当前位置:首页 » 数据仓库 » 数据库搜索效率
扩展阅读
webinf下怎么引入js 2023-08-31 21:54:13
堡垒机怎么打开web 2023-08-31 21:54:11

数据库搜索效率

发布时间: 2023-06-02 02:20:56

Ⅰ 如何提升Oracle数据库搜索效率

需要用索引来解决,索引的创建规则如下:
1、表的
主键

外键
必须有索引;
2、数据量超过300的表应该有索引;
3、经常与其他表进行连接的表,在连接字段上应该建立索引;
4、经常出现在Where子句中的字段,特别是大表的字段,应该建立索引;
5、索引应该建在选择性高的字段上;
6、索引应该建在小字段上,对于大的文本字段甚至超长字段,不要建索引;
7、复合索引的建立需要进行仔细分析;尽量考虑用单字段索引代替:
A、
正确选择
复合索引中的主列字段,一般是选择性较好的字段;
B、复合索引的几个字段是否经常同时以AND方式出现在Where子句中?单字段查询是否极少甚至没有?如果是,则可以建立复合索引;否则考虑单字段索引;
C、如果复合索引中包含的字段经常单独出现在Where子句中,则分解为多个单字段索引;
D、如果复合索引所包含的字段超过3个,那么仔细考虑其必要性,考虑减少复合的字段;
E、如果既有单字段索引,又有这几个字段上的复合索引,一般可以删除复合索引;
8、频繁进行
数据操作
的表,不要建立太多的索引;
9、删除无用的索引,避免对执行计划造成负面影响;
以上是一些普遍的建立索引时的判断依据。一言以蔽之,索引的建立必须慎重,对每个索引的必要性都应该经过仔细分析,要有建立的依据。因为太多的索引与不充分、不正确的索引对性能都毫无益处:在表上建立的每个索引都会增加存储开销,索引对于插入、删除、更新操作也会增加处理上的开销。另外,过多的复合索引,在有单字段索引的情况下,一般都是没有
存在价值
的;相反,还会降低数据增加删除时的性能,特别是对频繁更新的表来说,负面影响更大。

Ⅱ 常见的数据检索算法有哪些数据库都采用什么样的检索方式如何提高检索的效率

您好,你的问题,我之前好像也遇到过,以下是我原来的解决思路和方法,希望能帮助到你,若有错误,还望见谅!信息检索方法包括:普通法、追溯法和分段法。1、普通法是利用书目、文摘、索引等检索工具进行文献资料查找的方法。运用这种方法的关键在于熟悉各种检索工具的性质、特点和查找过程,从不同角度查找。普通法又可分为顺检法和倒检法。2、追溯法是利用已有文献所附的参考文献不断追踪查找的方法,在没有检索工具或检索工具不全时,此法可获得针对性很强的资料,查准率较高,查全率较差。3、分段法是追溯法和普通法的综合,它将两种方法分期、分段交替使用,直至查到所需资料为止。(2)数据库搜索效率扩展阅读检索原因信息检索是获取知识的捷径美国普林斯顿大学物理系一个年轻大学生名叫约瀚·菲利普,在图书馆里借阅有关公开资料,仅用四个月时间,就画出一张制造原子弹的设计图。他设计的原子弹,体积小(棒球大小)、重量轻(7.5公斤)、威力大(相当广岛原子弹3/4的威力),造价低(当时仅需两千美元),致使一些国家(法国、巴基斯坦等)纷纷致函美国大使馆,争相购买他的设计拷贝。二十世纪七十年代,美国核专家泰勒收到一份题为《制造核弹的方法》的报告,他被报告精湛的技术设计所吸引,惊叹地说:“至今我看到的报告中,它是最详细、最全面的一份。”但使他更为惊异的是,这份报告竟出于哈佛大学经济专业的青年学生之手,而这个四百多页的技术报告的全部信息来源又都是从图书馆那些极为平常的、完全公开的图书资料中所获得的。参考资料来源:网络——信息检索,非常感谢您的耐心观看,如有帮助请采纳,祝生活愉快!谢谢!

