1. 如何设置RAID-5磁盘阵列
先备份数据与设置进RAID卡( 点击Virtual Drive,就是你要增加的那个阵列,后面有容量大小,选择Adv Opers然后点Go,选中Change RAID Level and Add Drive,选择要增加的硬盘,点Go。完成) 或者 serverraid manager (右击Drive Group0,Raid5> Modify Drive Group,点击进行修改 ,选 raid5>next - 选择未分配硬盘>next 照提示完成扩容)扩容后分区不会增大,只会增加一个未配置的分区,需要你分一下区。一定要先备份数据,以免杯具。 最简单精暴的方法 就是把数据导出来,重新组RAID5 还原数据。
2. 如何设置硬盘阵列
1、首先按F10进入BIOS,选择Advanced System Options,检查RAID配置存储控制器选项,然后单击Save。
3. 如何配置磁盘阵列
http://hi..com/enjoy806/blog/item/9eeb8f3075e9fb9da8018ec2.html
听雨轩有你的答案
4. 怎样设磁盘阵列
RAID数据恢复
电脑无忧--主要业务范围
电脑维修 笔记本维修培训 IT外包服务/IT服务外包
笔记本电脑维修 数据恢复 联系电话:021-54252021;54257079;54257540
地址:上海徐汇区天钥桥路380弄20号汇峰大厦1D [徐家汇地铁站2号口出来 走100米]
磁盘阵列系RAID介绍
时间:[2004-06-23 14:21] 作者:不清楚作者是谁 被读5432次 您好!来自 218.6.247.114 的朋友
RAID,为Rendant Arrays of Independent Disks的简称,中文为廉价冗余磁盘阵列。
磁盘阵列其实也分为软阵列 (Software Raid)和硬阵列 (Hardware Raid) 两种. 软阵列即通过软件程序并由计算机的
CPU提供运行能力所成. 由于软件程式不是一个完整系统故只能提供最基本的 RAID容错功能. 其他如热备用硬盘的设置,
远程管理等功能均一一欠奉. 硬阵列是由独立操作的硬件提供整个磁盘阵列的控制和计算功能. 不依靠系统的CPU资源.
由于硬阵列是一个完整的系统, 所有需要的功能均可以做进去. 所以硬阵列所提供的功能和性能均比软阵列好. 而且,
如果你想把系统也做到磁盘阵列中, 硬阵列是唯一的选择. 故我们可以看市场上 RAID 5 级的磁盘阵列均为硬阵列. 软
阵列只适用于 Raid 0 和 Raid 1. 对于我们做镜像用的镜像塔, 肯定不会用 Raid 0或 Raid 1。
作为高性能的存储系统,巳经得到了越来越广泛的应用。RAID的级别从RAID概念的提出到现在,巳经发展了六个级别,
其级别分别是0、1、2、3、4、5等。但是最常用的是0、1、3、5四个级别。下面就介绍这四个级别。
RAID 0:将多个较小的磁盘合并成一个大的磁盘,不具有冗余,并行I/O,速度最快。RAID 0亦称为带区集。它是将多个
磁盘并列起来,成为一个大硬盘。在存放数据时,其将数据按磁盘的个数来进行分段,然后同时将这些数据写进这些盘中。
所以,在所有的级别中,RAID 0的速度是最快的。但是RAID 0没有冗余功能的,如果一个磁盘(物理)损坏,则所有的数
据都无法使用。
RAID 1:两组相同的磁盘系统互作镜像,速度没有提高,但是允许单个磁盘错,可靠性最高。RAID 1就是镜像。其原理为
在主硬盘上存放数据的同时也在镜像硬盘上写一样的数据。当主硬盘(物理)损坏时,镜像硬盘则代替主硬盘的工作。因
为有镜像硬盘做数据备份,所以RAID 1的数据安全性在所有的RAID级别上来说是最好的。但是其磁盘的利用率却只有50%,
是所有RAID上磁盘利用率最低的一个级别。
RAID Level 3
RAID 3存放数据的原理和RAID0、RAID1不同。RAID 3是以一个硬盘来存放数据的奇偶校验位,数据则分段存储于其余硬盘
