软件。 空间数据获取与处理的另一个发展趋势是网络化空间数据生产。它是指空间数据采集与处理工作基于一个局域网环境,并用一个网络数据生产管理软件进行生产调度、监控和质量控制,以提高空间数据的生产效率和保证数据的安全。 随着新型传感器的发展,空间数据信息源的获取设备与技术正处于一个快速发展时期,激光扫描雷达、高分辨率数字摄影测量相机、红外相机、干涉雷达等一批新型航测遥感设备,将使我们获取的空间信息更加丰富。 1.2 空间数据存储和检索 GIS空间数据管理已经走出了文件管理的模式。最初的GIS软件一般采用文件方法管理矢量图形数据,利用关系数据库管理系统管理属性数据。目前主要的GIS软件都采用了商用关系数据库管理系统同时管理图形和属性数据。如国外的ARC/INFO、GEOMEDIA,国内的GEOSTAR、MAPGIS、SUPERMAP等。 在数据查询和访问上,采用标准的SQL命令来访问和操作数据(包括对数据的增、删、改)。在提高查询速度上,大多引进四叉树和R树等空间索引技术。 1.3 数据处理和分析 GIS在这一方面的问题是,精通分析与模型化技术的数学专家对GIS了解不多,而GIS的开发者往往对空间数据的分析、模型化和空间统计方面知之甚少。在标准的商业系统中,仍然没有基本的通用的空间分析程序,而且也没有基本的通用模型化工具。值得注意的是,GIS厂商正在他们的产品中包含栅格数据处理功能,并将其作为单独的模块提供给用户,如MapInfo公司的Vertical Mapper。 1.4 数据输出 GIS在数据输出方面最令人兴奋的进展在于随着Internet和WWW技术的应用,使GIS的地理信息和地图数据输出跨越了时间和空间。任何用户可以在任何时间任何地点通过互联网去访问Web服务器上安装的GIS,可以在自己定制的界面上获得地图信息、制作专题地图、进行地理分析等。应该说已经商品化的WebGIS都还处于初级阶段,WebGIS提供的查询和分析功能还不能满足专业应用的需要。但WebGIS的出现已经碰携开始改变GIS传统的数据输出和地图发布的方式,为地理信息的高度社会化共享提供了可能。 2.1 WebGIS的发展趋势 WebGIS是以现有的Internet/Intranet为架构基础的网络互操作应用系统,它可利用Internet在Web上发布空间数据,为用户提供空间数据浏览、查询和分析的功能。一方面,WebGIS可为公众提供交通、旅游、餐饮、娱乐、房地产、购物等与空间信息有关的在线信息服务;另一方面,WebGIS可为基于Intranet的企业内部业务管理提供服务,如帮助企业进行设备管理、线路管理以及安全监控管理,等等。WebGIS的广泛应用,使得它已经成为目前国际GIS发展的必然趋势。通过WebGIS,人们可以方便地从WWW的任意一个节点浏览或获取Web上的各种分布式地理空间数据以及进行各种在线的地理空间分析。 2.2 WebGIS的特征 1)更广泛的访问范围。 2)平台独立性。无论服务器/客户机是何种机器,无论WebGIS服务器端使用何种GIS软 件,由于使用了通用的Web浏览器,用户就可以透明地访问WebGIS数据,在本机或某个服务器上进行分布式部件的动态组合和空间数据的协同处理与分析,实现远程异构数据库的共享。 3)可以大规模降低系统成本。 4)更简单的操作。 5)平衡高效的计算负载。能充分利用网络资源,将基础性、全局性的处理交由服务器执 行,而对数据量较小的简单操作则由客户端直接完成。 2.3 WebGIS的实现模型 1)服务器端策略。基于服务器的WebGIS通常采用CGI技术,依赖服务器完成GIS分析、输出等工作,客户端每一个GIS操作,都须由服务器接受请求,启动相应的CGI程序进行处理,然后将结果以JPEG或GIF位图返回用户。 2)客户端策略。通过服务器向客户端发送一段运行在本地机上的客户程序。这个程序可以与用户相交互,处理用户的一些简单请求,如地图的开窗、放大等,所需的矢量数据直接向服务器申请。当客户发出一些较复杂、高级的操作要求而客户程序不能处理时,才请求WebGIS服务器处理,其处理结果以矢量数据的形式发给客户端。 