Ⅲ 怎样优化数据库查询怎样才能提高数据库的查询效率

网上有好多这方面的帖子,但我就不去找了。把我知道的几点给你列一下。
第一点:网速得给力,也就是应用服务器和数据库服务器之间不要做过多限制,特别是防火墙方面的,最好在一个网段
第二点:使用数据库连接池,无需创建连接,直接查询
第三点:查询语句上要明确指定查询那些列
第四点:连接查询,嵌套查询方面要仔细斟酌,选择最优的方案
第五点:分清各个函数、一些语法的特性,比如要分得清什么时候用 exists 什么时候用in
第六点:随着数据量的增大,再好的语句也会慢下来,可以考虑利用分区
。。。
其他方面还有,可以查看下论坛上的帖子总结一下

Ⅳ 怎么提高数据库查询效率

提高查询效率首先要想到的就是加索引,那什么是索引呢?
Mysql索引的建立对于MySQL的高效运行是很重要的,索引可以大大提高MySQL的检索速度。
打个比方,如果合理的设计且使用索引的MySQL是一辆兰博基尼的话,那么没有设计和使用索引的MySQL就是一个人力三轮车。
索引分单列索引和组合索引。单列索引,即一个索引只包含单个列,一个表可以有多个单列索引,但这不是组合索引。组合索引,即一个索引包含多个列。
创建索引时,你需要确保该索引是应用在 SQL 查询语句的条件(一般作为 WHERE 子句的条件)。
实际上,索引也是一张表,该表保存了主键与索引字段,并指向实体表的记录。
上面都在说使用索引的好处,但过多的使用索引将会造成滥用。因此索引也会有它的缺点:虽然索引大大提高了查询速度,同时却会降低更新表的速度,如对表进行INSERT、UPDATE和DELETE。因为更新表时,MySQL不仅要保存数据,还要保存一下索引文件。
建立索引会占用磁盘空间的索引文件。
如何使用索引呢?
首先索引有窄索引和宽索引两个概念,窄索引是指索引的列数为1~2,宽索引就是说索引的列数大于2。
因为窄索引的效率要高于宽索引,所以能用窄索引就不要使用宽索引。
那么对单字段索引和复合索引应该如何使用?
目录
单字段索引的情况:
复合索引的优势:
两者的比较:
单字段索引的情况:
1.表的主键,外键必须有索引
2.数据量超过300的表应该有索引
3.经常与其他表进行连接的表,在连接字段上应该建立索引
4.经常出现在where字句中的字段,特点是大表的字段,应该建立索引
5.索引应该建在选择性高的字段上
6.索引应该建在小字段上,对于大的文本字段甚至超长字段,不要建立索引
7.尽量用单字段索引代替复合索引,复合索引的建立需要仔细的斟酌
复合索引的优势:
1.单字段索引很少甚至没有
2.复合索引的几个字段经常同时以AND的方式出现在where语句
当where语句中的条件是OR时,索引不起作用。
两者的比较:
以一个sql语句来举例:SELECT * FROM STUDENT WHERE SEX="男" AND SAGE=18;
若在sex 和 sage 两个字段分别创建了单字段索引,mysql查询每次只能使用一个索引,虽然对于未添加索引时使用全盘扫描,我们的效率提升了很多,但如果在sex 和 sage两个字段添加复合索引,效率会跟高,如: 创建(sex, age,teacher)的复合索引,那么其实相当于创建了(area,age,teacher)、(area,age)、(area)三个索引,这被称为最佳左前缀特性。
那对于两者优缺点的比较:
1.对于具有2个用and连接条件的语句,且2个列之间的关联度较低的情况下,复合索引有一定优势。
2.对于具有2个用and连接条件的语句,且2个列之间的关联度较高的情况下,复合索引有很大优势。
3.对于具有2个用or连接条件的语句,单索引有一定优势,因为这种情况下复合索引将会导致全表扫描,而前者可以用到indexmerge的优化。
以上就是如何提高查询效率的全部内容,如果有帮助到你的话记得点个关注哟

