㈠ c语言多线程的操作步骤
线程创建
函数原型:intpthread_create(pthread_t*restrict tidp,const pthread_attr_t *restrict attr,void *(*start_rtn)(void),void *restrict arg);
返回值:若是成功建立线程返回0,否则返回错误的编号。
形式参数:pthread_t*restrict tidp要创建的线程的线程id指针;const pthread_attr_t *restrict attr创建线程时的线程属性;void *(start_rtn)(void)返回值是void类型的指针函数;void *restrict arg start_rtn的形参。
线程挂起:该函数的作用使得当前线程挂起,等待另一个线程返回才继续执行。也就是说当程序运行到这个地方时,程序会先停止,然后等线程id为thread的这个线程返回,然后程序才会断续执行。
函数原型:intpthread_join(pthread_tthread, void **value_ptr);
参数说明如下:thread等待退出线程的线程号;value_ptr退出线程的返回值。
返回值:若成功,则返回0;若失败,则返回错误号。
线程退出
函数原型:voidpthread_exit(void *rval_ptr);
获取当前线程id
函数原型:pthread_tpthread_self(void);
互斥锁
创建pthread_mutex_init;销毁pthread_mutex_destroy;加锁pthread_mutex_lock;解锁pthread_mutex_unlock。
条件锁
创建pthread_cond_init;销毁pthread_cond_destroy;触发pthread_cond_signal;广播pthread_cond_broadcast;等待pthread_cond_wait。
㈡ c语言实现多线程
目录:
Linux操作系统,C语言实现多线程
Windows操作系统,C语言实现多线程
Windows下的多线程(不带停止)
Linux操作系统,C语言实现多线程:
#include<stdio.h>
#include<stdlib.h>
#include<pthread.h>
void*ThreadOne(void*threadArg)
{
printf("线程开始啦,参数是:%s ",(char*)threadArg);
returnNULL;
}
intmain(void)
{
pthread_tThreadID;/*记录线程标识符*/
void*waitingResult;/*等待线程退出的等待结果*/
interrorCode;/*记录线程的错误代码*/
char*aMessage="这是线程的参数";
/*创建并启动线程ThreadOne。若返回值非零,则线程创建失败*/
errorCode=pthread_create(&ThreadID,NULL,ThreadOne,aMessage);
if(errorCode!=0)
{
printf("线程ThreadOne创建失败。错误代码:%d ",errorCode);
returnEXIT_FAILURE;
}
/*等待线程标识符为的ThreadID的线程结束*/
errorCode=pthread_join(ThreadID,&waitingResult);
if(errorCode!=0)
{
printf("等待线程退出等待失败。错误代码:%d ",errorCode);
returnEXIT_FAILURE;
}
printf("线程的返回值是%p ",waitingResult);
returnEXIT_SUCCESS;
}
Windows操作系统,C语言实现多线程:
#include<stdio.h>
#include<windows.h>
DWORDAPIENTRYThreadOne(LPVOIDthreadArg)
{
printf("线程开始啦,参数是:%s ",(char*)threadArg);
return0;
}
intmain(void)
{
HANDLEhThread;/*记录线程句柄*/
DWORDThreadID;/*记录线程ID号*/
DWORDwaitingResult;/*等待线程退出的等待结果*/
DWORDthreadExitCode;/*记录线程的返回值*/
char*aMessage="这是线程的参数";
/*创建并启动线程ThreadOne,返回值为线程句柄,赋值给hThread*/
hThread=CreateThread(NULL,0L,ThreadOne,(LPVOID)aMessage,0L,&ThreadID);
if(hThread==NULL)
{
printf("线程ThreadOne创建失败。错误代码:%lu ",GetLastError());
returnEXIT_FAILURE;
}
/*等待线程句柄为的hThread线程结束*/
waitingResult=WaitForSingleObject(hThread,INFINITE);
if(waitingResult==WAIT_FAILED)
{
printf("等待线程退出等待失败。错误代码:%lu ",GetLastError());
returnEXIT_FAILURE;
}
if(GetExitCodeThread(hThread,&threadExitCode))
printf("线程的返回值是%lu ",threadExitCode);
else
printf("获取线程的返回值获取失败。错误代码:%lu ",GetLastError());
returnEXIT_SUCCESS;
}
Windows下的多线程:(不带停止)
#include<stdio.h>
#include<windows.h>
DWORDWINAPIoxianchen(LPVOIDlpParam);
intmain(intargc,char*argv[])
{
intnum=0;
CreateThread(NULL,NULL,oxianchen,&num,NULL,NULL);
while(1)
{
num++;
printf("主线程!%05d ",nu***eep(40);
}
return0;
}
DWORDWINAPIoxianchen(LPVOIDlpParam)
{
int*a=lpParam;
while(1)
{
++*a;
printf("副线程!%05d0x%p ",*a,a);
Sleep(80);
}
return0;
}
㈢ 多线程并发访问数据库并同时开启事务的情况下,可能产生的问题包括
AB
C不是问题,C是可重复读隔离级别下的一个正常现象。
㈣ C/C++用一个连接多线程并发访问数据库会不会有问题
加个原子锁吧,尽量异步访问
㈤ C/C++多线程问题
WINDOWS线程需要这样的函数体:
DWORD WINAPI thread_proc(LPVOID lpParam)
{
...