中。它象RAID 0一样以并行的方式来存放数,但速度没有RAID 0快。如果数据盘(物理)损坏,只要将坏硬盘换掉,RAID
控制系统则会根据校验盘的数据校验位在新盘中重建坏盘上的数据。不过,如果校验盘(物理)损坏的话,则全部数据都
无法使用。利用单独的校验盘来保护数据虽然没有镜像的安全性高,但是硬盘利用率得到了很大的提高,为n-1。
RAID 5:向阵列中的磁盘写数据,奇偶校验数据存放在阵列中的各个盘上,允许单个磁盘出错。RAID 5也是以数据的校验
位来保证数据的安全,但它不是以单独硬盘来存放数据的校验位,而是将数据段的校验位交互存放于各个硬盘上。这样,
任何一个硬盘损坏,都可以根据其它硬盘上的校验位来重建损坏的数据。硬盘的利用率为n-1。
RAID 0-1:同时具有RAID 0和RAID 1的优点。
冗余:采用多个设备同时工作,当其中一个设备失效时,其它设备能够接替失效设备继续工作的体系。在PC服务器上,通
常在磁盘子系统、电源子系统采用冗余技术。
磁盘阵列(Disk Array)原理
1.为什么需要磁盘阵列?
如何增加磁盘的存取(access)速度,如何防止数据因磁盘的故障而失落及如何有效
的利用磁盘空间,一直是电脑专业人员和用户的困扰;而大容量磁盘的价格非常昂贵,对
用户形成很大的负担。磁盘阵列技术的产生一举解决了这些问题。
过去十几年来,CPU的处理速度增加了五十倍有多,内存(memory)的存取速度亦大
幅增加,而数据储存装置--主要是磁盘(hard disk)--的存取速度只增加了三、四倍,形
成电脑系统的瓶颈,拉低了电脑系统的整体性能(through put),若不能有效的提升磁盘
的存取速度,CPU、内存及磁盘间的不平衡将使CPU及内存的改进形成浪费。
目前改进磁盘存取速度的的方式主要有两种。一是磁盘快取控制(disk cache
controller),它将从磁盘读取的数据存在快取内存(cache memory)中以减少磁盘存取
的次数,数据的读写都在快取内存中进行,大幅增加存取的速度,如要读取的数据不在快
取内存中,或要写数据到磁盘时,才做磁盘的存取动作。这种方式在单工环境(single-
tasking envioronment)如DOS之下,对大量数据的存取有很好的性能(量小且频繁的存
取则不然),但在多工(multi-tasking)环境之下(因为要不停的作数据交换(swapping)
的动作)或数据库(database)的存取(因为每一记录都很小)就不能显示其性能。这种方
式没有任何安全保障。
其二是使用磁盘阵列的技术。磁盘阵列是把多个磁盘组成一个阵列,当作单一磁盘
使用,它将数据以分段(striping)的方式储存在不同的磁盘中,存取数据时,阵列中的相
关磁盘一起动作,大幅减低数据的存取时间,同时有更佳的空间利用率。磁盘阵列所利用
的不同的技术,称为RAID level,不同的level针对不同的系统及应用,以解决数据安全
的问题。
一般高性能的磁盘阵列都是以硬件的形式来达成,进一步的把磁盘快取控制及磁盘
阵列结合在一个控制器(RAID controler或控制卡上,针对不同的用户解决人们对磁
盘输出入系统的四大要求:
(1)增加存取速度,
(2)容错(fault tolerance),即安全性
(3)有效的利用磁盘空间;
(4)尽量的平衡CPU,内存及磁盘的性能差异,提高电脑的整体工作性能。
2.磁盘阵列原理
磁盘阵列中针对不同的应用使用的不同技术,称为RAID level,RAID是Rendent
Array of Inexpensive Disks的缩写,而每一level代表一种技术,目前业界公认的标
准是RAID 0~RAID 5。这个level并不代表技术的高低,level 5并不高于level 3,level
1也不低过level 4,至于要选择那一种RAID level的产品,纯视用户的操作环境
(operating environment)及应用(application)而定,与level的高低没有必然的关系。