3)混合策略。综合考虑客户机、服务器计算能力和网络通信量,适当地分布GIS任务,以充分使用客户机和服务器的计算功能,提高互操作性和系统性能。例如,对空间数据库的查询、空间数据管理和复杂的空间分析功能应安排在服务器上实现;用户的交互操作和控制,对Web页面的局部空间查询、专题分析则在客户机上进行。这样客户机和服务器共同完成GIS的任务,提高了系统性能。 2.4 WebGIS的实现技术 1)CGI(公共网关接口法)。CGI技术是WebGIS最早使用的方法。CGI是一种连接应用软件和WebServer的标准技术,是HTML的功能延伸。 2)ServerAPI(服务器应用程序接口)。ServerAPI是比CGI更有效的WebServer扩充方法,进程创建和进程间通信负载大大减少,运行速度比CGI程序要快得多。 3)ASP(Active Server Page)。ASP解决了CGI接口对象化的难题,可以自动解析收集来的网页的数据。同时ASP可以使用Windows环境下的其他ActiveX对象。 4)Plug in和ActiveX Control。Plug in(插件)和ActiveXControl是扩充浏览器功能使之能够解释自定义GIS数据文件格式的方法。 这种方法的优点:执行速度快;可以处理矢量地图数据;在一定程度上平衡了客户和服务器两端的负载,减少了网络带宽要求。但这种浏览器的嵌入功能模块需要安装在本地机器上,对客户不方便和不安全。同时,传统软件编程方法中不同版本之间的兼容性及版本管理问题不能解决,一旦制定了新的格式,对应的浏览器中的嵌入模块就必须重新安装。 5)Java。Java成为实现WebGIS分布式应用体系结构最理想的开发语言。目前利用Ja va开发WebGIS系统的方法有两种:一是仅客户端部分采用Java技术的WebGIS系统,服务器端在现有系统代码基础上,用制定GIS空间数据传输协议以及和Java程序交互的功能模块实现,这是目前绝大多数WebGIS系统采用的方法。它的特点是系统开发简单易行,可以大大缩短系统开发周期,同时又能保证开发的系统有较强的制图和地理空间分析能力,并能在一定程度上实现跨平台应用。第二种方法是客户端和服务器端都基于Java的We bGIS。也就是纯Java系统的WebGIS。这种开发方式可以最大限度地发挥Java技术的优势,尤其是可以充分利用Java在服务器端和客户端为构建分布式网络应用提供的支持技术。 3.1 GIS的发展趋势 GIS经历了从项目GIS、部门GIS、企业GIS、社会GIS的演变过程,其系统集成也相应的经历了从主机GIS、(传统GIS)、分布式GIS(C/S)、智能化GIS(WebGIS)、虚拟实现GIS的变化过程。可以看出,GIS始终是向更高性能、更低成本、更具开放性和灵活性的方向发展的。随着面向对象理论和方法的成熟,虚拟现实技术的逐步完善,网络化和智能化体系的普及,基于Internet和Intranet的WebGIS系统集成策略将是21世纪GIS系统的主流技术。 3.2 基于XML的网络环境下开放的空间数据交换格式 可扩展标识语言XML(Extensible Markup Language)可以让信息提供者根据需要,自行定义标记及属性名,也可以包含描述法,从而使XML文件的结构可以复杂到任意程度。XML具有跨平台、开放性、可扩展性、高度结构化等特点。 地理标记语言GML(Geography Markup Language)是由OpenGIS联盟制定的,它是基于XML的用于地理信息(包括地理特征的几何和属性)的传输和存储的编码规范。它用地理特征来描述世界,可以对很复杂的地理实体进行编码。 3.3 开放式地理信息系统 Web的本质特征就是其开放性。因此WebGIS的体系结构应该具备开放、互操作、可升级和可扩展性。开放的WebGIS首先应该包括数据的开放,即分布在异构数据库中的信息共享,XML的出现已经提供了一个很好的解决方案。