Ⅳ 影响数据检索效率的几个因素

影响数据检索效率的几个因素
数据检索有两种主要形态。第一种是纯数据库型的。典型的结构是一个关系型数据,比如 mysql。用户通过 SQL 表达出所需要的数据,mysql 把 SQL 翻译成物理的数据检索动作返回结果。第二种形态是现在越来越流行的大数据玩家的玩法。典型的结构是有一个分区的数据存储,最初这种存储就是原始的 HDFS,后来开逐步有人在 HDFS 上加上索引的支持,或者干脆用 Elasticsearc 这样的数据存储。然后在存储之上有一个分布式的实时计算层,比如 Hive 或者 Spark SQL。用户用 Hive SQL 提交给计算层,计算层从存储里拉取出数据,进行计算之后返回给用户。这种大数据的玩法起初是因为 SQL 有很多 ad-hoc 查询是满足不了的,干脆让用户自己写 map/rece 想怎么算都可以了。但是后来玩大了之后,越来越多的人觉得这些 Hive 之类的方案查询效率怎么那么低下啊。于是一个又一个项目开始去优化这些大数据计算框架的查询性能。这些优化手段和经典的数据库优化到今天的手段是没有什么两样的,很多公司打着搞计算引擎的旗号干着重新发明数据库的活。所以,回归本质,影响数据检索效率的就那么几个因素。我们不妨来看一看。
数据检索干的是什么事情
定位 => 加载 => 变换
找到所需要的数据,把数据从远程或者磁盘加载到内存中。按照规则进行变换,比如按某个字段group by,取另外一个字段的sum之类的计算。
影响效率的四个因素
读取更少的数据
数据本地化,充分遵循底层硬件的限制设计架构
更多的机器
更高效率的计算和计算的物理实现
原则上的四点描述是非常抽象的。我们具体来看这些点映射到实际的数据库中都是一些什么样的优化措施。
读取更少的数据
数据越少,检索需要的时间当然越少了。在考虑所有技术手段之前,最有效果的恐怕是从业务的角度审视一下我们是否需要从那么多的数据中检索出结果来。有没有可能用更少的数据达到同样的效果。减少的数据量的两个手段,聚合和抽样。如果在入库之前把数据就做了聚合或者抽样,是不是可以极大地减少查询所需要的时间,同时效果上并无多少差异呢?极端情况下,如果需要的是一天的总访问量,比如有1个亿。查询的时候去数1亿行肯定快不了。但是如果统计好了一天的总访问量,查询的时候只需要取得一条记录就可以知道今天有1个亿的人访问了。
索引是一种非常常见的减少数据读取量的策略了。一般的按行存储的关系型数据库都会有一个主键。用这个主键可以非常快速的查找到对应的行。KV存储也是这样,按照Key可以快速地找到对应的Value。可以理解为一个Hashmap。但是一旦查询的时候不是用主键,而是另外一个字段。那么最糟糕的情况就是进行一次全表的扫描了,也就是把所有的数据都读取出来,然后看要的数据到底在哪里,这就不可能快了。减少数据读取量的最佳方案就是,建立一个类似字典一样的查找表,当我们找 username=wentao 的时候,可以列举出所有有 wentao 作为用户名的行的主键。然后拿这些主键去行存储(就是那个hashmap)里捞数据,就一捞一个准了。
谈到索引就不得不谈一下一个查询使用了两个字段,如何使用两个索引的问题。mysql的行为可以代表大部分主流数据库的处理方式:
基本上来说,经验表明有多个单字段的索引,最后数据库会选一最优的来使用。其余字段的过滤仍然是通过数据读取到内存之后,用predicate去判断的。也就是无法减少数据的读取量。
在这个方面基于inverted index的数据就非常有特点。一个是Elasticsearch为代表的lucene系的数据库。另外一个是新锐的druid数据库。
效果就是,这些数据库可以把单字段的filter结果缓存起来。多个字段的查询可以把之前缓存的结果直接拿过来做 AND 或者 OR 操作。
