当前位置:首页 » 数据仓库 » 数据库tcp协议
扩展阅读
webinf下怎么引入js 2023-08-31 21:54:13
堡垒机怎么打开web 2023-08-31 21:54:11

数据库tcp协议

发布时间: 2022-04-18 16:00:57

㈠ TCP协议是什么

TCP(Transmission Control Protocol,传输控制协议)是基于连接的协议,也就是说,在正式收发数据前,必须和对方建立可靠的连接。一个TCP连接必须要经过三次“对话”才能建立起来,其中的过程非常复杂,我们这里只做简单、形象的介绍,你只要做到能够理解这个过程即可。我们来看看这三次对话的简单过程:主机A向主机B发出连接请求数据包:“我想给你发数据,可以吗?”,这是第一次对话;主机B向主机A发送同意连接和要求同步(同步就是两台主机一个在发送,一个在接收,协调工作)的数据包:“可以,你什么时候发?”,这是第二次对话;主机A再发出一个数据包确认主机B的要求同步:“我现在就发,你接着吧!”,这是第三次对话。三次“对话”的目的是使数据包的发送和接收同步,经过三次“对话”之后,主机A才向主机B正式发送数据。

相对于UDP
面向非连接的UDP协议

“面向非连接”就是在正式通信前不必与对方先建立连接,不管对方状态就直接发送。这与现在风行的手机短信非常相似:你在发短信的时候,只需要输入对方手机号就OK了。

UDP(User Data Protocol,用户数据报协议)是与TCP相对应的协议。它是面向非连接的协议,它不与对方建立连接,而是直接就把数据包发送过去!

㈡ TCP/IP协议是什么

包含了一系列构成互联网基础的网络协议。这些协议最早发源于美国国防部的DARPA互联网项目。TCP/IP字面上代表了两个协议:TCP传输控制协议和IP互联网协议。

时间回放到1983年1月1日,在这天,互联网的前身Arpanet中,TCP/IP协议取代了旧的网络核心协议NCP(Network Core Protocol),从而成为今天的互联网的基石。最早的的TCP/IP由Vinton Cerf和Robert Kahn两位开发,慢慢地通过竞争战胜了其它一些网络协议的方案,比如国际标准化组织ISO的OSI模型。TCP/IP的蓬勃发展发生在上世纪的90年代中期。当时一些重要而可靠的工具的出世,例如页面描述语言HTML和浏览器Mosaic,导致了互联网应用的飞束发展。

随着互联网的发展,目前流行的IPv4协议(IP Version 4,IP版本四)已经接近它的功能上限。IPv4最致命的两个缺陷在与:

地址只有32位,IP地址空间有限;
不支持服务等级(Quality of Service, Qos)的想法,无法管理带宽和优先级,故而不能很好的支持现今越来越多的实时的语音和视频应用。因此IPv6 (IP Version 6, IP版本六) 浮出海面,用以取代IPv4。
TCP/IP成功的另一个因素在与对为数众多的低层协议的支持。这些低层协议对应与OSI模型 中的第一层(物理层)和第二层(数据链路层)。每层的所有协议几乎都有一半数量的支持TCP/IP,例如: 以太网(Ethernet),令牌环(Token Ring),光纤数据分布接口(FDDI),端对端协议( PPP),X.25,帧中继(Frame Relay),ATM,Sonet, SDH等。

目录
1 TCP/IP协议栈组成

2 必须协议

3 推荐协议

4 可选协议

5 范例: 不同计算机运行的不同协议

6 参考文献

TCP/IP协议栈组成
整个通信网络的任务,可以划分成不同的功能块,即抽象成所谓的 ” 层” 。用于互联网的协议可以比照TCP/IP参考模型进行分类。TCP/IP协议栈起始于第三层协议IP(互联网协议) 。所有这些协议都在相应的RFC文档中讨论及标准化。重要的协议在相应的RFC文档中均标记了状态: “必须“ (required) ,“推荐“ (recommended) ,“可选“ (elective) 。其它的协议还可能有“ 试验“(experimental) 或“ 历史“(historic) 的状态。

必须协议
所有的TCP/IP应用都必须实现IP和ICMP。对于一个路由器(router) 而言,有这两个协议就可以运作了,虽然从应用的角度来看,这样一个路由器 意义不大。实际的路由器一般还需要运行许多“推荐“使用的协议,以及一些其它的协议。

在几乎所有连接到互联网上的计算机上都存在的IPv4 协议出生在1981年,今天的版本和最早的版本并没有多少改变。升级版IPv6 的工作始于1995年,目的在与取代IPv4。ICMP 协议主要用于收集有关网络的信息查找错误等工作。

推荐协议
每一个应用层(TCP/IP参考模型 的最高层) 一般都会使用到两个传输层协议之一: 面向连接的TCP传输控制协议和无连接的包传输的UDP用户数据报文协议 。 其它的一些推荐协议有:

TELNET (Teletype over the Network, 网络电传) ,通过一个终端(terminal)登陆到网络(运行在TCP协议上)。
FTP (File Transfer Protocol, 文件传输协议) ,由名知义(运行在TCP协议上) 。
SMTP (Simple Mail Transfer Protocol,简单邮件传输协议) ,用来发送电子邮件(运行在TCP协议上) 。
DNS (Domain Name Service,域名服务) ,用于完成地址查找,邮件转发等工作(运行在TCP和UDP协议上) 。
ECHO (Echo Protocol, 回绕协议) ,用于查错及测量应答时间(运行在TCP和UDP协议上) 。
NTP (Network Time Protocol,网络时间协议) ,用于网络同步(运行在UDP协议上) 。
SNMP (Simple Network Management Protocol, 简单网络管理协议) ,用于网络信息的收集和网络管理。
BOOTP (Boot Protocol,启动协议) ,应用于无盘设备(运行在UDP协议上)。

可选协议
最常用的一些有

支撑万维网WWW的超文本传输协议HTTP,
动态配置IP地址的DHCP(Dynamic Host Configuration Protocol,动态主机配置协议),
收邮件用的POP3 (Post Office Protocol, version 3, 邮局协议) ,
用于加密安全登陆用的SSH (Secure Shell,用于替代安全性差的TELNET) ,
用于动态解析以太网硬件地址的ARP (Address Resolution Protocol,地址解析协议) 。

范例: 不同计算机运行的不同协议
一个简单的路由器上可能会实现ARP, IP, ICMP, UDP, SNMP, RIP。
WWW用户端使用ARP, IP, ICMP, UDP, TCP, DNS, HTTP, FTP。
一台用户电脑上还会运行如TELNET, SMTP, POP3, SNMP, ECHO, DHCP, SSH, NTP。
无盘设备可能会在固件比如ROM中实现了ARP, IP, ICMP, UDP, BOOT, TFTP (均为面向数据报的协议,实现起来相对简单)。
TCP/IP基础讲座-1:1层,2层,3层?

