‘壹’ Linux内核配置与编译相关流程
linux内核配置与编译相关流程1、清除临时文件、中间文件和配置文件
make
clean
不删除配置文件。
make
mrproper
make
distclean
删除编辑的backup文件、补丁文件等2、确定目标系统的软硬件配置情况,比如CPU的类型,网卡的型号,所需要支持的网络协议。3、使用命令配置内核
make
config
基于文本模式的交互配置。
make
menuconfig
基于文本模式的菜单配置。
make
oldconfig
使用已有的配置文件(.config),但是会询问新增的配置选项。
make
xconfig
图形化的配置(需要安装图形化系统)。4、编译内核
make
zImage
make
bzImage
区别:在X86平台上,zImage只能用于小雨512k内核。如果需要获取详细编译信息,则在后面加上V=1.
编译好的内核位于arch/<cpu>/boot/目录下。
5、编译内核模块
make
moes
6、安装内核模块
make
moes_install
将编译好的内核模块从内核源代码目录到/lib/moes下。7、制作
init
ramdisk
mkinitrd
$initrd-$version
-$version内核安装(X86)1、cp
arch/X86/boot/bzImage
/boot/vmliuz
-$version2、cp
$initrd
/boot/3、修改etc/grub.conf
或
/etc/lilo.conf$version为所编译的内核版本号。
‘贰’ 如何配置linux 内核最小系统
下载内核下载热点内核标准配置文件编译内核makemenuconfig选中,然后选择刚下载的。config另外,要特别选中:1)、通过makemenuconfig选中以下对应的选项Generalsetup–>[*])、修改。config文件修改。config文件中CONFIG_SYSFS_DEPRECATED_V2,将原本被注释掉的CONFIG_SYSFS_DEPRECATED_V2改成CONFIG_SYSFS_DEPRECATED_V2=y注:修改这项是因为旧版的mkinitrd及其nash在内核没有CONFIG_SYSFS_DEPRECATED_V2参数时默认使用旧版sysfs路径格式,从而在新内核下无法正确访问/sys内的硬盘信息节点。主要是解决"mount:couldnotfindfilesystem'/dev/root'"这样的错误makebzImagemakemolesmakemoles_installmakeinstall解压修改内核cp/boot/initrd-2.6.38.img/tmpcd/tmp/mkdirnewinitrdcdnewinitrd/zcat/initrd-2.6.38.imgcpio-irm-rf/tmp/initrd-2.6.38.imgviinit找到这2行一样的,去掉1行echo"Loadingdm-region-hash.komole"insmod/lib/dm-region-hash.koecho"Loadingdm-region-hash.komole"insmod/lib/dm-region-hash.ko这主要是解决:"insmod:errorinserting'/lib/dm-region-hash.ko':-1Fileexists"这样的错误从新打包内核find.cpio-c-o>/initrdcd/gzip-9initrd-2.6.38imgrm-rf/boot/initrd-2.6.38.imgcpinitrd-2.6.38.img/bootrm-rf/cd/usr/src/linux-2.6.38.tar.gzrm-rf/cd/usr/src/linux-2.6.38设置从新内核启动,重启系统vi/boot/grub/grub.conf把default=1改为default=0reboot(重启系统)
‘叁’ linux内核配置哪些是必须的
由于Linux系统是一个比较复杂的操作系统,内核配置的选项也特别多,如果不是内核级别的开发人员的话,不要随便设置内核。
因为Linux内核,本身就带有不同厂家芯片的框架与驱动,所以内核配置最好的办法就是使用默认配置的基础之上,只配置与自己设备相关的选项。
进入主机的相关文件夹后,make menuconfig打开内核配置,然后保存。使用命令make uImage编译内核,最后下载到自己的设备中,看看设置结果。
‘肆’ 如何配置linux内核具有nfs的功能
1、使用的技术
NFS
2、测试环境
NFS服务器:192.168.255.18
NFS客户端:192.168.255.11
操作系统:REDHAT4
3、NFS服务器配置
(1)配置 /etc/hosts.deny
禁止任何客户端能和你的NFS服务器进行NFS连接:
### NFS DAEMONS
portmap:ALL
lockd:ALL
mountd:ALL
rquotad:ALL
statd:ALL
(2)配置/etc/hosts.allow
允许那些你想要的客户端和你的NFS服务器建立连接。下列步骤将允许任何IP地址
以192.168.2开头的主机(连接到NFS服务器上),也可以指定特定的IP地址。
### NFS DAEMONS
portmap: 192.168.255.
lockd: 192.168.255.
rquotad: 192.168.255.
mountd: 192.168.255.
statd: 192.168.255.