索引存在的必要是因为主存储没有提供直接的快速定位的能力。如果访问的就是数据库的主键,那么需要读取的数据也就非常少了。另外一个变种就是支持遍历的主键,比如hbase的rowkey。如果查询的是一个基于rowkey的范围,那么像hbase这样的数据库就可以支持只读取到这个范围内的数据,而不用读取不再这个范围内的额外数据,从而提高速度。这种加速的方式就是利用了主存储自身的物理分布的特性。另外一个更常见的场景就是 partition。比如 mysql 或者 postgresql 都支持分区表的概念。当我们建立了分区表之后,查找的条件如果可以过滤出分区,那么可以大幅减少需要读取的数据量。比 partition 更细粒度一些的是 clustered index。它其实不是一个索引(二级索引),它是改变了数据在主存储内的排列方式,让相同clustered key的数据彼此紧挨着放在一起,从而在查询的时候避免扫描到无关的数据。比 partition 更粗一些的是分库分表分文件。比如我们可以一天建立一张表,查询的时候先定位到表,再执行 SQL。比如 graphite 给每个 metric 创建一个文件存放采集来的 data point,查询的时候给定metric 就可以定位到一个文件,然后只读取这个文件的数据。
另外还有一点就是按行存储和按列存储的区别。按列存储的时候,每个列是一个独立的文件。查询用到了哪几个列就打开哪几个列的文件,没有用到的列的数据碰都不会碰到。反观按行存储,一张中的所有字段是彼此紧挨在磁盘上的。一个表如果有100个字段,哪怕只选取其中的一个字段,在扫描磁盘的时候其余99个字段的数据仍然会被扫描到的。
考虑一个具体的案例,时间序列数据。如何使用读取更少的数据的策略来提高检索的效率呢?首先,我们可以保证入库的时间粒度,维度粒度是正好是查询所需要的。如果查询需要的是5分钟数据,但是入库的是1分钟的,那么就可以先聚合成5分钟的再存入数据库。对于主存储的物理布局选择,如果查询总是针对一个时间范围的。那么把 timestamp 做为 hbase 的 rowkey,或者 mysql 的 clustered index 是合适。这样我们按时间过滤的时候,选择到的是一堆连续的数据,不用读取之后再过滤掉不符合条件的数据。但是如果在一个时间范围内有很多中数据,比如1万个IP,那么即便是查1个IP的数据也需要把1万个IP的数据都读取出来。所以可以把 IP 维度也编码到 rowkey 或者 clustered index 中。但是假如另外还有一个维度是 OS,那么查询的时候 IP 维度的 rowkey 是没有帮助的,仍然是要把所有的数据都查出来。这就是仅依靠主存储是无法满足各种查询条件下都能够读取更少的数据的原因。所以,二级索引是必要的。我们可以把时间序列中的所有维度都拿出来建立索引,然后查询的时候如果指定了维度,就可以用二级索引把真正需要读取的数据过滤出来。但是实践中,很多数据库并不因为使用了索引使得查询变快了,有的时候反而变得更慢了。对于 mysql 来说,存储时间序列的最佳方式是按时间做 partition,不对维度建立任何索引。查询的时候只过滤出对应的 partition,然后进行全 partition 扫描,这样会快过于使用二级索引定位到行之后再去读取主存储的查询方式。究其原因,就是数据本地化的问题了。
[page]
数据本地化
数据本地化的实质是软件工程师们要充分尊重和理解底层硬件的限制,并且用各种手段规避问题最大化利用手里的硬件资源。本地化有很多种形态
最常见的最好理解的本地化问题是网络问题。我们都知道网络带宽不是无限的,比本地磁盘慢多了。如果可能尽量不要通过网络去访问数据。即便要访问,也应该一次抓取多一些数据,而不是一次搞一点,然后搞很多次。因为网络连接和来回的开销是非常高的。这就是 data locality 的问题。我们要把计算尽可能的靠近数据,减少网络上传输的数据量。
这种带宽引起的本地化问题,还有很多。网络比硬盘慢,硬盘比内存慢,内存比L2缓存慢。做到极致的数据库可以让计算完全发生在 L2 缓存内,尽可能地避免频繁地在内存和L2之间倒腾数据。
另外一种形态的问题化问题是磁盘的顺序读和随机读的问题。当数据彼此靠近地物理存放在磁盘上的时候,顺序读取一批是非常快的。如果需要随机读取多个不连续的硬盘位置,磁头就要来回移动从而使得读取速度快速下降。即便是 SSD 硬盘,顺序读也是要比随机读快的。
基于尽可能让数据读取本地化的原则,检索应该尽可能地使用顺序读而不是随机读。如果可以的话,把主存储的row key或者clustered index设计为和查询提交一样的。时间序列如果都是按时间查,那么按时间做的row key可以非常高效地以顺序读的方式把数据拉取出来。类似地,按列存储的数据如果要把一个列的数据都取出来加和的话,可以非常快地用顺序读的方式加载出来。
二级索引的访问方式典型的随机读。当查询条件经过了二级索引查找之后得到一堆的主存储的 key,那么就需要对每个 key 进行一次随机读。即便彼此仅靠的key可以用顺序读做一些优化,总体上来说仍然是随机读的模式。这也就是为什么时间序列数据在 mysql 里建立了索引反而比没有建索引还要慢的原因。