读过关于网络的课程的,都知道ISO-OSI 7层协议这个名词,许多书籍都会具体的画出那幅图,然后标注上物理层,数据链路层,网络层等等.背的大家要死.但是却又不知道具体这些层次干吗用的勒?

其实在互联网中,由于实际使用的是TCP/IP模型,也就是DOD模型(现在不知道没关系,后面会说).所以7层模型在现实网络环境中只是一个理论上,学究派的东西.这个模型中,我们真正关心的是下面的3层.

1.物理层 .哦.是的.这个名词还算容易了解.网卡还有那些网线构成了这一层.那些在网线中传播的二进制数据流是这层的具体表象.也就是说,这一层上面没有什么协议(不是很精确的说法,但是你可以这么理解).有的都是电流而已.我们把两台机器用网线连起来.或者用HUB把机器都连起来,这些工作就是物理层的工作.

有2个设备属于物理层的,一个是中继器,一个是HUB.大家知道.物理上面的连线距离一长就会产生电信号的衰减.为了重新加强这个信号,我们就需要在一定距离之后加上一个信号放大器,这就是中继器(repeater)

恩...这个比较容易理解.repeater就是连接在2根网线之间的么.没有做任何处理.所以只是一个物理设备.属于1层的.

那么集线器(HUB) 呢?这个怎么会是在1层???似乎非常难以理解.

当我说出HUB的本质,大家就能够清楚了解了

HUB的本质其实只是一个多口中继器(MULTI PORT REPEATER) .啊...这样大家能够理解了.HUB不叫多口中继器其实只是为了销售上面的策略.他的本质就是连接多根网线的一个物理设备.也是不对经过的电信号做任何逻辑处理的.

2.数据链路层

欧~这个名词有些别扭了.DATA LINK层.英文似乎更加容易理解.

这个层面上面的东西不再是电信号了.而是DATA了.对,既然是DATA就有了逻辑关系了.这个层面上面的基本单位是帧(Frame) .这层和物理层的接触是最紧密的.他是把从网线上面传输的电流转换成0和1的组合.

物理层只是网卡对网线发出或者接受各种电平信号,那就是说物理层是无法判别电流的来源和目标的.那么把电流打成0和1的帧之后.里面就有逻辑数据了.有了数据,就可以判别数据从何而来,到何处去.所以也就可以真正的形成LINK.

既然可以判别地址,那么地址是按照什么来判别的呢?

那就是最重要的概念之一:MAC地址

大家肯定都听说过我们的网卡都有MAC地址

有些人可能也知道MAC地址都是唯一的.

对.MAC地址是全球唯一的.也就是说你的网卡虽然便宜.但是他也是世界上独一无二的.

有些人说他可以改MAC.那就不是唯一了.对.虽然可以更改,那只是欺骗上层对封包里面的MAC地址进行改写.你网卡真正的MAC地址是固化的.无法修改的.

我们有了MAC地址了.这样就可以有针对性对所有连接在一起的计算机进行通讯了.是的.我们终于可以在一个局域网内通讯了.

但是有个问题我们前面没有提到.就是既然物理层传输的是电信号.那么如果我有2台机器一起发电信号,信号岂不是混乱了么?

非常正确.这个问题在网络里面成为"碰撞",所以协议里面规定了如果你需要往外发数据,一定需要先看看电缆里面有没有别的信号.如果没有,那就可以发.如果2者同时发送,检测到碰撞之后2者分别等待一个随机时间,然后重发.这个就是重要的"碰撞检测 ".

哈.看来问题解决了.不是么.现在整个网络可以正常运行了.

确实如此.但是如果连接在网络上的计算机越来越多,那么碰撞的现象会越来越频繁.这样效率一定很低了.恩.这里还有一个重要概念"冲突域 ".在同一个物理上连接的网络上的所有设备是属于同一个冲突域的.

接着就需要引入我们的2层设备来分割冲突域了.

网桥(Bridge) 就是连接2个不同的物理网络的.主要功能是在2个网络之间转发Frame.因为从实际中我们可以知道.其实很多时候并非整个网络都在相互通讯.最多相互通讯的一组计算机我们可以分在一个小的冲突域内.这样分割以后可以减少冲突域,也就相对的减少了冲突的机会.而之间使用网桥来桥接,由于网桥两边的通讯不是非常频繁,所以使用网桥来为2边作为"代言人".这样任意一个小网络里面产生冲突的机会就少了.

交换机(Switch)是我们最熟悉的设备了,交换机的本质其实就是一个多口网桥(Multi port Bridge) .同理可得.交换机的每个口后面都是一个冲突域.我们都说交换机比HUB快,就是因为交换机分割了所有的冲突域.

由于现在交换机非常便宜.所以一般我们都是直接在交换机的口上接计算机.这样每台计算机都是一个独立的冲突域.这样碰撞的问题就没有了.所以速度是比HUB快.

而前面说过.2层设备主要是个转发的功能.交换机的主要功能就是转发包.而不是让所有的冲突域直接物理连接.所以交换机有CPU,有内存,可以对frame进行处理等等.这些也是交换机和HUB的区别.

3.网络层

我们前面的一些技术就可以构建出局域网了.有了网络层以后.数据才能够真正的在整个世界间传送

由于伦纳德?博萨卡(Leonard Bosack)和姗蒂?雷纳(Sandy Lerner)为了解决他们之间的通信问题(关于路由器发明的版本有很多.你听到的别的说法可能比这个说法更准确,但是谁知道呢.呵呵).路由器被发明用来解决"信息孤岛"问题.而且如果是由SWITCH来构建整个网络,那么整个网络将会有"中心节点",这样也不符合ARPANET的初衷.所以我们有了这一层.(这样说可能会感觉本末倒置,但是先这么理解吧.)

这一层的基本单元是包(Packet) .所有的包都有一个IP头.啊.听起来很熟悉不是么.IP就是用来在这层上面标识包的来源和目的地址的.

这层的一个主要概念就是"路由 ",也就是和switch一样,把包转发到其他的地方.不过有个不同的地方,switch只有知道具体的MAC在哪里的情况下才能够发送给指定的计算机,而路由则不需要知道最终IP所在的计算机在哪个位置,只要知道那个途径可以过去就可以工作.

这3层构建了整个网络的基础.由于TCP/IP模型将最下面2层合并成为一层,所以在TCP/IP里面总共这2层也是整个构架最基础的内容.而网络方面要做的工作也都是针对于这2层做的.

2: TCP/IP.真实世界的模型

上一讲里面我们说过OSI 7层模型只是一个理论模型,而实际中只需要保证7层的功能能够实现,实际分层无需按照7层来分.而且如果真的分7层.那么数据处理的速度便要慢许多.