另外,还应该包括数据访问的开放,即不同的地理信息系统软件之间具有良好的互操作性。对WebGIS所提出的这些要求正是OpenGIS联盟成立的目的。 与传统的GIS相比,OpenGIS建立起通用的技术基础以进行开放式的地理信息处理。它具有互操作性、可扩展性技术公开性、可移植性、兼容性、可实现性和协同性等特点。 3.4 基于分布式计算的WebGIS 分布式计算目前只实现了客户机/服务器计算,它是实现完全的分布式计算的一个中间步骤。完全的分布式计算是一个非集中的,对等的协同计算,是下一个世纪的理想计算模式。 目前分布式计算平台采用的体系结构或标准有对象管理组织的共同对象请求代理体系结构CORBA;微软的分布式部件对象模型DCOM和分布式网络体系结构DNA;分布式计算环境DCE,以及SUN的Java。 分布式WebGIS应用从简单的在Web浏览器上显示已绘制好的地图,发展到基于Internet的GIS功能综合。远程的GIS用户可以共享普通的GIS数据,并与其他的GIS用户实现实时通信。发展分布式InternetGIS应用技术,集中体现在服务器、客户机和网络通信三个方面。 3.5 网络虚拟地理环境 三维虚拟现实技术正在成为网络应用的技术热点。随着Internet的飞速发展及三维技术的日益成熟,人们已经不满足Web页上二维空间的交互特性,而希望将WWW变成一个立体空间。 虚拟地理环境(VR)技术提供的可视化,不只是一般几何形体的空间显示,也是对地理信息、噪声、温变、力变、磨损、振动等的可视化,而且还可以把人的创新思维表述为可视化的虚拟实体,促进人的创造灵感进一步升华。 地理虚拟建模语言(GeoVRML)以虚拟建模语言(VRML)为基础来描述地理空间数据。其目的是让用户通过一个在Web浏览器上安装的标准VRML插件来浏览地理参考数据、地图和三维地形模型。它的出现将为在网络环境下实现虚拟地理环境提供一个良好的数据规范平台,将大大促进网络虚拟地理环境的应用。 3.6 移动GIS 移动GIS是一种应用服务系统。狭义的移动GIS是指运行于移动终端(如PDA)并具有桌面GIS功能的GIS,它不存在与服务器的交互,是一种离线运行模式。广义的移动GIS是一种集成系统,是GIS、GPS、移动通信、互联网服务、多媒体技术等的集成。移动GIS具有以下特点: 1)移动GIS运行于各种移动终端上,与服务端可通过无线通信进行交互实时获取空间数据,也可以脱离服务器与传输介质的约束独立运行,具有移动性。 2)移动GIS作为一种应用服务系统,应能及时地响应用户的请求,能处理用户环境中随时间变化的因素的实时影响,具有动态(实时)性。 3)移动GIS集成了各种定位技术,用于实时确定用户的当前位置和相关信息,因此它具有对位置信息的依赖性。 4)移动GIS的表达呈现于移动终端上,移动终端有手机、掌上电脑、车载终端等,这些设备的生产厂商不是惟一的,他们采用的技术也不是统一的,这就必然造成移动终端的多样性。 3.7 三维GIS 传统的GIS都是二维的,仅能处理和管理二维图形和属性数据。有些软件也具有2.5维DEM地形分析功能,随着技术的发展,三维建模和三维GIS迅速发展,而且具有很大的市场吸引力。 真三维GIS不仅表达三维物体(地面和地面建筑物的表面),也表达物体的内部,如矿山、地下水等。由于地质矿体和矿山等三维实体不仅表面呈不规则状,而且内部物质也不一样,此时Z值不能作为一个属性,而应该作为一个空间坐标,矿体内任一点的值是三维坐标x,y,z的函数,即P=f(x,y,z)。而我们在目前进行三维可视化的时候,z是xy的函数,如何将P=f(x,y,z)进行可视化,表现矿体的表面形状,并反映内部结构是一个难题。所以当前真三维GIS还是一个“瓶颈”问题,推出了一些实用系统,但一般都作了一些简化。 结束语: GIS总体上呈现出网络化、开放性、虚拟现实、集成化、空间多维性等发展趋势。作为一种基于计算机的应用工具,GIS把地图的视觉和空间地理分析功能与数据库功能集成在一起,提供了一种对空间数据进行分析、综合和查询的智能化手段,涉及多学科的相互渗透、相互支撑