RAID 0及RAID 1适用于PC及PC相关的系统如小型的网络服务器(network server)及
需要高磁盘容量与快速磁盘存取的工作站等,比较便宜;RAID 3及RAID 4适用于大型电
脑及影像、CAD/CAM等处理;RAID 5多用于OLTP,因有金融机构及大型数据处理中心的
迫切需要,故使用较多而较有名气, RAID 2较少使用,其他如RAID 6,RAID 7,乃至RAID
10等,都是厂商各做各的,并无一致的标准,在此不作说明。介绍各个RAID level之前,
先看看形成磁盘阵列的两个基本技术:
磁盘延伸(Disk Spanning):
译为磁盘延伸,能确切的表示disk spanning这种技术的含义。如图磁盘阵列控制器,
联接了四个磁盘,这四个磁盘形成一个阵列(array),而磁盘阵列的控制器(RAID
controller)是将此四个磁盘视为单一的磁盘,如DOS环境下的C:盘。这是disk
spanning的意义,因为把小容量的磁盘延伸为大容量的单一磁盘,用户不必规划数据在
各磁盘的分布,而且提高了磁盘空间的使用率。并使磁盘容量几乎可作无限的延伸;而各
个磁盘一起作取存的动作,比单一磁盘更为快捷。很明显的,有此阵列的形成而产生
RAID的各种技术。
磁盘或数据分段(Disk Striping or Data Striping):
因为磁盘阵列是将同一阵列的多个磁盘视为单一的虚拟磁盘(virtual disk),所以其数
据是以分段(block or segment)的方式顺序存放在磁盘阵列中,数据按需要分段,从第一
个磁盘开始放,放到最后一个磁盘再回到第一个磁盘放起,直到数据分布完毕。至于分段
的大小视系统而定,有的系统或以1KB最有效率,或以4KB,或以6KB,甚至是4MB或8MB
的,但除非数据小于一个扇区(sector,即521bytes),否则其分段应是512byte的倍数。
因为磁盘的读写是以一个扇区为单位,若数据小于512bytes,系统读取该扇区后,还要
做组合或分组(视读或写而定)的动作,浪费时间。从上图我们可以看出,数据以分段于在
不同的磁盘,整个阵列的各个磁盘可同时作读写,故数据分段使数据的存取有最好的效
率,理论上本来读一个包含四个分段的数据所需要的时间约=(磁盘的access time+数据
的tranfer time)X4次,现在只要一次就可以完成。
若以N表示磁盘的数目,R表示读取,W表示写入,S表示可使用空间,则数据分段的性能
为:
R:N(可同时读取所有磁盘)
W:N(可同时写入所有磁盘)
S:N(可利用所有的磁盘,并有最佳的使用率)
Disk striping也称为RAID 0,很多人以为RAID 0没有甚么,其实这是非常错误的观念,
因为RAID 0使磁盘的输出入有最高的效率。而磁盘阵列有更好效率的原因除数据分段
外,它可以同时执行多个输出入的要求,因为阵列中的每一个磁盘都能独立动作,分段放
在不同的磁盘,不同的磁盘可同时作读写,而且能在快取内存及磁盘作并行存取
(parallel access)的动作,但只有硬件的磁盘阵列才有此性能表现。
从上面两点我们可以看出,disk spanning定义了RAID的基本形式,提供了一个便宜、
灵活、高性能的系统结构,而disk striping解决了数据的存取效率和磁盘的利用率问
题,RAID 1至RAID 5是在此基础上提供磁盘安全的方案。
RAID 1
RAID 1是使用磁盘镜像(disk mirroring)的技术。磁盘镜像应用在RAID 1之前就在很
多系统中使用,它的方式是在工作磁盘(working disk)之外再加一额外的备份磁盘
(backup disk),两个磁盘所储存的数据完全一样,数据写入工作磁盘的同时亦写入备份
磁盘。磁盘镜像不见得就是RAID 1,如Novell Netware亦有提供磁盘镜像的功能,但并
不表示Netware有了RAID 1的功能。一般磁盘镜像和RAID 1有二点最大的不同:
RAID 1无工作磁盘和备份磁盘之分,多个磁盘可同时动作而有重叠(overlaping)读取的
功能,甚至不同的镜像磁盘可同时作写入的动作,这是一种最佳化的方式,称为负载平衡
(load-balance)。例如有多个用户在同一时间要读取数据,系统能同时驱动互相镜像的
磁盘,同时读取数据,以减轻系统的负载,增加I/O的性能。
RAID 1的磁盘是以磁盘延伸的方式形成阵列,而数据是以数据分段的方式作储存,因而
在读取时,它几乎和RAID 0有同样的性能。从RAID的结构就可以很清楚的看出RAID 1
和一般磁盘镜像的不同。
下图为RAID 1,每一笔数据都储存两份:
从图可以看出:
R:N(可同时读取所有磁盘)
W:N/2(同时写入磁盘数)
S:N/2(利用率)
读取数据时可用到所有的磁盘,充分发挥数据分段的优点;写入数据时,因为有备份,所
以要写入两个磁盘,其效率是N/2,磁盘空间的使用率也只有全部磁盘的一半。
很多人以为RAID 1要加一个额外的磁盘,形成浪费而不看好RAID 1,事实上磁盘越来越
便宜,并不见得造成负担,况且RAID 1有最好的容错(fault tolerence)能力,其效率也
是除RAID 0之外最好的。
在磁盘阵列的技术上,从RAID 1到RAID 5,不停机的意思表示在工作时如发生磁盘故障,
系统能持续工作而不停顿,仍然可作磁盘的存取,正常的读写数据;而容错则表示即使磁
盘故障,数据仍能保持完整,可让系统存取到正确的数据,而SCSI的磁盘阵列更可在工
作中抽换磁盘,并可自动重建故障磁盘的数据。磁盘阵列之所以能做到容错及不停机,
是因为它有冗余的磁盘空间可资利用,这也就是Rendant的意义。
RAID 2
RAID 2是把数据分散为位(bit)或块(block),加入海明码Hamming Code,在磁盘阵列中
作间隔写入(interleaving)到每个磁盘中,而且地址(address)都一样,也就是在各个磁
盘中,其数据都在相同的磁道(cylinder or track)及扇区中。RAID 2的设计是使用共
轴同步(spindle synchronize)的技术,存取数据时,整个磁盘阵列一起动作,在各作磁
盘的相同位置作平行存取,所以有最好的存取时间(accesstime),其总线(bus)是特别的
设计,以大带宽(band wide)并行传输所存取的数据,所以有最好的传输时间(transfer
time)。在大型档案的存取应用,RAID 2有最好的性能,但如果档案太小,会将其性能拉
下来,因为磁盘的存取是以扇区为单位,而RAID 2的存取是所有磁盘平行动作,而且是作
单位元的存取,故小于一个扇区的数据量会使其性能大打折扣。RAID 2是设计给需要连
续且大量数据的电脑使用的,如大型电脑(mainframe to supercomputer)、作影像处理
或CAD/CAM的工作站(workstation)等,并不适用于一般的多用户环境、网络服务器
(network server),小型机或PC。
RAID 2的安全采用内存阵列(memory array)的技术,使用多个额外的磁盘作单位错误校
正(single-bit correction)及双位错误检测(double-bit detection);至于需要多少个
额外的磁盘,则视其所采用的方法及结构而定,例如八个数据磁盘的阵列可能需要三个
额外的磁盘,有三十二个数据磁盘的高档阵列可能需要七个额外的磁盘。
RAID 3
RAID 3的数据储存及存取方式都和RAID 2一样,但在安全方面以奇偶校验(parity
check)取代海明码做错误校正及检测,所以只需要一个额外的校检磁盘(parity disk)。
奇偶校验值的计算是以各个磁盘的相对应位作XOR的逻辑运算,然后将结果写入奇偶校
验磁盘,任何数据的修改都要做奇偶校验计算,如图:
如某一磁盘故障,换上新的磁盘后,整个磁盘阵列(包括奇偶校验磁盘)需重新计算一次,
将故障磁盘的数据恢复并写入新磁盘中;如奇偶校验磁盘故障,则重新计算奇偶校验值,
以达容错的要求.