在实际应用中.使用最多的便是DoD模型.也成为TCP/IP协议簇

DoD模型(Department Of Defanse Model 美国国防部模型) 顾名思义,是美国国防部设计的一个网络模型.最早用于ARPANET.这些话可能在许多教材的第一章就会讲了.但是一般教材对于DoD模型与OSI模型对应关系都没有讲到.或者很多是模糊或者错误的.

在这里我就要描述一下2者对应关系.OSI模型有7层我们已经知道了,而DoD模型则只有4层.下面是对应关系

OSI DoD

7.Application ┐

6.Presentation |-> 4. Application/Process

5.Session ┘

4.Transport ---> 3. Host to Host

3.Network ---> 2. Internet

2.Data Link ┬-> 1. Network Access

1.Physical ┘

由于我不会制表符.所以图有些难看.其实就是OSI的1.2层对应DoD的第1层

OSI的5.6.7对应DoD的第4层

其实这个还是比较容易记忆的

由于物理层和数据链路层非常密切.所以分为一个.然后上面依次对应,最上面的一大块成为应用层(处理层)

现在我们有了一个可用的实际模型了.不过一般我们在描述某个设备或者协议的时候.还是会使用OSI的模型,比如我们在讨论SWITCH的时候,就会说他是一个2层的设备.而路由器是一个3层的设备,还会有一些特殊的设备,比如3层交换机,4层交换机.这些都是使用OSI模型进行分类的.这点大家不要搞混淆了.

我们一直听说TCP或者UDP.还有什么SMTP.POP3.这些协议到底是在哪一层定义的那?接下来的一张图会给大家一个非常清晰的概念了(不能算是图拉 :D ).

4. APPLICATION

HTTP,FTP,telnet,SNMP,SMTP,POP3,DNS 等等

3.Host to Host

TCP,UDP

2.internet

ICMP,ARP,RARP,IP

1.Network Access

Ethernet,FastEthernet,Token Ring 等等

恩...这下清楚了.让我们从下至上来看看

首先是最下层的.包括了以太网,快速以太网,还有现在的千M以太网等等的协议,这些协议规定了线缆的绞数.连接方式等等物理层的东西.还有底层使用MAC通讯的方式等等.

接下来是IP.ARP这些.IP在OSI模型的时候也说过.通过IP地址.我们在转发包的时候无需知道具体目标机的位置.而路由器自然会根据路由表来转发.最后一站一站的慢慢传递.达到最终目标.而ARP协议就是在IP和MAC之间转换用的.

我在上一章提过,由于有了路由器,IP,整个网络才真正能够覆盖全球.所以这一层叫做internet大家也应该容易记忆了.

WOW.TCP,UDP是我们听说最多的了.他是属于控制网络连接的.在OSI称为Transport.传输层.在DoD内是Host to Host 端对端.意思其实是一样的.就是在在2台计算机之间构建出一个虚拟的通讯通道来.

最上面一层就无穷无尽了.所有的最终应用层的东西都在这里,你甚至可以定义你自己的协议类型.这些都是完全可以的.因为本身这一层就是提供给开发人员自行发挥的.只是上面列举的都经过标准化了.

TCP包头结构

源端口 16位

目标端口 16位

序列号 32位

回应序号 32位

TCP头长度 4位

reserved 6位

控制代码 6位

窗口大小 16位

偏移量 16位

校验和 16位

选项 32位(可选)

这样我们得出了TCP包头的最小大小.就是20字节.

UDP包头结构

源端口 16位

目的端口 16位

长度 16位

校验和 16位

恩...UDP的包小很多.确实如此.因为UDP是非可靠连接.设计初衷就是尽可能快的将数据包发送出去.所以UDP协议显得非常精简.

有一个问题,似乎这些头里面怎么没有IP地址啊.没有IP地址这些包往哪里发送那?

对.你观察的很仔细.TCP和UDP的头里面确实没有任何IP信息.我们回头想一下TCP和UDP是属于DoD的哪一层的? 对了!是第3层. 而IP则位于模型的第二层.也就是他们两者虽然有联系.但是不属于同一层.

模型的一个重要规则就是.当发送端发送一个数据,上一层将数据传往下一层的时候.上一层的包就成为了下一层包的数据部分.

而到接受端接受到数据.下一层将本层的头部信息去掉后交给上一层去处理.

那么我们来看看实际例子:

假使我们通过SMTP协议发送数据AAA到另外一段.那么数据先会被加上SMTP的头.成为[SMTP]AAA.往下发送到TCP层.成为[TCP][SMTP]AAA.再往下送到internet层[IP][TCP][SMTP]AAA.然后成为[MAC][IP][TCP][SMTP]AAA

这样通过enternet或者FastEnternet发送到路由器.路由器得到后替换自己的MAC地址上去.传到下一级的路由器.这样经过长途跋涉.最终这个数据流到达目标机.

目标机先从下面一层开始.去掉MAC,成为[IP][TCP][SMTP]AAA往上到IP层,恩,比对后是发送给我这个IP的.去掉,成为[TCP][SMTP]AAA.TCP接到了查看校验和,没错.往上[SMTP]AAA.最后SMTP协议去解释.得到了AAA.

万里长征终于结束.我们也将AAA发送到了目标机.大家也应该明白了为何TCP包头和UDP包头里面没有IP地址那?因为IP位于他们下面一层.TCP和UDP的包头信息是作为IP包的数据段来传送的.

IP层可不管那许多.他只管他那层的协议,也就是管把从上面层来的数据加上自己的头,传到下面一层.把从下面一层来的数据去掉头.传到上面一层.

每层都是这么干的.完美的契合完成了数据包的最终旅程.

TCP/IP的通讯协议

这部分简要介绍一下TCP/IP的内部结构。TCP/IP协议组之所以流行,部分原因是因为它可以用在各种各样的信道和底层协议(例如T1和X.25、以太网以及RS-232串行接口)之上。确切地说,TCP/IP协议是一组包括TCP协议和IP协议,UDP(User Datagram Protocol)协议、ICMP(Internet Control Message Protocol)协议和其他一些协议的协议组。

TCP/IP整体构架概述

TCP/IP协议并不完全符合OSI的七层参考模型。传统的开放式系统互连参考模型,是一种通信协议的7层抽象的参考模型,其中每一层执行某一特定任务。该模型的目的是使各种硬件在相同的层次上相互通信。这7层是:物理层、数据链路层、网路层、传输层、话路层、表示层和应用层。而TCP/IP通讯协议采用了4层的层级结构,每一层都呼叫它的下一层所提供的网络来完成自己的需求。这4层分别为:

应用层:应用程序间沟通的层,如简单电子邮件传输(SMTP)、文件传输协议(FTP)、网络远程访问协议(Telnet)等。

传输层:在此层中,它提供了节点间的数据传送服务,如传输控制协议(TCP)、用户数据报协议(UDP)等,TCP和UDP给数据包加入传输数据并把它传输到下一层中,这一层负责传送数据,并且确定数据已被送达并接收。

互连网络层:负责提供基本的数据封包传送功能,让每一块数据包都能够到达目的主机(但不检查是否被正确接收),如网际协议(IP)。

网络接口层:对实际的网络媒体的管理,定义如何使用实际网络(如Ethernet、Serial Line等)来传送数据。

TCP/IP中的协议

以下简单介绍TCP/IP中的协议都具备什么样的功能,都是如何工作的:

1. IP

网际协议IP是TCP/IP的心脏,也是网络层中最重要的协议。

IP层接收由更低层(网络接口层例如以太网设备驱动程序)发来的数据包,并把该数据包发送到更高层---TCP或UDP层;相反,IP层也把从TCP或UDP层接收来的数据包传送到更低层。IP数据包是不可靠的,因为IP并没有做任何事情来确认数据包是按顺序发送的或者没有被破坏。IP数据包中含有发送它的主机的地址(源地址)和接收它的主机的地址(目的地址)。

高层的TCP和UDP服务在接收数据包时,通常假设包中的源地址是有效的。也可以这样说,IP地址形成了许多服务的认证基础,这些服务相信数据包是从一个有效的主机发送来的。IP确认包含一个选项,叫作IP source routing,可以用来指定一条源地址和目的地址之间的直接路径。对于一些TCP和UDP的服务来说,使用了该选项的IP包好象是从路径上的最后一个系统传递过来的,而不是来自于它的真实地点。这个选项是为了测试而存在的,说明了它可以被用来欺骗系统来进行平常是被禁止的连接。那么,许多依靠IP源地址做确认的服务将产生问题并且会被非法入侵。

2. TCP

如果IP数据包中有已经封好的TCP数据包,那么IP将把它们向‘上’传送到TCP层。TCP将包排序并进行错误检查,同时实现虚电路间的连接。TCP数据包中包括序号和确认,所以未按照顺序收到的包可以被排序,而损坏的包可以被重传。

TCP将它的信息送到更高层的应用程序,例如Telnet的服务程序和客户程序。应用程序轮流将信息送回TCP层,TCP层便将它们向下传送到IP层,设备驱动程序和物理介质,最后到接收方。

面向连接的服务(例如Telnet、FTP、rlogin、X Windows和SMTP)需要高度的可靠性,所以它们使用了TCP。DNS在某些情况下使用TCP(发送和接收域名数据库),但使用UDP传送有关单个主机的信息。

3.UDP

UDP与TCP位于同一层,但对于数据包的顺序错误或重发。因此,UDP不被应用于那些使用虚电路的面向连接的服务,UDP主要用于那些面向查询---应答的服务,例如NFS。相对于FTP或Telnet,这些服务需要交换的信息量较小。使用UDP的服务包括NTP(网落时间协议)和DNS(DNS也使用TCP)。

欺骗UDP包比欺骗TCP包更容易,因为UDP没有建立初始化连接(也可以称为握手)(因为在两个系统间没有虚电路),也就是说,与UDP相关的服务面临着更大的危险。

4.ICMP

ICMP与IP位于同一层,它被用来传送IP的的控制信息。它主要是用来提供有关通向目的地址的路径信息。ICMP的‘Redirect’信息通知主机通向其他系统的更准确的路径,而‘Unreachable’信息则指出路径有问题。另外,如果路径不可用了,ICMP可以使TCP连接‘体面地’终止。PING是最常用的基于ICMP的服务。

5. TCP和UDP的端口结构

TCP和UDP服务通常有一个客户/服务器的关系,例如,一个Telnet服务进程开始在系统上处于空闲状态,等待着连接。用户使用Telnet客户程序与服务进程建立一个连接。客户程序向服务进程写入信息,服务进程读出信息并发出响应,客户程序读出响应并向用户报告。因而,这个连接是双工的,可以用来进行读写。

两个系统间的多重Telnet连接是如何相互确认并协调一致呢?TCP或UDP连接唯一地使用每个信息中的如下四项进行确认:

源IP地址 发送包的IP地址。

目的IP地址 接收包的IP地址。

源端口 源系统上的连接的端口。

目的端口 目的系统上的连接的端口。

端口是一个软件结构,被客户程序或服务进程用来发送和接收信息。一个端口对应一个16比特的数。服务进程通常使用一个固定的端口,例如,SMTP使用25、Xwindows使用6000。这些端口号是‘广为人知’的,因为在建立与特定的主机或服务的连接时,需要这些地址和目的地址进行通讯。

㈢ 简述tcp协议的工作过程

TCP/IP协议(又名:网络通讯协议)即传输控制协议/互联网协议,是一个网络通信模型,以及一整个网络传输协议家族。这一模型是Internet最基本的协议,也是Internet国际互联网络的基础,由网络层的IP协议和传输层的TCP协议组成。 其定义了电子设备如何连入因特网,以及数据如何在它们之间传输的标准。TCP负责发现传输的问题,而IP是给因特网的每一台联网设备规定一个地址。
为了减少网络设计的复杂性,大多数网络都采用分层结构。对于不同的网络,层的数量、名字、内容和功能都不尽相同。在相同的网络中,一台机器上的第N层与另一台机器上的第N层可利用第N层协议进行通信,协议基本上是双方关于如何进行通信所达成的一致。

不同机器中包含的对应层的实体叫做对等进程。在对等进程利用协议进行通信时,实际上并不是直接将数据从一台机器的第N层传送到另一台机器的第N层,而是每一层都把数据连同该层的控制信息打包交给它的下一层,它的下一层把这些内容看做数据,再加上它这一层的控制信息一起交给更下一层,依此类推,直到最下层。最下层是物理介质,它进行实际的通信。相邻层之间有接口,接口定义下层向上层提供的原语操作和服务。相邻层之间要交换信息,对等接口必须有一致同意的规则。层和协议的集合被称为网络体系结构。

每一层中的活动元素通常称为实体,实体既可以是软件实体,也可以是硬件实体。第N层实体实现的服务被第N+1层所使用。在这种情况下,第N层称为服务提供者,第N+1层称为服务用户。

服务是在服务接入点提供给上层使用的。服务可分为面向连接的服务和面向无连接的服务,它在形式上是由一组原语来描述的。这些原语可供访问该服务的用户及其他实体使用。
TCP是面向连接的通信协议,通过三次握手建立连接,通讯完成时要拆除连接,由于TCP是面向连接的所以只能用于端到端的通讯。