F. arcgis如何把gdb数据导入一个空数据库

1. 点击GDBcatalog下的客户端配置管理,打开客户端配置管理界面。2. 先点击中间件,在祥氏中间件界谨数散面点击注册按钮,在弹窗界面中选择中间件类型为跨平台FileGDB中间件,点击确定。3. 选择数据源,点击添加按钮,在毕碰数据源列表中选择跨平台FileGDB数据源,点击确定。4. 在GDBCatalog列表下就有了FileGDB中间件这个数据源,在此数据源上右键,选择附加数据库。5.在附加数据源窗口,文件夹路径选择.GDB数据所在的路径,点击确定。6.可在File GDB这个中间件下查看导入的.GDB数据。

G. RS、GIS和GPS集成——3S技术系统

当前,以地理信息系统为核心的三S技术(遥感技术RS、地理信息系统GIS、全球定位系统GPS)与多媒体(MM)技术有机结合一体化,以其强大的空间信息(数据)采集、处理、分析综合和表达与管理能力,为各行业实际应用部门提供了各种有用的决策信息,大大提高应用部门的生产力及其管理水平,已成为直接为国土资源勘查、生态环境和自然灾害调查、评价、监测与防治等工作及社会生产与管理部门服务的一种实用技术方法。

20.2.1 地理信息系统(GIS)

20.2.1.1 地理信息系统的概念及其作用

地理信息系统(Geographical Information System,简称GIS)集计算机科学、地理学、测绘、环境科学、空间科学、地质学、信息科学和管理科学等为一体的多学科结合的新兴边缘学科。它以空间数据为研究对象,以计算机为工具,通过人的参与进行一系列空间操作和分析,为地球科学、环境科学、灾害监测与评价、工程设计乃至企业经营等工作提供规划管理的决策科学信息。

地理信息系统已被广泛用于国土资源勘查和环境监测与评价等方面,特别在遥感制图、矿产资源定量预测、工程布置的点位优选、勘探靶区优选等等方面,已有相当的成功实例与经验。目前,地理信息系统已经作为一种主要的信息产业,取得了显着的社会与经济效益。实际上,地理信息系统所研究的对象及覆盖面远远超出了地理学的范畴。

地理信息系统是管理空间数据的计算机系统。空间数据是指不同来源的用遥感和非遥感手段所获取的数据,它有多种数据类型,包括地图、遥感影像、统计数据等,其共同特点是都有确定的空间位置——地理坐标参照系统。其工作过程主要是通过空间实体的空间位置与空间关系来进行的,当然也可以通过它们的属性来进行。它对空间数据除管理、检索、查询外,还必须进行各种运算和分析。其输出除表格、文字、数据外,主要的形式是图形。地理信息系统主要用来分析和管理在一定地理区域内分布的各种地学、社会现象和过程。它是地学、计算机、系统工程等学科知识的融合,是跨学科的技术系统。

遥感是地理信息系统重要的数据源和强有力的数据更新手段。遥感的多时相、量纲统一的、动态的全球范围内的快速监测数据,是其他手段所不能替代和比拟的,因而地理信息系统作为一种空间数据管理、分析的有效技术,可为遥感提供各种有用的辅助信息和分析手段。目前,地理信息系统瞎颤的一个重要发展趋势,是加强空间信息管理系统与遥感图像处理系统的结合,以提高资源与环境信息系统在动态分析、监测与预报方面的能力,改善遥感分析的精度。

20.2.1.2 系统构成

地理信息系统主要是由GIS的硬件、软件、地理数据(库)和系统的管理操作人员四个部分组成。

GIS硬件主要是计算机,包括必备的外部设备如数字化仪、打答神首印机及绘图仪。可选设备有扫描仪、激光绘图仪及打印机、磁带机等。

地理空间数据是指以地球表面空间位置作为参照系的各种景观数据(如自然的、社会的、人文经济的等)。这些数据可以是图形、图像、文字、表格和数字等形式,由系统的建立者通过有关的量化工具和介质输入GIS,是系统程序作用的对象,是GIS所表达的现实世界经过模型抽象的实质性内容。

早期的GIS一直是以各种类型的地图作为主要的数据源。随着遥感技术的兴起,遥感信息以其周期性、动态性、信息丰富、获取效率高并可直接清数以数字方式记录传送等优点成为重要的GIS信息源和数据更新手段。遥感与GIS的结合是空间技术发展的趋势。

系统开发、管理和使用人员是GIS的重要构成因素。因为GIS是一个动态的地理模型,光有系统软硬件和数据不能构成完整的GIS,需要由人进行系统的组织、管理、维护和数据更新,使系统不断得到完善,并合理使用地理分析模型提取多种信息,为研究和决策服务。