较之RAID 1及RAID 2,RAID 3有85%的磁盘空间利用率,其性能比RAID 2稍差,因为要
做奇偶校验计算;共轴同步的平行存取在读档案时有很好的性能,但在写入时较慢,需要
重新计算及修改奇偶校验磁盘的内容。RAID 3和RAID 2有同样的应用方式,适用大档
案及大量数据输出入的应用,并不适用于PC及网络服务器。
RAID 4
RAID 4也使用一个校验磁盘,但和RAID 3不一样,如图:
RAID 4是以扇区作数据分段,各磁盘相同位置的分段形成一个校验磁盘分段(parity
block),放在校验磁盘。这种方式可在不同的磁盘平行执行不同的读取命今,大幅提高磁
盘阵列的读取性能;但写入数据时,因受限于校验磁盘,同一时间只能作一次,启动所有
磁盘读取数据形成同一校验分段的所有数据分段,与要写入的数据做好校验计算再写
入。即使如此,小型档案的写入仍然比RAID 3要快,因其校验计算较简单而非作位(bit
level)的计算;但校验磁盘形成RAID 4的瓶颈,降低了性能,因有RAID 5而使得RAID 4
较少使用。
RAID 5
RAID5避免了RAID 4的瓶颈,方法是不用校验磁盘而将校验数据以循环的方式放在每一
个磁盘中,如下图:
磁盘阵列的第一个磁盘分段是校验值,第二个磁盘至后一个磁盘再折回第一个磁盘的分
段是数据,然后第二个磁盘的分段是校验值,从第三个磁盘再折回第二个磁盘的分段是
数据,以此类推,直到放完为止。图中的第一个parity block是由A0,A1...,B1,B2计算
出来,第二个parity block是由B3,B4,...,C4,D0计算出来,也就是校验值是由各磁盘
同一位置的分段的数据所计算出来。这种方式能大幅增加小档案的存取性能,不但可同
时读取,甚至有可能同时执行多个写入的动作,如可写入数据到磁盘1而其parity
block在磁盘2,同时写入数据到磁盘4而其parity block在磁盘1,这对联机交易处理
(OLTP,On-Line Transaction Processing)如银行系统、金融、股市等或大型数据库的
处理提供了最佳的解决方案(solution),因为这些应用的每一笔数据量小,磁盘输出入
频繁而且必须容错。
事实上RAID 5的性能并无如此理想,因为任何数据的修改,都要把同一parityblock的
所有数据读出来修改后,做完校验计算再写回去,也就是RMW cycle(Read-Modify-Write
cycle,这个cycle没有包括校验计算);正因为牵一而动全身,所以:
R:N(可同时读取所有磁盘)
W:1(可同时写入磁盘数)
S:N-1(利用率)
RAID 5的控制比较复杂,尤其是利用硬件对磁盘阵列的控制,因为这种方式的应用比其
他的RAID level要掌握更多的事情,有更多的输出入需求,既要速度快,又要处理数据,
计算校验值,做错误校正等,所以价格较高;其应用最好是OLTP,至于用于图像处理等,
不见得有最佳的性能。
2.磁盘阵列的额外容错功能:Spare or Standby driver
事实上容错功能已成为磁盘阵列最受青睐的特性,为了加强容错的功能以及使系统在磁
盘故障的情况下能迅速的重建数据,以维持系统的性能,一般的磁盘阵列系统都可使用
热备份(hot spare or hot standby driver)的功能,所谓热备份是在建立(configure)
磁盘阵列系统的时候,将其中一磁盘指定为后备磁盘,此一磁盘在平常并不操作,但若阵
列中某一磁盘发生故障时,磁盘阵列即以后备磁盘取代故障磁盘,并自动将故障磁盘的
数据重建(rebuild)在后备磁盘之上,因为反应快速,加上快取内存减少了磁盘的存取,