TCP提供的是一种可靠的数据流服务,采用“带重传的肯定确认”技术来实现传输的可靠性。TCP还采用一种称为“滑动窗口”的方式进行流量控制,所谓窗口实际表示接收能力,用以限制发送方的发送速度。

如果IP数据包中有已经封好的TCP数据包,那么IP将把它们向‘上’传送到TCP层。TCP将包排序并进行错误检查,同时实现虚电路间的连接。TCP数据包中包括序号和确认,所以未按照顺序收到的包可以被排序,而损坏的包可以被重传。

TCP将它的信息送到更高层的应用程序,例如Telnet的服务程序和客户程序。应用程序轮流将信息送回TCP层,TCP层便将它们向下传送到IP层,设备驱动程序和物理介质,最后到接收方。

面向连接的服务(例如 Telnet、 FTP、 rlogin、 X Windows和 SMTP)需要高度的可靠性,所以它们使用了TCP。DNS在某些情况下使用TCP(发送和接收 域名数据库),但使用UDP传送有关单个主机的信息。

㈣ 通过tcp/ip协议访问数据库

TCP/IP的通讯协议

这部分简要介绍一下TCP/IP的内部结构,为讨论与互联网有关的安全问题打下基础。TCP/IP协议组之所以流行,部分原因是因为它可以用在各种各样的信道和底层协议(例如T1和X.25、以太网以及RS-232串行接口)之上。确切地说,TCP/IP协议是一组包括TCP协议和IP协议,UDP(User Datagram Protocol)协议、ICMP(Internet Control Message Protocol)协议和其他一些协议的协议组。

TCP/IP整体构架概述

TCP/IP协议并不完全符合OSI的七层参考模型。传统的开放式系统互连参考模型,是一种通信协议的7层抽象的参考模型,其中每一层执行某一特定任务。该模型的目的是使各种硬件在相同的层次上相互通信。这7层是:物理层、数据链路层、网路层、传输层、话路层、表示层和应用层。而TCP/IP通讯协议采用了4层的层级结构,每一层都呼叫它的下一层所提供的网络来完成自己的需求。

㈤ TCP/IP网络体系结构中,各层内分别有什么协议,每一种协议的作用是什么

一、TCP/IP网络体系结构中,常见的接口层协议有:
Ethernet 802.3、Token Ring 802.5、X.25、Frame relay、HDLC、PPP ATM等。
1.网络层
网络层包括:IP(Internet Protocol)协议、ICMP(Internet Control Message Protocol) 、控制报文协议、ARP(Address Resolution Protocol)地址转换协议、RARP(Reverse ARP)反向地址转换协议。
2.传输层
传输层协议主要是:传输控制协议TCP(Transmission Control Protocol)和用户数据报协议UDP(User Datagram protocol)。
3.应用层
应用层协议主要包括如下几个:FTP、TELNET、DNS、SMTP、RIP、NFS、HTTP。

二、TCP/IP网络体系结构中,每一种协议的作用有:

  1. TCP/IP协议不依赖于任何特定的计算机硬件或操作系统,提供开放的协议标准,即使不考虑Internet,TCP/IP协议也获得了广泛的支持。所以TCP/IP协议成为一种联合各种硬件和软件的实用系统。

2.TCP/IP协议并不依赖于特定的网络传输硬件,所以TCP/IP协议能够集成各种各样的网络。用户能够使用以太网(Ethernet)、令牌环网(Token Ring Network)、拨号线路(Dial-up line)、X.25网以及所有的网络传输硬件。

3.统一的网络地址分配方案,使得整个TCP/IP设备在网中都具有惟一的地址

4.标准化的高层协议,可以提供多种可靠的用户服务。

㈥ TCP/IP协议与HTTP协议区别

TPC/IP协议是传输层协议,主要解决数据如何在网络中传输,而HTTP是应用层协议,主要解决如何包装数据。


1、TCP/IP连接

手机能够使用联网功能是因为手机底层实现了TCP/IP协议,可以使手机终端通过无线网络建立TCP连接。TCP协议可以对上层网络提供接口,使上层网络数据的传输建立在“无差别”的网络之上。

2、HTTP连接

HTTP协议即超文本传送协议(Hypertext Transfer Protocol ),是Web联网的基础,也是手机联网常用的协议之一,HTTP协议是建立在TCP协议之上的一种应用。

HTTP连接最显着的特点是客户端发送的每次请求都需要服务器回送响应,在请求结束后,会主动释放连接。从建立连接到关闭连接的过程称为“一次连接”。

㈦ TCP/IP协议是什么

TCP/IP是INTERNET的基础协议,也是一种电脑数据打包和寻址的标准方法。在数据传送中,可以形象地理解为有两个信封,TCP和IP就像是信封,要传递的信息被划分成若干段,每一段塞入一个TCP信封,并在该信封面上记录有分段号的信息,再将TCP信封塞入IP大信封,发送上网。在接受端,一个TCP软件包收集信封,抽出数据,按发送前的顺序还原,并加以校验,若发现差错,TCP将会要求重发。因此,TCP/IP在INTERNET中几乎可以无差错地传送数据。在任何一个物理网络中,各站点都有一个机器可识别的地址,该地址叫做物理地址.物理地址有两个特点:(1)物理地址的长度,格式等是物理网络技术的一部分,物理网络不同,物理地址也不同.
(2)同一类型不同网络上的站点可能拥有相同的物理地址.
以上两点决定了,不能用物理网络进行网间网通讯.
你装在计算机-的TCP/IP软件提供了一个包括TCP、IP以及TCP/IP协议集中其它协议的工具平台。特别是它包括一些高层次的应用程序和FTP(文件传输协议),它允许用户在命令行上进行网络文件传输。
TCP/IP是美国政府资助的高级研究计划署(ARPA)在二十世纪七十年代的一个研究成果,用来使全球的研究网络联在一起形成一个虚拟网络,也就是国际互联网。原始的Internet通过将已有的网络如ARPAnet转换到TCP/IP上来而形成,而这个Internet最终成为如今的国际互联网的骨干网。
如今TCP/IP如此重要的原因,在于它允许独立的网格加入到Internet或组织在一起形成私有的内部网(Intranet)。构成内部网的每个网络通过一种-做路由器或IP路由器的设备在物理上联接在一起。路由器是一台用来从一个网络到另一个网络传输数据包的计算机。在一个使用TCP/IP的内部网中,信息通过使用一种独立的叫做IP包(IPpacket)或IP数据报(IP datagrams)的数据单元进--传输。TCP/IP软件使得每台联到网络上的计算机同其它计算机“看”起来一模一样,事实上它隐藏了路由器和基本的网络体系结构并使其各方面看起来都像一个大网。如同联入以太网时需要确认一个48位的以太网地址一样,联入一个内部网也需要确认一个32位的IP地址。我们将它用带点的十进制数表示,如128.10.2.3。给定一个远程计算机的IP地址,在某个内部网或Internet上的本地计算机就可以像处在同一个物理网络中的两台计算机那样向远程计算机发送数据。
TCP/IP提供了一个方案用来解决属于同一个内部网而分属不同物理网的两台计算机之间怎样交换数据的问题。这个方案包括许多部分,而TCP/IP协议集的每个成员则用来解决问题的某一部分。如TCP/IP协议集中最基本的协议-IP协议用来在内部网中交换数据并且执行一项重要的功能:路由选择--选择数据报从A主机到B主机将要经过的路径以及利用合适的路由器完成不同网络之间的跨越(hop)。
TCP是一个更高层次的它允许运行在在不同主机上的应用程序相互交换数据流。TCP将数据流分成小段叫做TCP数据段(TCP segments),并利用IP协议进行传输。在大多数情况下,每个TCP数据段装在一个IP数据报中进行发送。但如需要的话,TCP将把数据段分成多个数据报,而IP数据报则与同一网络不同主机间传输位流和字节流的物理数据帧相容。由于IP并不能保证接收的数据报的顺序相一致,TCP会在收信端装配TCP数据段并形成一个不间断的数据流。FTP和Telnet就是两个非常流行的依靠TCP的TCP/IP应用程序。
另一个重要的TCP/IP协议集的成员是用户数据报协议(UDP),它同TCP相似但比TCP原始许多。TCP是一个可靠的协议,因为它有错误检查和握手确认来保证数据完整的到达目的地。UDP是一个“不可靠”的协议,因为它不能保证数据报的接收顺序同发送顺序相同,甚至不能保证它们是否全部到达。如果有可靠性要求,则应用程序避免使用它。同许多TCP/IP工具同时提供的SNMP(简单网络管理协议)就是一个使用UDP协议的应用例子。
其它TCP/IP协议在TCP/IP网络中工作在幕后,但同样也发挥着重要作用。例如地址转换协议(ARP)将IP地址转换为物理网络地址如以太网地址。而与其对应的反向地址转换协议(RARP)做相反的工作,即将物理网络地址转换为IP地址。网际控制报文协议(ICMP)则是一个支持性协议,它利用IP完成IP数据报在传输时的控制信息和错误信息的传输。例如,如果一个路由器不能向前发送一个IP数据报,它就会利用ICMP来告诉发送者这里出现了问题。