GIS软件是GIS技术的核心,它既是GIS技术的集中体现,又是这一技术的应用基础。一般商品化产品,如美国的ARC/INFO系统,中国的MAPGIS,主要由数据采集、数据管理、数据分析、数据转换和数据输出五部分构成。

(1)数据采集

其功能是完成地学数据采集与输入工作,可用扫描仪、数字化仪、图形终端或其他系统的磁盘数据文件输入。主要的信息源有:专题地图(包括地形图)、统计表格、遥感影像、实测数据以及其他系统的数据文件。

数据采集方式主要有以下几种:① 手工式,是早期和试验时采用的方法,效率和精度均低。② 手扶跟踪数字化,是当前最有效的地图数字化方式,在手扶跟踪数字化仪和数字化板支持下进行。通过这种方式可得到矢量格式的地图数字化数据。③ 自动扫描,是最有前途的数字化方式。由扫描仪进行,扫描仪可以每英寸300~600点(线)采集地图或影像的灰度或颜色,形成点阵像元数据或多波段数据。④ 数据通讯,是在联网方式下获取有关的其他信息系统的一种方式。无论用何种方式采集,其目的都是要把数据源变为GIS可以存贮管理和分析的形式。

(2)数据管理

其功能是实现空间(几何)数据和属性(非几何)数据的存储、检索、查询、编辑、修改。GIS与其他信息系统最大的不同之处是对空间数据的管理。如何实现空间数据与属性数据的统一存储、检索、查询、编辑和修改是评价GIS的一个重要方面。

一个功能强大的GIS产品能够提供一个统一的空间数据库管理系统,提供各种范围内的双向查询、编辑、建模功能,允许快速地修正并更新空间数据及有关的描述数据。例如,最新推出的许多GIS软件都使用了一个优化的、面向目标的数据库管理系统,可以快速地存取大型关系文件,它把现实物体的空间关系、特征和属性存储在同一个网络分布式关系数据库中,所以做图、拓扑数据结构是这种数据模型的特征。

(3)数据分析

数据分析部分借助地学模型(预置式模型或用户自定义模型),完成地理数据的分析和计算工作,是GIS的核心内容。目前比较成熟的分析功能有地面数字高程模型、网络分析模型、邻近分析模型、区域分析模型、拓扑分析模型以及空间距离搜索模型等。

数字地面模型(DTM)在自然地理、地貌、水利、工程设计、管道布线等领域有着广泛的应用。当地图被数字化后,利用等高线通过插值可以生成数字地面高程模型(DEM),并由DEM进一步产生坡度、坡向、沟谷、山脊、地表粗糙度等10多个地形要素,构成DTM数据。利用这些地表信息与植被、土壤、人文要素的相关性,可建立不同的地学应用模型。

网络分析模型在经济地理、市场分析、交通管理等领域有着广泛的应用。此模型根据网络拓扑性质,可以在两点间选择最短路径,并绘出其长度和有关信息,也可以比较各个市场中心服务范围和影响区域。

定距离空间搜索(Buffer)模型和邻近区域分析模型在区域规划、国土整治、土地管理等领域有着广泛的应用。通过指定空间搜索距离,用户可以方便地进行空间检索、查询,了解在一定范围内地理现象的空间分布;通过邻近区域分析模型,用户可方便地进行邻近区域检索、查询、了解区域周围的环境情况。由于用模式来定义表,表和空间数据联系在一起,这样用户能进行集成的空间和属性处理、报表生成、专栏处理、属性标记和相互作用的属性修改、更新等项内容。

点、线、多边形是GIS图形数据的基本单元,与之相应的拓扑分析模型在自然资源管理、生态评价、土地评价和规划等领域有着广泛的应用。它通过多幅专题图或专题图与图像合并办法,生成新的专题图及新的属性表,为运用不同评价和规划模型,完成地理信息的分析和地理数据的计算提供了极大方便。

上述系统底层通用分析模型仅提供了某些数据分析的工具。在具体应用领域还需结合专业知识和实际要求建立用户的应用模型。

(4)数据转换

是提供不同空间数据集的集成途径。空间数据都是用矢量和栅格格式进行采集、存贮和处理的。矢量结构的数据更能表达我们的空间想象,因此它最常用于手工的数据采集。但是,数据自动采集方式往往产生与计算机的规则结构相匹配的栅格结构数据。因此,现代GIS应兼容矢量和栅格两种数据格式,提供多种方法进行两种数据的相互转换,满足多源信息综合分析的需求。