所以数据重建很快即可完成,对系统的性能影响很小。对于要求不停机的大型数据处理
中心或控制中心而言,热备份更是一项重要的功能,因为可避免晚间或无人值守时发生
磁盘故障所引起的种种不便。
另一个额外的容错功能是坏扇区转移(bad sector reassignment)。坏扇区是磁盘故障
的主要原因,通常磁盘在读写时发生坏扇区的情况即表示此磁盘故障,不能再作读写,甚
至有很多系统会因为不能完成读写的动作而死机,但若因为某一扇区的损坏而使工作不
能完成或要更换磁盘,则使得系统性能大打折扣,而系统的维护成本也未免太高了。坏扇
区转移是当磁盘阵列系统发现磁盘有坏扇区时,以另一空白且无故障的扇区取代该扇区,
以延长磁盘的使用寿命,减少坏磁盘的发生率以及系统的维护成本。所以坏扇区转移功
能使磁盘阵列具有更好的容错性,同时使整个系统有最好的成本效益比。其他如可外接
电池备援磁盘阵列的快取内存,以避免突然断电时数据尚未写回磁盘而损失;或在RAID
1时作写入一致性的检查等,虽是小技术,但亦不可忽视。
3.硬件磁盘阵列还是软件磁盘阵列
市面上有所谓硬件磁盘阵列与软件磁盘阵列之分,因为软件磁盘阵列是使用一块SCSI
卡与磁盘连接,一般用户误以为是硬件磁盘阵列。以上所述主要是针对硬件磁盘阵列,
其与软件磁盘阵列有几个最大的区别:
l 一个完整的磁盘阵列硬件与系统相接。
l 内置CPU,与主机并行运作,所有的I/O都在磁盘阵列中完成,减轻主机的工作负载,
增加系统整体性能。
l 有卓越的总线主控(bus mastering)及DMA(Direct Memory Access)能力,加速数据
的存取及传输性能。
l 与快取内存结合在一起,不但增加数据的存取及传输性能,更因减少对磁盘的存取
而增加磁盘的寿命。
l 能充份利用硬件的特性,反应快速。
软件磁盘阵列是一个程序,在主机执行,透过一块SCSI卡与磁盘相接形成阵列,它最大
的优点是便宜,因为没有硬件成本(包括研发、生产、维护等),而SCSI卡很便宜(亦有的
软件磁盘阵列使用指定的很贵的SCSI卡);它最大的缺点是使主机多了很多进程
(process),增加了主机的负担,尤其是输出入需求量大的系统。目前市面上的磁盘阵列
系统大部份是硬件磁盘阵列,软件磁盘阵列较少。
4.磁盘阵列卡还是磁盘阵列控制器
磁盘阵列控制卡一般用于小系统,供单机使用。与主机共用电源,在关闭主机电源时存
在丢失Cache中的数据的的危险。磁盘阵列控制卡只有常用总线方式的接口,其驱动程
序与主机、主机所用的操作系统都有关系,有软、硬件兼容性问题并潜在地增加了系统
的不安定因素。在更换磁盘阵列卡时要冒磁盘损坏,资料失落,随时停机的风险。
独立式磁盘阵列控制一般用于较大型系统,可分为两种:
单通道磁盘阵列和多通道式磁盘阵列,单通道磁盘阵列只能接一台主机,有很大的
扩充限制。多通道磁盘阵列可接多个系统同时使用,以群集(cluster)的方式共用磁盘阵
列,这使内接式阵列控制及单接式磁盘阵列无用武之地。目前多数独立形式的磁盘阵列
子系统,其本身与主机系统的硬件及操作环境?BR>
--
※ 来源:.广州网易 BBS bbs.nease.net.[FROM: 202.103.153.151]
发信人: secu (secu), 信区: WinNT
标 题: Re: NT下做RAID
发信站: 广州网易 BBS (Mon Aug 24 17:59:42 1998), 转信
【 在 davychen (xiaoque) 的大作中提到: 】
: 【 在 Magicboy (师傅仔) 的大作中提到: 】
: : 请问用SCSI硬盘做软件RAID与用性能更高一些的IDE硬盘做软件镜象,哪个
: : 性能更好一些?