㈧ TCP是什么协议

TCP/IP协议介绍

TCP/IP的通讯协议

这部分简要介绍一下TCP/IP的内部结构,为讨论与互联网有关的安全问题打下基础。TCP/IP协议组之所以流行,部分原因是因为它可以用在各种各样的信道和底层协议(例如T1和X.25、以太网以及RS-232串行接口)之上。确切地说,TCP/IP协议是一组包括TCP协议和IP协议,UDP(User Datagram Protocol)协议、ICMP(Internet Control Message Protocol)协议和其他一些协议的协议组。

TCP/IP整体构架概述

TCP/IP协议并不完全符合OSI的七层参考模型。传统的开放式系统互连参考模型,是一种通信协议的7层抽象的参考模型,其中每一层执行某一特定任务。该模型的目的是使各种硬件在相同的层次上相互通信。这7层是:物理层、数据链路层、网路层、传输层、话路层、表示层和应用层。而TCP/IP通讯协议采用了4层的层级结构,每一层都呼叫它的下一层所提供的网络来完成自己的需求。这4层分别为:

应用层:应用程序间沟通的层,如简单电子邮件传输(SMTP)、文件传输协议(FTP)、网络远程访问协议(Telnet)等。

传输层:在此层中,它提供了节点间的数据传送服务,如传输控制协议(TCP)、用户数据报协议(UDP)等,TCP和UDP给数据包加入传输数据并把它传输到下一层中,这一层负责传送数据,并且确定数据已被送达并接收。

互连网络层:负责提供基本的数据封包传送功能,让每一块数据包都能够到达目的主机(但不检查是否被正确接收),如网际协议(IP)。

网络接口层:对实际的网络媒体的管理,定义如何使用实际网络(如Ethernet、Serial Line等)来传送数据。

TCP/IP中的协议

以下简单介绍TCP/IP中的协议都具备什么样的功能,都是如何工作的:

1. IP

网际协议IP是TCP/IP的心脏,也是网络层中最重要的协议。

IP层接收由更低层(网络接口层例如以太网设备驱动程序)发来的数据包,并把该数据包发送到更高层---TCP或UDP层;相反,IP层也把从TCP或UDP层接收来的数据包传送到更低层。IP数据包是不可靠的,因为IP并没有做任何事情来确认数据包是按顺序发送的或者没有被破坏。IP数据包中含有发送它的主机的地址(源地址)和接收它的主机的地址(目的地址)。

高层的TCP和UDP服务在接收数据包时,通常假设包中的源地址是有效的。也可以这样说,IP地址形成了许多服务的认证基础,这些服务相信数据包是从一个有效的主机发送来的。IP确认包含一个选项,叫作IP source routing,可以用来指定一条源地址和目的地址之间的直接路径。对于一些TCP和UDP的服务来说,使用了该选项的IP包好象是从路径上的最后一个系统传递过来的,而不是来自于它的真实地点。这个选项是为了测试而存在的,说明了它可以被用来欺骗系统来进行平常是被禁止的连接。那么,许多依靠IP源地址做确认的服务将产生问题并且会被非法入侵。

2. TCP

如果IP数据包中有已经封好的TCP数据包,那么IP将把它们向‘上’传送到TCP层。TCP将包排序并进行错误检查,同时实现虚电路间的连接。TCP数据包中包括序号和确认,所以未按照顺序收到的包可以被排序,而损坏的包可以被重传。

TCP将它的信息送到更高层的应用程序,例如Telnet的服务程序和客户程序。应用程序轮流将信息送回TCP层,TCP层便将它们向下传送到IP层,设备驱动程序和物理介质,最后到接收方。

面向连接的服务(例如Telnet、FTP、rlogin、X Windows和SMTP)需要高度的可靠性,所以它们使用了TCP。DNS在某些情况下使用TCP(发送和接收域名数据库),但使用UDP传送有关单个主机的信息。

3.UDP

UDP与TCP位于同一层,但对于数据包的顺序错误或重发。因此,UDP不被应用于那些使用虚电路的面向连接的服务,UDP主要用于那些面向查询---应答的服务,例如NFS。相对于FTP或Telnet,这些服务需要交换的信息量较小。使用UDP的服务包括NTP(网落时间协议)和DNS(DNS也使用TCP)。