(5)数据输出

数据输出部分将GIS信息或分析结果以可视的形式表示,如屏幕,绘图仪、打印机输出等。系统同时支持软硬件拷贝显示,使用户能够获得在屏幕上所见结果,即在地图成图之前,用户能预先看到硬拷贝输出的图形。用户还可以在图形窗口内编辑地图,包括彩色设计,图廓整饰、生成比例尺、注记、图例、表格、公里网格等,最后由绘图仪或打印机输出。

20.2.2 全球定位系统(GPS)

全球定位系统(GPS:Global Position System)是美军自20世纪70年代初期开始研制的新一代卫星导航和定位系统。它由21颗工作卫星和3颗备用卫星组成。工作卫星分布在6个轨道面内,卫星轨道面相对地球赤道面的倾角为55°,每个轨道平面配置3颗卫星,每隔一条轨道平面配备一颗备用卫星,轨道的平均高度约为20200 km,卫星运行周期为11小时58分。因此,在同一测站上,每天出现的卫星分布图相同,只是每天提前几分钟。每颗卫星对地球的可见面积为地球总表面积的38%,每颗卫星每天约有5小时在地平线上。同时位于地平线上的卫星数目最少为4颗,最多为11颗。这样的空间配置,可保证在地球上任何时间,任何地点至少可同时观测到4颗卫星,加上卫星信号的传播和接收不受天气的影响,因此GPS是一种全球、全天候的连续实时导航定位系统。GPS的出现,为大量的野外高精度定位工作提供了极大方便,使定位与导航在精度和速度上都产生了质的飞跃,进入了电子化和自动化时代。

GPS作为新一代卫星导航与定位系统。不仅具有全球性、全天候、连续的精密三维导航与定位能力,而且具有良好的抗干扰性和保密性等优点,现在已广泛地在全球应用。需要指出,全球定位系统的导航和定位在概念上是有所不同的,所谓定位是指运动载体,如汽车上安装GPS信号接收机,然后实地测出接收天线所在的位置,这称为GPS定位,也称GPS动态定位。动态的意思是指定位是在极短的时间内完成的。如果GPS接收机在测得运动载体实时位置的同时,还测得运动载体的速度,时间和方位等状态参数,进而可“引导”运动载体驶向预定的目标位置,这称为导航。由此可知,导航是一种广义的动态定位。

GPS是从军事方面发展起来的,出于军事目的,它提供两种服务即标准定位服务SPS(Standard Positioning Service)和精确定位服务PPS(Precise Positioning Service)。前者用于民用事业,后者为美国军方服务。美国政府为限制非军事用户和其他国家使用GPS的精度,分别在 1991年和 1994年实施了“SA(Selective Availability)”技术和“AS(Anti-spoofing)”技术,即“有选择可用性”技术和“反电子欺骗技术”。使SPS服务水平定位精度降低到100 m,而在密码保护下的PPS服务精度提高到1 m。

针对实施的“SA”技术,各国纷纷采用技术对策,出现了差分GPS即DGPS(Differential GPS)。“差分”的概念在无线电导航领域早就被采用,差分GPS的提出,使差分技术提高到过去从未有过的重要地位。采用差分GPS几乎可以完全消除“选择可用性”带来的误差。它利用某些地面发射站送出的已知精确位置的基准信号,将其与GPS的定位信号进行比较和修正。这样,通过建立基准通讯链方式,使GPS数据实现精确校正。目前利用差分技术可使定位精度超过单独使用PPS所得到精度。因此,美国比其他许多国家更快地将DGPS投入到实际使用中,目前其精度可达1 cm,用它可监视地球和冰川的微小运动。2001年美国取消了“SA”技术限制,GPS的定位精度大大提高。

全球卫星定位系统的迅速发展,引起了各国军事部门和广大民用部门的普遍关注。GPS定位技术的高度自动化及其所达到的高精度和具有的潜力,也引起了广大测量工作者的极大兴趣。特别是近十多年来,GPS定位技术在应用基础的研究、新应用领域的开拓、软件和硬件的开发等方面都取得了迅速发展。广泛的科学实验活动为这一新技术的应用展现了极为广阔的前景,经典的大地测量技术经历了一场意义深远的变革,从而进入一个崭新的时代。