为了尽可能的利用顺序读,人们就开始想各种办法了。前面提到了 mysql 里的一行数据的多个列是彼此紧靠地物理存放的。那么如果我们把所需要的数据建成多个列,那么一次查询就可以批量获得更多的数据,减少随机读取的次数。也就是把之前的一些行变为列的方式来存放,减少行的数量。这种做法的经典案例就是时间序列数据,比如可以一分钟存一行数据,每一秒的值变成一个列。那么行的数量可以变成之前的1/60。
但是这种行变列的做法在按列存储的数据库里就不能直接照搬了,有些列式数据库有column family的概念,不同的设置在物理上存放可能是在一起的也可能是分开的。对于 Elasticsearch 来说,要想减少行的数量,让一行多pack一些数据进去,一种做法就是利用 nested document。内部 Elasticsearch 可以保证一个 document 下的所有的 nested document是物理上靠在一起放在同一个 lucene 的 segment 内。
网络的data locality就比较为人熟知了。map rece的大数据计算模式就是利用map在数据节点的本地把数据先做一次计算,往往计算的结果可以比原数据小很多。然后再通过网络传输汇总后做 rece 计算。这样就节省了大量网络传输数据的时间浪费和资源消耗。现在 Elasticsearch 就支持在每个 data node 上部署 spark。由 spark 在每个 data node 上做计算。而不用把数据都查询出来,用网络传输到 spark 集群里再去计算。这种数据库和计算集群的混合部署是高性能的关键。类似的还有 storm 和 kafka 之间的关系。
网络的data locality还有一个老大难问题就是分布式大数据下的多表join问题。如果只是查询一个分布式表,那么把计算用 map rece 表达就没有多大问题了。但是如果需要同时查询两个表,就意味着两个表可能不是在物理上同样均匀分布的。一种最简单的策略就是找出两张表中最小的那张,然后把表的内容广播到每个节点上,再做join。复杂一些的是对两个单表做 map rece,然后按照相同的 key 把部分计算的结果汇集在一起。第三种策略是保证数据分布的方式,让两张表查询的时候需要用到的数据总在一起。没有完美的方案,也不大可能有完美的方案。除非有一天网络带宽可以大到忽略不计的地步。
更多的机器
这个就没有什么好说的了。多一倍的机器就多一倍的 CPU,可以同时计算更多的数据。多一倍的机器就多一倍的磁头,可以同时扫描更多的字节数。很多大数据框架的故事就是讲如何如何通过 scale out解决无限大的问题。但是值得注意的是,集群可以无限大,数据可以无限多,但是口袋里的银子不会无限多的。堆机器解决问题比升级大型机是要便宜,但是机器堆多了也是非常昂贵的。特别是 Hive 这些从一开始就是分布式多机的检索方案,刚开始的时候效率并不高。堆机器是一个乘数,当数据库本来单机性能不高的时候,乘数大并不能起到决定性的作用。
更高效的计算和计算实现
检索的过程不仅仅是磁盘扫描,它还包括一个可简单可复杂的变换过程。使用 hyperloglog,count min-sketch等有损算法可以极大地提高统计计算的性能。数据库的join也是一个经常有算法创新的地方。
计算实现就是算法是用C++实现的还是用java,还是python实现的。用java是用大Integer实现的,还是小int实现的。不同的语言的实现方式会有一些固定的开销。不是说快就一定要C++,但是 python 写 for 循环是显然没有指望的。任何数据检索的环节只要包含 python/ruby 这些语言的逐条 for 循环就一定快不起来了。
结论
希望这四点可以被记住,成为一种指导性的优化数据检索效率的思维框架。无论你是设计一个mysql表结构,还是优化一个spark sql的应用。从这四个角度想想,都有哪些环节是在拖后腿的,手上的工具有什么样的参数可以调整,让随机读变成顺序读,表结构怎么样设计可以最小化数据读取的量。要做到这一点,你必须非常非常了解工具的底层实现。而不是盲目的相信,xx数据库是最好的数据库,所以它一定很快之类的。如果你不了解你手上的数据库或者计算引擎,当它快的时候你不知道为何快,当它慢的时候你就更加无从优化了。