欺骗UDP包比欺骗TCP包更容易,因为UDP没有建立初始化连接(也可以称为握手)(因为在两个系统间没有虚电路),也就是说,与UDP相关的服务面临着更大的危险。

4.ICMP

ICMP与IP位于同一层,它被用来传送IP的的控制信息。它主要是用来提供有关通向目的地址的路径信息。ICMP的‘Redirect’信息通知主机通向其他系统的更准确的路径,而‘Unreachable’信息则指出路径有问题。另外,如果路径不可用了,ICMP可以使TCP连接‘体面地’终止。PING是最常用的基于ICMP的服务。

5. TCP和UDP的端口结构

TCP和UDP服务通常有一个客户/服务器的关系,例如,一个Telnet服务进程开始在系统上处于空闲状态,等待着连接。用户使用Telnet客户程序与服务进程建立一个连接。客户程序向服务进程写入信息,服务进程读出信息并发出响应,客户程序读出响应并向用户报告。因而,这个连接是双工的,可以用来进行读写。

两个系统间的多重Telnet连接是如何相互确认并协调一致呢?TCP或UDP连接唯一地使用每个信息中的如下四项进行确认:

源IP地址 发送包的IP地址。

目的IP地址 接收包的IP地址。

源端口 源系统上的连接的端口。

目的端口 目的系统上的连接的端口。

端口是一个软件结构,被客户程序或服务进程用来发送和接收信息。一个端口对应一个16比特的数。服务进程通常使用一个固定的端口,例如,SMTP使用25、Xwindows使用6000。这些端口号是‘广为人知’的,因为在建立与特定的主机或服务的连接时,需要这些地址和目的地址进行通讯。

㈨ tcp协议通过什么来区分不同的连接

TCP/IP
不同的计算机系统,就好像语言不同的两个人互相见了面,完全不能交流信息。因而他们需要定义一些共通的东西来进行交流,TCP/IP就是为此而生。TCP/IP不是一个协议,而是一个协议族的统称。里面包括了IP协议,IMCP协议,TCP协议,以及我们更加熟悉的http、ftp、pop3协议等等。电脑有了这些,就好像学会了外语一样,就可以和其他的计算机终端做自由的交流了。
TCP/IP 层次
应用层(http、ftp、smtp) -->传输层(TCP、UDP)-->网络层(IP)-->数据链路层
域名系统 :域名系统是一个分布的数据库,它提供将主机名(就是网址啦)转换成IP地址的服务。
端口号(port): 注意,这个号码是用在TCP,UDP上的一个逻辑号码,并不是一个硬件端口,我们平时说把某某端口封掉了,也只是在IP层次把带有这个号码的IP包给过滤掉了而已。
应用编程接口:现在常用的编程接口有socket和TLI。
数据链路层
数据链路层有三个目的:
为IP模块发送和 接收IP数据报。
为ARP模块发送ARP请求和接收ARP应答。
为RARP发送RARP请 求和接收RARP应答
ip大家都听说过。至于ARP和RARP,ARP叫做地址解析协议,是用IP地址换MAC地址的一种协议,而RARP则叫做逆地址解析协议.
--
IP 、ARP 、RARP 协议
三者都是在网络层 ,ARP协议用来找到目标主机的Ethernet网卡Mac地址,IP则承载要发送的消息。数据链路层可以从ARP得到数据的传送信息,而从IP得到要传输的数据信息。
IP 协议
IP协议是TCP/IP协议的核心,所有的TCP,UDP,IMCP,IGCP的数据都以IP数据格式传输。要注意的是,IP不是可靠的协议,这是说,IP协议没有提供一种数据未传达以后的处理机制--这被认为是上层协议:TCP或UDP要做的事情。所以这也就出现了TCP是一个可靠的协议,而UDP就没有那么可靠的区别。