: 当然是SCSI,但用软件镜象不能实现双工。因为备分的只是数据部分,引导区部分不在
: 上面。如果用IDE的话,无论RAID0,1,5,10,50都必须同时读写。可能很快斐捎才袒?/font>
: 道或扇区。RAID 0,1只要求两个硬盘,RAID 5则至少三个硬盘。
首先,IDE的性能不会比SCSI更高的。特别是在多任务的情况下。一般广告给出的是
最大传送速度,并不是工作速度。同一时期的IDE与SCSI盘相比,主要是产量比较大,
电路比较简单,所以价格比SCSI低很多,但要比性能,则差远了。
--
※ 来源:.广州网易 BBS bbs.nease.net.[FROM: 202.103.153.151]
发信人: secu (secu), 信区: WinNT
标 题: RAID的盘数
发信站: 广州网易 BBS (Mon Aug 24 18:06:16 1998), 转信
RAID并没有限制使用多少个盘,应时盘越多越好。
对于SCSI结构的RAID来说,盘的最大数量与SCSI通道(SCSI总线)的数量有关
一般是每个通道最多装15个盘(SCSI/3)
对于FC-AL(光纤)则是每个通道200个盘
当然,要有这样大的磁盘箱才行! :)
5. 磁盘阵列如何设置
磁盘阵列如何设置 看看就知道了 http://hi..com/long8532100/blog/item/75e52a06052f9f7a030881cd.html
6. 磁盘阵列配置
我有个8M的阵列教程,楼主需要的话可以发你看看有没有你要的
7. 磁盘阵列怎么设置
安装RAID
我们进行的演示的系统是基于Gigabyte GA-7VRXP KT333主板,板载Promise MBFastTrack 133 Lite控制器,另外使用了2块Maxtor(型号:MX6L040J2) 7200 RPM ATA/133硬盘,每块容量为40 GB。
.
.
设置跳线
安装RAID至少需要两块硬盘(视不同的磁盘阵列系统而定,最好是同样型号),IDE硬盘线(我们使用的ATA/133)和RAID控制器。我们使用了两块Maxtor (型号 MX6L040J2) 7200 RPM ATA/133硬盘,容量都是40GB。
Maxtor (型号 MX6L040J2)7200 RPM ATA/133
ATA/133硬盘线
首先需要做的是配置硬盘的跳线。根据RAID控制器手册,所连接的两块硬盘都需要设置为主硬盘。如果你的硬盘是新的,一般都是默认为Master状态的,当然为了保险起见建议你还是核实一下;如果你其中的一块曾经改动过相关的设置,请参照硬盘上的说明把掉线设置为Master。一般的在硬盘盘体的,铭牌上有硬盘跳线说明,如下图:
Maxtor硬盘铭牌上的跳线说明
因为不同硬盘厂商的跳线设置是不同的,所以一定不要凭主观臆断或者过去的经验想当然,否则可能会让这个过程中走不必要的弯路。在大多数情况下,跳线是被默认设置为“cable select”或者“master”的。
Cable Select设置
固定硬盘驱动器
硬盘的安装当然要根据你的机箱中的空间来决定了,不过建议你在安装两个硬盘的时候充分考虑到散热的问题,也就是让两个硬盘不要靠的太近,因为在磁盘阵列中的硬盘即使不使用的使用也不会降低转速,也就说当硬盘在这种方式下工作的时候,会持续的运转。我们这样安装的硬盘:
连接硬盘
同安装普通的硬盘一样,用IDE硬盘线把硬盘同主板上的RAID接口相连接,连接的时候注意硬盘线的连接方向。一般的是IDE线上的红色线条靠近硬盘电源接口:
上图中上面的两个绿色IDE接口是RAID接口
连接好线缆之后,你会发现更加不利于散热了
在BIOS中设置
主BIOS设置
首先需要在BIOS中开启RAID控制器,一般的主板在出厂的时候都是默认开启的。还有的板载RAID控制器给了用户把RAID控制器做为IDE扩展接口的选项。下面就是我们的设置:
.