(3)重启portmap
运行 $ /etc/init.d/portmap restart 重启portmap daemon。
(4)配置/etc/exports
NFS挂载目录及权限由/etc/exports文件定义。比如要将我的/tmp目录让
192.168.255.*的IP共享, 则在该文件末尾添加下列语句:
/tmp 192.168.255.*(rw,sync,no_root_squash)
192.168.255.* 网段内的NFS客户端能够共享NFS服务器/tmp目录内容,且有读,写
权限,并且该用户进入/home/zp/share目录后的身份为root,最好加上sync,否则
$ sudo exportfs -r 时会给出警告, sync是NFS的默认选项。
(5)重启NFS服务
运行 $ /etc/init.d/nfs-kernel-server restart 重启nfs服务)
(6)NFS服务器查看共享是否成功
$ Showmount –e 192.168.255.18
/tmp 192.168.255.*
(6)NFS客户端启动NFS服务
service nfs start
(7)NFS客户端查看服务器共享目录
Showmount –e 192.168.255.18
(8)挂载NFS服务器共享目录
mount –t nfs -o tcp192.168.255.18:/tmp /tmp
4、错误排查
当/etc/exports设置的权限,不符合client端的来源时,则会出现以下错误信息:
mount: hostname:/dir failed, reason given by server: Permission denied
‘伍’ 如何看linux内核的配置选项
你要在目标文件夹(一般是/usr/src/kernels)下先解压内核源代码:tar jxvf linux-2.6.xx.xx.tar.bz2,然后cd到解压后的源代码目录树的根目录下运行make指令。 make clean应该是支持的。如果还不行可以试试 make mrproper,这个清除得更彻底。
‘陆’ Linux中为什么要配置内核,怎样重新配置内核
新的内核修订了旧内核的bug,并增加了许多新的特性。如果用户想要使用这些新特性,或想根据自己的系统度身定制一个更高效,更稳定的内核,就需要重新编译Linux内核。
为了正确的合理地设置内核编译配置选项,从而只编译系统需要的功能的代码,一般主要有下面四个考虑:
(1)自己定制编译的内核运行更快(具有更少的代码)
(2)系统将拥有更多的内存(内核部分将不会被交换到虚拟内存中)
(3)不需要的功能编译进入内核可能会增加被系统攻击者利用的漏洞
(4)
将某种功能编译为模块方式会比编译到内核内的方式速度要慢一些
‘柒’ 如何给linux安装新内核
清除垃圾(这一步:一般是在就内核重新编译时使用,在编译新的内核是不需要);
make clean及make mrproper;
进行内核裁减配置;
内核裁减配置的原则:
从实际出发。
如:根据支持的硬件设备来决定需要选择的驱动模块,根据需要选择所支持的文件系统格式等;
具体配置命令为:
make config :通过命令接口,依次要求你设定每个选项,如果.config文件存在,会根据该文件来设置默认值;
make menuconfig :显示以curses为基础的、终端式的配置菜单。
make xconfig :图形界面,显示以Tk为基础X Window配置菜单。
最常用的为:make menuconfig(注:需要ncurses的rpm包)。
说明:这一步中选择为M模式的,编译到/lib/moles/下相关目录文件中;选择为*模式的,编译到内核中即/boot/vmlinuz中,启动时加载到内核中。
具体内核裁减配置参阅其它资料。
第四步:生成依赖关系(make dep)
内核源码树中大多数文件都会与一些头文件有依存关系,要想编译内核顺利,在正式编译前必须让内核源码树中的各个Makefile文件知道这些依存关系。
依存关系建立期间会在内核源码树中每个子目录里产生一个隐藏的.depend文件,此文件内含子目录里各个文件所依存的头文件清单。
第五步:建立内核映像和模块
2.4内核:make bzImage :在arch/YOUR_ARCH/boot/中生成在在zImage内核映像文件;
make moles :在相应目录下生成内核模块(即驱动模块)
2.6内核:make :作用相当于make bzImage与make moles
第六步:安装模块(make moles_install)
让make moles或make 过程中产生的.o驱动模块拷入/lib/moles/下相应目录中;
第七步:安装内核
第一种情况:直接使用make install命令即可。
第二中情况:先采用cp arch/i386/boot/bzImage /boot/×××(×××表示自己随意的命名)
mkinitrd /boot/×××.img 2.6.12.6(内核版本号)
‘捌’ 如何定制自己的linux内核
一 前言
为什么要编译自己的内核?这可能会有各种不同的答案,列举如下:
1 为了研究,学习内核源码。
2 为了支持新的硬件或者打开某项内核功能。
3 升级内核到更新版本。
4 按自己的要求定制和优化内核功能。
如此种种...