return 0;
}
C语言中直接调用线程就是CreateThread(&thread_proc, ...)即可
因为C++的类是在运行阶段分配地址,而不是在编译阶段分配地址,所以要想在类函数中声明线程,就必须强制把线程成员函数设置为编译阶段就分配地址,这样才能绑定到WINDOWS API的CreateThread函数上去,这种方式叫做static.
之所以保存线程指针是因为现代多任务操作系统往往处于比较复杂的状态。比如,假设你的线程是用于下载某个网络资源,如电影等;同时网络用户调整了带宽,或者开始打游戏,或者播放视频,这些都会影响CPU对当前定义的线程的资源控制。如果线程内部涉及了很多资源,如果不进行善后则后果比较严重(假设你的线程在下一个电影的局部片段,因为资源没有正常退出,导致整个电影文件即使全部下载下来也无法打开)。所以为了妥善处理,一般好的软件在主程序接到退出、终止、异常时,首先都会尝试【安全】退出线程,逐步关闭已打开的资源,如文件、数据库、管道、网络连接等等,再彻底退出。
假如你的线程用于网络游戏,那就更典型了,你不希望因为一时断网,导致下次再上的时候,装备全丢吧?
㈥ C# 多线程 大量数据实时接收\解析\存储 问题
1、定义两个线程安全的队列(System.Collections.Concurrent.ConcurrentQueue<T>)a跟b,其中a用于储存接受的数据,b用于储存要持久化的数据。
2、线程A循环读取数据并储存到队列a中。
3、线程B循环从队列a中读取数据。
3.1、如果读取到数据
3.1.1、将解析前的数据跟解析后的数据赋值给专门储存它们的类c。
3.1.2、将类c添加到队列b中。
3.1.3、将解析后的数据显示到UI线程中。
3.2、如果没有读取到数据,则sleep一定时间。
4、线程C循环从队列b中读取数据。
4.1、如果读取到数据,则储存数据。
4.2、如果没有读取到数据,则sleep一定时间。
5、线程D可以不要,不过假设数据的处理时间过长,将导致队列长度不断增长,所以线程D可以循环判断队列a跟队列b的长度。假设队列中的对象数量超过特定阀值,则进行一定处理。比如终止程序,比如跳过部分数据,比如停止接收数据等。
㈦ c++数据库那种最快,支持多线程,或文本数据库
选择成品数据库,要看之后的应用结构的才能确定用哪个快..
如果仅仅是要写入时快,不考虑查询情况..那当然直接把C/C++的数据结构给保存了最快..
比如保存一个struct Record,或class Record,限定好成员大小后,直接内存到磁盘的写盘...
这样写最快,而读取只能顺序读取....
另json等是交换格式不是存储格式更不能当数据库用哇....
㈧ C语言,OCI多线程建立session的问题,需要一个多线程连接的示例代码
。。
你子线程控制同步了么? 断错误一般是内存操作出错 和oci 或者pthread的关系不大!