.
.
在我们使用的主板中的BIOS中有“OnBoard PROMISE Chip”选项,这里我们选择RAID,而不是ATA/IDE选项
RAID控制器BIOS配置
一般的RAID控制器都有一个单独的BIOS控制界面,在系统启动的时候,会提示你按下ctrl+F可以进入RAID控制器BIOS设定界面--当然这里的快捷键,不同的厂商是不同的,一般都是在系统启动的过程提示给用户的。
第一次进入RAID BIOS,会看到如下图所示的画面:
主界面
选择“Auto Setup/optimize array for -> Performance”就会看到如下界面,这个界面设计的相当友好,其中的“A/V editing”让即使对于RIAD原理不是很了解的用户,也知道选择这个选项可以用于视频编辑,这个时候在Mode中显示的是Stripe,也就是RAID 0模式。
设置完毕之后,就可以返回主界面了,但是如果你还需要核实一下刚才的举动,可以选择主界面中的“view array”,然后又会看到现在的RAID配置情况:
为了保证驱动器都工作在最高传输率模式,我们需要进入“view drive assignments”界面,可以看到现在磁盘设置模式都被自动的设置为UDMA 6/ATA 133模式了,如果不是这样的话,请手动设置:
在操作系统中设置磁盘阵列
当然进入系统之后首先需要为RAID控制器安装驱动程序,这个一般在主板的驱动器光盘中附带。 Windows XP一般会自动的侦测到“新硬件”,然后条出安装向导,这样你可以指定驱动程序的安装目录或者选择到网上下载,一旦驱动程序安装完毕,查看设备管理器就会看到如下的显示:
.
.
.
上图显示Promise RAID控制器安装的非常正确
驱动程序安装完毕之后,你发现自己依然不能访问已经安装上的 RAID磁盘阵列,即使你的硬盘原来都已经分区和格式化过也不行,因为这样重新配置之后你需要通过磁盘管理器对他们重新格式化。所以如果你仅仅想要实验的一下的话,请一定确保你的硬盘上没有什么重要的资料,否则损失将会是无法挽回的。
点击“开始/控制面板/管理工具/计算机管理/磁盘管理”就可以调出磁盘管理程序。这个时候Windows自己会告诉你需要对于RAID阵列进行初始化,初始化之后,你还需要对于硬盘进行格式化,格式化的时候根据你的需要选择文件系统是FAT32还是NTFS。
在磁盘管理器中初始化和格式化硬盘
现在你的RAID磁盘系统已经可以正常的使用了,我们建议你最好安装RAID控制器所附送的磁盘监视工具。我们的主板上板载的是Promise控制器,所以我们安装了主板驱动程序光盘中的“Promise FastCheck Monitoring Utility”,这款工具可以查看磁盘阵列的状态。
8. 怎样配置磁盘阵列RAID10 求教程
ADAPTEC RAID卡使用说明
Adaptec 160 RAID卡的配置基本相同,此文以Adaptec 2110S RAID卡(Adaptec 160单通道RAID卡),和Adaptec2200S RAID卡(Adaptec320双通道RAID卡)为例,进行配置说明.其他Adaptec RAID卡的配置可以参考此文.
1 硬件安装
正确安装RAID卡,请注意有关板,卡安装方法及规则.
将SCSI盘连接在RAID卡的SCSI口上,请注意有关SCSI设备安装方法及规则.
2 初始化RAID卡
在完成相关硬件的安装后,打开服务器电源,系统自检待屏幕出现以下提示:
Adaptec I2O BIOS V001.41(2001/07/13)
Copyright Adaptec Inc.1996-2001 All Rights Reserved
Hit for Adaptec Setup ,Waiting for devices
按出现
Please Wait….Adaptec Setup Utility Will be involed after post
3配置RAID卡
3.1 Adaptec 2110S RAID卡
启动计算机,BIOS显示RAID卡信息,依据信息中的提示按〈CTRL+A〉进入配置RAID卡工具界面如图1所示.