折腾不需要理由,这里我就不在多说,下面直接进入主题。
编译方式
编译内核有多种方式,从kernel.org下载选择下载需要的版本的内核源码,
如:linux-2.6.32-rc1.tar.bz2,下载内核源码到/home/user/目录,进入下载目录,解压压缩包。
#cd /home/user/
#tar -xjvf linux-2.6.32-rc1.tar.bz2
二 准备编译环境
开始之前,首先确认下面软件包已经安装(编译中标普华4.0时,直接全部安装CD3可保证此条件)。
* rpmdevtools
* yum-utils
fedora系统可以使用如下命令安装:
#yum install yum-utils rpmdevtools
1. 生成一个rpmbuild命令工作所需的目录树,下面命令可以完成该操作,也可以手动建立目录树。
命令建立:
#rpmdev-setuptree
此命令将会在/usr/src/rpmbuild/目录下生成如下目录结构(如果此位置没有,则可能在当前用户目录下).
# tree /usr/src/rpmbuild/
rpmbuild/
|-- BUILD
|-- RPMS
|-- SOURCES
|-- SPECS
`-- SRPMS
上面部分是rpmbuild的环境建立。rpm
3. 安装内核源码包需要的依赖组件(在此可以跳过此步操作)
su -c 'yum-builddep kernel-<version>.src.rpm'
4.安装内核源码到系统,默认目录在/usr/src/neoshine:
rpm -Uvh kernel-<version>.src.rpm
三 配置内核(生成config配置文件)
下面将介绍如何解开源码包,并修改,配置和重新打包源码
1. 解开源码包并打上所有的补丁到BUILD目录
cd ~/rpmbuild/SPECS
rpmbuild -bp --target=`uname -m` kernel.spec
kernel源码将在这里找到:
/usr/src/neoshine/rpmbuild/BUILD/kernel-<version>/linux-<version>.<arch> directory
配置内核源码
1. 进入内核源码:
cd ~/rpmbuild/BUILD/kernel-2.6.$ver/linux-2.6.$ver.$arch/
2. 复制/boot/config*配置文件到源码目录下,此config文件也可以是已经配好或者其他地方备份的kernel配置文件:
cp /boot/config2.6- 2.6.$ver.$arch .config
3. 先检查kernel配置中新增的选项:
make oldconfig
4. 定制内核功能,关闭initrd支持选项,执行图形化内核配置工具:
make menuconfig
注:在generic setup选项下找到initial RAM system and RAM disk(initramfs and initrd) support 项,取消编译。同时确保跟文件系统对应的驱动和系统所在存储器对应的驱动都已经编译到内核(否则会无法启动系统).
5. 在.config文件第一行改为下面内容(注意:没有此行时,后面的编译会报错)
# i386
6. 拷贝.config到SOURCES/:
cp .config ../SOURCES/config-$arch
四 编译新内核
1. 下面开始准备编译新的内核包
打开SPEC/kernel.spec
vim SPEC/kernel.spec
改变下面行内容,可以定制自己的内核扩展名(如fc10之类):
%define buildid .<自己内核的小版本名>
下一步将生成一个新内核的rpm包,此过程需要编译内核源码包
使用下面命令生成新的内核源码包
rpmbuild -bb --with baseonly --without debuginfo --target=`uname -m` kernel.spec
参数说明:bb表示只编译二进制包,即不生成源码包,without debuginfo 表示没有调试信息,
target=`uname -r`表示生成对应当前平台的内核包
如果上面的命令成功执行完成,那么会在BUILD/i686目录下生成新的内核安装包
五 安装新内核
rpm -ivh kernel-$ver-$arch.rpm
此步操作会自动安装内核到boot目录下,安装对应内核模块到/lib/moles/目录下,并且生成新内核对应的grub引导菜单。
修改grub引导菜单为以下格式
title new kernel
kernel /boot/vmlinuz-$ver-$arch root=/dev/sdax(hdax)
注意,此处不要使用uuid指定跟文件系统(可能会无法挂载根分区而导致内核死机),也不要再加和显示相关的参数(内核不支持对应设置时,只会看到一个黑黑的屏幕)。
至此一个禁用initrd的新内核配置安装完毕!