目前,GPS精密定位技术已经广泛地渗透到了经济建设和科学技术的许多领域,尤其对经典大地测量学的各个方面产生了极其深刻的影响。它在大地测量学及其相关学科领域,如地球动力学、海洋大地测量学、天文学、地球物理勘探、资源勘察、航空与卫星遥感、工程变形监测、运动目标的测速以及精密时间传递等方面的广泛应用,充分地显示了这一卫星定位技术的高精度与高效益。

20.2.3 RS、GIS和GPS多功能综合

作为空间信息处理的3S技术系统,在空间信息管理中各具特色,均可独立完成自身的功能。同时,它们所能解决的问题之间又有很多关联性,在解决问题的功能上又各自存在着优点和不足:GIS具有较强的空间查询,分析和综合处理能力,但获取数据困难;RS能高效地获取大面积的区域信息,但受光谱波段的限制,且数据定位及分类精度差;GPS能快速地给出目标的位置,对空间数据的精确定位具有特殊意义,但它本身通常无法给出目标点的地理属性。因此,只有三者有机结合起形成一个多功能综合的技术系统,才能发挥更大的作用(图20-3)。在3S系统中,简单地说,GIS相当中枢神经,RS相当传感器,GPS相当定位器,三者的共同作用将使地球能实时感受到自身的变化,使其在资源环境和区域管理等众多领域中发挥巨大作用。RS,GIS和GPS三者的结合与集成已成为当今空间信息系统的发展方向,也是空间科学发展的必然趋势。

图20-3 3S技术系统

20.2.3.1 GIS与RS的结合

GIS和RS都是独立发展起来的支撑现代地学的空间科学技术,其中GIS是管理与分析空间数据的有效工具,RS是空间数据采集和分类的有效工具,它们的研究对象都是空间实体,二者关系十分密切。

GIS和RS的结合主要表现在RS对GIS动态地提供和更新各种数据,而GIS作为空数据处理分析的技术工具,可大大提高RS空间数据的分析能力及分析精度。在实践中,RS和GIS结合的主要形式是利用遥感图像经过计算机图像处理、信息提取、目视解译等方式,编制各种专题图,而后通过数字化仪等输入设备将专题图上所需信息输入到地理信息系统中,或者遥感数据经图像处理、分类和模式识别等方式提取有关信息直接进入地理信息系统数据库。这种结合方式的实质是用遥感形成专题系列数据库(包括遥感图像库)提供给地理信息系统。数据库中各专题要素因来自同一信息源,保证了时相和图幅位置配准,所以很适合在地理信息系统中进行多重信息的综合与复合分析,从而派生出综合性数据及图件,最大限度地发挥有关数据的作用。例如,在流域综合治理中,根据单要素的坡度图、土壤类型图、地貌类型图及植被类型图,通过地理信息系统中的有关模型分析可得到土地利用评价图及土地利用规划图等。

20.2.3.2 RS与GPS的结合

GPS和RS都可看作为GIS的数据源的获取系统,而且,GPS和RS既分别具有独立的功能,又可以互相弥补其不足。

首先,GPS的精确定位功能解决了RS获取目标信息定位困难的问题。在GPS问世以前,地面同步光谱测量、遥感的几何校正和定位等都是通过地面控制点进行大地测量才能确定的,这不但费时费力,而且当无地面控制点时更无法实现,从而严重影响数据实时进入系统。GPS的快速定位为RS数据实时、快速进入GIS系统提供了可能。也就是说,借助GPS可使RS迅速进入GIS分析系统,保证了RS数据及地面同步监测数据获取的动态配准、动态地进入GIS数据库。

其次,利用RS数据实现GPS定位遥感信息查询。此外,利用GPS形成了一系列新技术,如GPS气象遥感技术,利用GPS卫星和接收机之间无线电讯号在大气电离层和对流层中的延迟时间,了解电离层中电子浓度和对流层中温度湿度获得大气参数及其变化情况。因而目前建立和正在建立的全球许多GPS观测网将是提供大气参数的一个重要新数据源。对天气预报尤其是短期天气预报发挥巨大作用。

20.2.3.3 GPS与GIS的结合

GPS和GIS的结合,不仅能取长补短使各自的功能得到充分的发挥,而且还能产生许多更高级功能,从而使GPS和GIS的功能都迈上一个新台阶。

通过GIS系统,可使GPS的定位信息在电子地图上获得实时的,准确的形象的反映及漫游查询。通常GPS接收机所接收信号无法输入底图。若从GPS接收机上获取定位信息后,再要回到地形图或专题图上查找,核实周围地理属性,该工作十分繁杂,而且花费时间长,在技术手段上也是不合理的。如果把GPS的接收机同电子地图相配合,利用实时差分定位技术,加上相应的通信手段组成各种电子导航和监控系统,可广泛用于交通、公安侦破、车船自动驾驶、科学种田和海上捕鱼等方面。