void* OracleProcess(GPS_DATA GpsRec) // 数据库数据处理
{
interval = 0;
struct HashItem* pHash;
pHash = inithashtable(MAX_REC<<2);
char sql[384] = {0};
char temp[256] = {0};
char tName[10] = {0}; // 表名字
int i,k;
int j = TotalRec >> RATE;
double distance;
for(i=0; i < j; i++)
{
sprintf(temp,"%s%f%f%f%d",gps_last[i].tid,gps_last[i].lon,gps_last[i].lat,gps_last[i].speed,gps_last[i].udate);
InsertHash(temp, pHash, MAX_REC<<2); // 插入最后GPS信息到hash
memset(temp,0x00,256);
}
for(i = 0; i < TotalRec; i++)
{
for(k=0; k<j; k++) // 查询车机是否在册
if(strcmp(GpsRec[i].tid,tid[k]) == 0)
break;
if(k < j)
{
if(GpsRec[i].udate != 0.00)
{
distance = InfoUpdate(GpsRec,i); // 最新GPS数据更新
sprintf(temp,"%s%f%f%f%d",GpsRec[i].tid,GpsRec[i].lon,GpsRec[i].lat,GpsRec[i].speed,GpsRec[i].udate);
if(GetHashTablePos(temp, pHash, MAX_REC<<2) == -1) // 查找hash是否存在
{
if (distance > 0.0001)
{
sprintf(tName,"GPS_%d_Y",tf[k]);
InsertHash(temp, pHash, MAX_REC<<2); // 插入
sprintf(sql,"insert into %s (id,tm_id,lon,lat, speed, utc_time, udate,mileage,DIRECTION,DISTANCE) values (seq_gps.nextVal,'%s','%f','%f','%f','%d','%d','%f','%d','%f','%d')",
tName,GpsRec[i].tid,GpsRec[i].lon,GpsRec[i].lat,GpsRec[i].speed,GpsRec[i].utime,GpsRec[i].udate,GpsRec[i].mileage,GpsRec[i].dir,distance,interval);
printf("%s\n",sql);
oci_excu(oracle_env,(text *)sql,0); // 插入数据
memset(tName,0x00,10);
}
}
memset(sql,0x00,384);
memset(temp,0x00,256);
}
}
}
memset(GpsRec,0x00,sizeof(GpsRec));
free(pHash);
pthread_exit(NULL);
}
void TcpProcess(int tfd) // 处理TCP连接上的事务
{
struct timeval ntime;
int index = 0,times,ret;
int rlen = 0,rflag = 0;
char recvbuf[513] = {0};
bzero(recvbuf,513);
while(1)
{
ret = rlen = read(tfd,recvbuf,512);
if(rlen <= 0)
break;
if((rlen%32) == 0) // 32长度为标准TCP信息
{
times = 0;
ret >>= 5;
while(ret--)
{
if(tflag[tfd] == tfd) // 已经存在的socket
{
LOVENIX *info = (LOVENIX *)malloc(sizeof(LOVENIX));
memset(info,0x00,sizeof(LOVENIX));
if(recvbuf[times] == 0x58 || recvbuf[times] == 0x59)
ProtocolAnalysisLovenixTcp(&recvbuf[times],info);
else if(recvbuf[times] == 0x24)
ProtocolAnalysisLovenixUdp(&recvbuf[times],info);
sprintf(info->tid,"%s",seq[tfd]); // 合成车辆ID
DataProcess(info); // 处理GPS数据
free(info);
gettimeofday(&ntime, NULL);
cntime[tfd] = ntime.tv_sec; // 更新时间
times += 32;
}
}
}
else if(rlen > 32)
{
if(!rflag)
{
if((index = RegLovenix(tfd,recvbuf)) > -1)
{
sprintf(seq[tfd],"%s",tid[index]); // 将对应的socket设备ID保存
gettimeofday(&ntime, NULL);
sfd[tfd] = tfd;
cntime[tfd] = ntime.tv_sec;
tflag[tfd] = tfd;
rflag = 1;
}
}
}
if(rlen < 512); // 已经读完
break;
memset(recvbuf,0x00,rlen);
}
}
void *TcpServer(void *arg)
{
int port = (unsigned int) arg;
int efd,i;
struct timeval ntime;
int listener, nfds, n, listen_opt = 1, lisnum;
struct sockaddr_in my_addr, their_addr;
socklen_t len = sizeof(their_addr);
lisnum = MAXLISTEN;
for(i=0; i<MAX_REC; i++)
{
sfd[i] = 0;
tflag[i] = 0;
}
if ((listener = socket(PF_INET, SOCK_STREAM, 0)) == -1) // 开启 socket 监听
{
lprintf(lfd, FATAL, "TCP Socket error!\n");
exit(1);
}
else
lprintf(lfd, INFO, "TCP socket creat susscess!\n");
setsockopt(listener, SOL_SOCKET, SO_REUSEADDR, (void *) &listen_opt,(int) sizeof(listen_opt)); // 设置端口多重邦定
setnonblocking(listener);
bzero(&my_addr, sizeof(my_addr));
my_addr.sin_family = PF_INET;
my_addr.sin_port = htons(port);
my_addr.sin_addr.s_addr = INADDR_ANY;
if (bind(listener, (struct sockaddr *) &my_addr, sizeof(struct sockaddr)) == -1)
{
lprintf(lfd, FATAL, "TCP bind error!\n");