‘玖’ 如何配置linux内核支持sata
(1)首先,用内核的 allnoconfig 配置目标,得到一个最最基本的内核配置。即,执行下面的命令:
make allnoconfig
内核的 allnoconfig 配置目标会把所有的内核选项都设置为no,也就是把它们既不编译进内核,也不编译成模块。
有了这个最基本的配置,我们再添加必须的配置项:再执行
make menuconfig
命令,按下面的步骤添加其他的配置——
(2)把 Executable file formats 下的ELF 和 emulations for 32bit ELF 选项编译进内核。
(3)在 Processor type and features 下面,选择合适的CPU类型。
(4)选择PCI/PCI-Express支持,位于Bus options (PCI, PCMCIA, EISA, MCA, ISA) 配置目录下。
(5)加入对根文件系统所在磁盘控制器的驱动:
Device Driver
|---->SCSI device support
|---->SCSI disk support
|----->SCSI low-level drivers
|---->Serial ATA (SATA) support
|---->intel PIIX/ICH SATA support
(6)加入Ext2文件系统的支持:在 File systems 配置目录下,选择 Second extended fs support。如果根文件系统是Ext3,则选择 Ext3 journalling file system support。
(7)为了是 Udev 正常工作,需要内核支持 Unix domain sockets。此配置选项位于 Networking 配置目录中的 Networking support ---> Networking options 下。
(8)使内核支持 /proc 虚拟文件系统和 tmpfs 文件系统:
File systems ---> Pseudo filesystems ---> /proc file system support / Virtual memory file system support (former shm fs)
(9)支持 swap 分区:
General setup ---> Support for paging of anonymous memory (swap)
(10)支持 RTC 设备:
Device Drivers ---> Character devices ---> Enhanced Real Time Clock Support
(11)为了充分发挥我的双核CPU的能力,我又加入了对SMP的支持:
Processor type and features ---> Symmetric multi-processing support。
‘拾’ 如何给linux安装新内核
第二步:清除垃圾(这一步:一般是在就内核重新编译时使用,在编译新的内核是不需要); make clean及make mrproper; 第三步:进行内核裁减配置; 内核裁减配置的原则: 从实际出发。 如:根据支持的硬件设备来决定需要选择的驱动模块,根据需要选择所支持的文件系统格式等; 具体配置命令为: make config :通过命令接口,依次要求你设定每个选项,如果.config文件存在,会根据该文件来设置默认值; make menuconfig :显示以curses为基础的、终端式的配置菜单。 make xconfig :图形界面,显示以Tk为基础X Window配置菜单。 最常用的为:make menuconfig(注:需要ncurses的rpm包)。 说明:这一步中选择为M模式的,编译到/lib/moles/下相关目录文件中;选择为*模式的,编译到内核中即/boot/vmlinuz中,启动时加载到内核中。 具体内核裁减配置参阅其它资料。 第四步:生成依赖关系(make dep) 内核源码树中大多数文件都会与一些头文件有依存关系,要想编译内核顺利,在正式编译前必须让内核源码树中的各个Makefile文件知道这些依存关系。 依存关系建立期间会在内核源码树中每个子目录里产生一个隐藏的.depend文件,此文件内含子目录里各个文件所依存的头文件清单。 第五步:建立内核映像和模块 2.4内核:make bzImage :在arch/YOUR_ARCH/boot/中生成在在zImage内核映像文件; make moles :在相应目录下生成内核模块(即驱动模块) 2.6内核:make :作用相当于make bzImage与make moles 第六步:安装模块(make moles_install) 让make moles或make 过程中产生的.o驱动模块拷入/lib/moles/下相应目录中; 第七步:安装内核 第一种情况:直接使用make install命令即可。 第二中情况:先采用cp arch/i386/boot/bzImage /boot/×××(×××表示自己随意的命名) mkinitrd /boot/×××.img 2.6.12.6(内核版本号)