GPS为GIS及时采集、更新或修正数据,例如在外业调查中通过GPS定位得到的数据,输入给电子地图或数据库,可对原有数据进行修正、核实、赋予专题图属性以生成专题图。

H. GIS空间数据库的发展经历了哪些阶段

如果你问的是GIS的空间数据库的话:GIS空间数据库的发展经历三个阶段——
Geographic
Information
Systems
(1980s)
Geographic
Information
Science
(1990s)
Geographic
Information
Services
(2000s)
第一个阶段GIS主要的使用者是一些专业人员,例如地图制图人员等,比如ESRI
Arc/Info,GIS厂商所定位的客户群体是那些只关注于空间数据分析的用户。这块特定的市场相对较小,其中包括科学界和政府部门的专家。与其他信息技术的用户相比,GIS用户更多是在封闭的环境中工作,使用特别为他们设计的专用数据库;
第二个阶段GIS则进行了一系列的规范化,比如提出了较为完善的理论、框架等,出现了数据模型、数据操作等。
第三个阶段随着Internet时代的到来,出现了另一批使用空间数据的用户群,他们更喜欢在一个非常高级的、用户界面非常友好的层次上使用空间数据。比如网络地图,google
earth
支持空间查询,能够迅速定位,选择路径等。
如果你只是单纯问数据库的话:
总体说来,数据库技术从开始到现在一共经历了三个发展阶段:第一代是网状、层次数据库系统,第二代是关系数据库系统,第三代是以面向对象数据模型为主要特征的数据库系统。
第一代包括网状和层次数据库系统,是因为它们的数据模型虽然分别为层次和网状模型,但实质上层次模型只是网状模型的特例而已。这二者都是格式化数据模型,都是在60年代后期研究和开发的,不论是体系结构、数据库语言,还是数据的存储管理,都具有共同特征,所以它们应该划分为一代。
第二代数据库系统支持关系数据模型。关系模型不仅具有简单、清晰的优点,而且有关系代数作为语言模型,有关系数据理论作为理论基础。因此关系数据库具有形式基础好、数据独立性强、数据库语言非过程化等特点,这些特点是数据库技术发展到了第二代的显着标志。虽然关系数据模型描述了现实世界数据的结构和一些重要的相互联系,但是仍然不足以抓住和表达数据对象所具有的丰富而重要的语义,因而它属于语法模型。
第三代数据库系统的特征是数据模型更加丰富,数据管理功能更为强大,能够支持传统数据库难以支持的新的应用需求。
不过你提到了GIS那应该是问空间数据库吧?就是在普通关系数据库上加入了对空间数据的处理操作,应该是关系数据库的进一步发展,GIS就是空间数据库的一个应用~
呵呵,我的专业就是GIS,今天刚结束空间数据库原理专业课考试,希望能够帮到你。

I. arcgis数据库里的矢量加载进map里时出现空洞图斑

工作中如果遇到一个矢量中间有部分空洞(天窗),该如何修复(补)?下面介绍一仿态下ArcGIS修复矢量中间的空洞(天窗)的步骤,以供参考。1.矢量中有许多空白的区域,即为空洞(天窗),目的将宽困之修复。
针对空洞(天窗)较少的情况,可使用自动完成面来修复(补)。首先,将待修复的矢量开始启用编辑,如图所示
3启用编辑后,点击创建要素,调用右侧创建要素工备巧源具。
4.在创建要素工具中,单击矢量名称,再点击自动完成面。
5自动完成面操作:将一根线穿过并连接所有的空洞。
6连接空洞后,双击完成,被连接的空洞即会形成面。
7每个空洞被分成两个面,利用合并功能分别合并能即可修复(补)所有漏洞。

J. Arcgis直连SQLServer数据库,数据库数据更新Arcgis中不更新

arcgis的原创数据格式帆知由geodatabase决定.gdb是包含了空间数据的关滚颂系型数据库.有两种类型的gdb.个人的和企业级的.个人的只支大轿郑持access的mdb格式.大小限制在2g.