exit(1);
}
else
lprintf(lfd, INFO, "TCP bind susscess!\n");
if (listen(listener, lisnum) == -1)
{
lprintf(lfd, FATAL, "TCP listen error!\n");
exit(1);
}
else
lprintf(lfd, INFO, "TCP listen susscess!\n");
kdpfd = epoll_create(MAXEPOLLSIZE); // 创建 epoll句柄,把监听socket加入到epoll集合里
ev.events = EPOLLIN | EPOLLET; // 注册epoll 事件
ev.data.fd = listener;
if (epoll_ctl(kdpfd, EPOLL_CTL_ADD, listener, &ev) < 0)
lprintf(lfd, FATAL, "EPOLL_CTL_ADD error!\n");
while (1)
{
sem_wait(&sem_tcp); // 等待 sem_TCP
sem_wait(&sem_tp); // 将tp值减一
nfds = epoll_wait(kdpfd, events, MAXEPOLLSIZE, 1); // 等待有事件发生
if (nfds == -1)
lprintf(lfd, FATAL,"EPOLL_WAIT error!\n");
for (n = 0; n < nfds; ++n) // 处理epoll所有事件
{
if (events[n].data.fd == listener) // 如果是连接事件
{
if ((efd = accept(listener, (struct sockaddr *) &their_addr,&len)) < 0)
{
lprintf(lfd, FATAL, "accept error!\n");
continue;
}
else
lprintf(lfd, INFO, "Client from :%s\tSocket ID:%d\n", inet_ntoa(their_addr.sin_addr) ,efd);
setnonblocking(efd); // 设置新连接为非阻塞模式
ev.events = EPOLLIN | EPOLLET; // 注册新连接
ev.data.fd = efd;
if (epoll_ctl(kdpfd, EPOLL_CTL_ADD, efd, &ev) < 0) // 将新连接加入EPOLL的监听队列
lprintf(lfd, FATAL, "EPOLL_CTL_ADD error!\n");
else
{
gettimeofday(&ntime, NULL);
cntime[efd] = ntime.tv_sec;
sfd[efd] = efd;
}
}
else if (events[n].events & EPOLLIN)
tpool_add_work(pool, TcpProcess, (void*)events[n].data.fd); // 读取分析TCP信息
else
{
close(events[n].data.fd);
epoll_ctl(kdpfd, EPOLL_CTL_DEL, events[n].data.fd, &ev);
}
}
sem_post(&sem_cm);
sem_post(&sem_udp);
}
close(listener);
}
int DataProcess(LOVENIX *info) // 处理GPS数据
{
if(sflag == 0 && (CacheRec != TotalRec)) // 缓存1可用且没有满
{
gps_cache[CacheRec].lat = info->lat;
gps_cache[CacheRec].mileage = info->mileage;
gps_cache[CacheRec].lon = info->lon;
gps_cache[CacheRec].speed = atod(info->speed, strlen(info->speed))*0.514444444*3.6;
gps_cache[CacheRec].udate = atoi(info->udate);
gps_cache[CacheRec].utime = atoi(info->utime);
gps_cache[CacheRec].dir = atoi(info->dir);
sprintf(gps_cache[CacheRec].tid ,"%s",info->tid);
CacheRec++;
// printf("CacheRec %d\tTotalRec %d \t sflag:%d\n",CacheRec,TotalRec,sflag);
if(CacheRec == TotalRec)
{
sflag = 1;
pthread_attr_init(&attr); // 初始化属性值,均设为默认值
pthread_attr_setscope(&attr, PTHREAD_SCOPE_SYSTEM);
pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED); // 设置线程为分离属性
if (pthread_create(&thread, &attr,(void*) OracleProcess,(void*)gps_cache)) // 创建数据处理线程
lprintf(lfd, FATAL, "oracle pthread_creat error!\n");
CacheRec = 0;
}
}
else if(sflag == 1 && (Cache1Rec != TotalRec)) // 缓存2可用且没有满
{
gps_cache1[Cache1Rec].mileage = info->mileage;
gps_cache1[Cache1Rec].lat = info->lat;
gps_cache1[Cache1Rec].lon = info->lon;
gps_cache1[Cache1Rec].speed = atod(info->speed, strlen(info->speed))*0.514444444*3.6;
gps_cache1[Cache1Rec].udate = atoi(info->udate);
gps_cache1[Cache1Rec].utime = atoi(info->utime);
gps_cache1[Cache1Rec].dir = atoi(info->dir);
sprintf(gps_cache1[Cache1Rec].tid ,"%s",info->tid);
Cache1Rec++;
if(Cache1Rec == TotalRec)
{
sflag = 0;
pthread_attr_init(&attr); // 初始化属性值,均设为默认值
pthread_attr_setscope(&attr, PTHREAD_SCOPE_SYSTEM);
pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED); // 设置线程为分离属性
if (pthread_create(&thread, &attr,(void*) OracleProcess,(void*)gps_cache1)) // 创建数据处理线程
lprintf(lfd, FATAL, "oracle pthread_creat error!\n");
Cache1Rec = 0;
}
}
else
{
lprintf(lfd, FATAL, "No cache to use!\n");
return (0);
}
return (1);
}