协议头
八位的TTL字段,还记得这个字段是做什么的么?这个字段规定该数据包在穿过多少个路由之后才会被抛弃(这里就体现出来IP协议包的不可靠性,它不保证数据被送达),某个ip数据包每穿过一个路由器,该数据包的TTL数值就会减少1,当该数据包的TTL成为零,它就会被自动抛弃。这个字段的最大值也就是255,也就是说一个协议包也就在路由器里面穿行255次就会被抛弃了,根据系统的不同,这个数字也不一样,一般是32或者是64,Tracerouter这个工具就是用这个原理工作的,tranceroute的-m选项要求最大值是255,也就是因为这个TTL在IP协议里面只有8bit。
现在的ip版本号是4,所以也称作IPv4。现在还有IPv6,而且运用也越来越广泛了。
IP路由选择
当一个IP数据包准备好了的时候,IP数据包(或者说是路由器)是如何将数据包送到目的地的呢?它是怎么选择一个合适的路径来"送货"的呢?
最特殊的情况是目的主机和主机直连,那么主机根本不用寻找路由,直接把数据传递过去就可以了。至于是怎么直接传递的,这就要靠ARP协议了。
稍微一般一点的情况是,主机通过若干个路由器(router)和目的主机连接。那么路由器就要通过ip包的信息来为ip包寻找到一个合适的目标来进行传递,比如合适的主机,或者合适的路由。路由器或者主机将会用如下的方式来处理某一个IP数据包
如果IP数据包的TTL(生命周期)以到,则该IP数据包就被抛弃。
搜索路由表,优先搜索匹配主机,如果能找到和IP地址完全一致的目标主机,则将该包发向目标主机
搜索路由表,如果匹配主机失败,则匹配同子网的路由器,这需要“子网掩码(1.3.)”的协助。如果找到路由器,则将该包发向路由器。
搜索路由表,如果匹配同子网路由器失败,则匹配同网号路由器,如果找到路由器,则将该包发向路由器。
搜索路由表,如果以上都失败了,就搜索默认路由,如果默认路由存在,则发包
如果都失败了,就丢掉这个包
这再一次证明了,ip包是不可靠的。因为它不保证送达。
ARP协议
还记得数据链路层的以太网的协议中,每一个数据包都有一个MAC地址头么?我们知道每一块以太网卡都有一个MAC地址,这个地址是唯一的,那么IP包是如何知道这个MAC地址的?这就是ARP协议的工作。
ARP(地址解析)协议是一种解析协议,本来主机是完全不知道这个IP对应的是哪个主机的哪个接口,当主机要发送一个IP包的时候,会首先查一下自己的ARP高速缓存(就是一个IP-MAC地址对应表缓存),如果查询的IP-MAC值对不存在,那么主机就向网络发送一个ARP协议广播包,这个广播包里面就有待查询的IP地址,而直接收到这份广播的包的所有主机都会查询自己的IP地址,如果收到广播包的某一个主机发现自己符合条件,那么就准备好一个包含自己的MAC地址的ARP包传送给发送ARP广播的主机,而广播主机拿到ARP包后会更新自己的ARP缓存(就是存放IP-MAC对应表的地方)。发送广播的主机就会用新的ARP缓存数据准备好数据链路层的的数据包发送工作。
arp -a 可以查询自己的arp缓存
这样的高速缓存是有时限的,一般是20分钟(伯克利系统的衍生系统)。
--
ICMP协议
--
UDP 协议
UDP是传输层协议,和TCP协议处于一个分层中,但是与TCP协议不同,UDP协议并不提供超时重传,出错重传等功能,也就是说其是不可靠的协议。
1 、UDP 的端口号
由于很多软件需要用到UDP协议,所以UDP协议必须通过某个标志用以区分不同的程序所需要的数据包。端口号的功能就在于此,例如某一个UDP程序A在系统中注册了3000端口,那么,以后从外面传进来的目的端口号为3000的UDP包都会交给该程序。端口号理论上可以有2^16这么多。因为它的长度是16个bit
2 、UDP 的检验和
这是一个可选的选项,并不是所有的系统都对UDP数据包加以检验和数据(相对TCP协议的必须来说),但是RFC中标准要求,发送端应该计算检验和。
UDP检验和覆盖UDP协议头和数据,这和IP的检验和是不同的,IP协议的检验和只是覆盖IP数据头,并不覆盖所有的数据。UDP和TCP都包含一个伪首部,这是为了计算检验和而摄制的。伪首部甚至还包含IP地址这样的IP协议里面都有的信息,目的是让UDP两次检查数据是否已经正确到达目的地。如果发送端没有打开检验和选项,而接收端计算检验和有差错,那么UDP数据将会被悄悄的丢掉(不保证送达),而不产生任何差错报文。
3 、UDP 的长度
UDP可以很长很长,可以有65535字节那么长。但是一般网络在传送的时候,一次一般传送不了那么长的协议(涉及到MTU的问题),就只好对数据分片,当然,这些是对UDP等上级协议透明的,UDP不需要关心IP协议层对数据如何分片。
4 、IP 分片
IP在从上层接到数据以后,要根据IP地址来判断从那个接口发送数据(通过选路),并进行MTU的查询,如果数据大小超过MTU就进行数据分片。数据的分片是对上层和下层透明,而数据也只是到达目的地还会被重新组装,不过不用担心,IP层提供了足够的信息进行数据的再组装。
在IP头里面,16bit识别号唯一记录了一个IP包的ID,具有同一个ID的IP片将会被重新组装;而13位片偏移则记录了某IP片相对整个包的位置;而这两个表示中间的3bit标志则标示着该分片后面是否还有新的分片。这三个标示就组成了IP分片的所有信息,接受方就可以利用这些信息对IP数据进行重新组织(就算是后面的分片比前面的分片先到,这些信息也是足够了)。
因为分片技术在网络上被经常的使用,所以伪造IP分片包进行流氓攻击的软件和人也就层出不穷。
5 、ICMP源站抑制差错
当目标主机的处理速度赶不上数据接收的速度,因为接受主机的IP层缓存会被占满,所以主机就会发出一个“我受不了”的一个ICMP报文。
--
单播广播和多播
单播
单播是说,对特定的主机进行数据传送。例如给某一个主机发送IP数据包。这时候,数据链路层给出的数据头里面是非常具体的目的地址,对于以太网来 说,就是网卡的MAC地址(不是FF-FF-FF-FF-FF-FF这样的地址)。现在的具有路由功能的主机应该可以将单播数据定向转发,而目的主机的网 络接口则可以过滤掉和自己MAC地址不一致的数据。
广播
广播是主机针对某一个网络上的所有主机发送数据包。这个网络可能是网络,可能是子网,还可能是所有的子网。如果是网络,例如A类网址的广播就是 netid.255.255.255,如果是子网,则是netid.netid.subnetid.255;如果是所有的子网(B类IP)则是则是 netid.netid.255.255。广播所用的MAC地址FF-FF-FF-FF-FF-FF。网络内所有的主机都会收到这个广播数据,网卡只要把 MAC地址为FF-FF-FF-FF-FF-FF的数据交给内核就可以了。一般说来ARP,或者路由协议RIP应该是以广播的形式播发的。
多播
可以说广播是多播的特例,多播就是给一组特定的主机(多播组)发送数据,这样,数据的播发范围会小一些(实际上播发的范围一点也没有变小),多播的MAC地址是最高字节的低位为一,例 如01-00-00-00-00-00。多播组的地址是D类IP,规定是224.0.0.0-239.255.255.255。
虽然多播比较特殊,但是究其原理,多播的数据还是要通过数据链路层进行MAC地址绑定然后进行发送。所以一个以太网卡在绑定了一个多播IP地址之后,必 定还要绑定一个多播的MAC地址,才能使得其可以像单播那样工作。这个多播的IP和多播MAC地址有一个对应的算法,在书的p133到p134之间。可以看到 这个对应不是一一对应的,主机还是要对多播数据进行过滤。
--
TCP
TCP和UDP处在同一层---运输层,但是TCP和UDP最不同的地方是,TCP提供了一种可靠的数据传输服务,TCP是面向连接的,也就是说,利用TCP通信的两台主机首先要经历一个“拨打电话”的过程,等到通信准备结束才开始传输数据,最后结束通话。所以TCP要比UDP可靠的多,UDP是把数据直接发出去,而不管对方是不是在收信,就算是UDP无法送达,也不会产生ICMP差错报文,这一经时重申了很多遍了。
把TCP保证可靠性的简单工作原理:
应用数据被分割成TCP认为最适合发送的数据块。这和UDP完全不同,应用程序产生的 数据报长度将保持不变。由TCP传递给IP的信息单位称为报文段或段
当TCP发出一个段后,它启动一个定时器,等待目的端确认收到这个报文段。如果不能 及时收到一个确认,将重发这个报文段.
当TCP收到发自TCP连接另一端的数据,它将发送一个确认。这个确认不是立即发送,通常将推迟几分之一秒.
TCP将保持它首部和数据的检验和。这是一个端到端的检验和,目的是检测数据在传输 过程中的任何变化。如果收到段的检验和有差错, T P将丢弃这个报文段和不确认收到此报文段(希望发端超时并重发)。
既然TCP报文段作为IP数据报来传输,而IP数据报的到达可能会失序,因此TCP报文段 的到达也可能会失序。如果必要, TCP将对收到的数据进行重新排序,将收到的数据以正确的顺序交给应用层。
TCP还能提供流量控制。TCP连接的每一方都有固定大小的缓冲空间。TCP的接收端只允许另一端发送接收端缓冲区所能接纳的数据。这将防止较快主机致使较慢主机的缓冲区溢出。
从这段话中可以看到,TCP中保持可靠性的方式就是超时重发,这是有道理的,虽然TCP也可以用各种各样的ICMP报文来处理这些,但是这也不是可靠的,最可靠的方式就是只要不得到确认,就重新发送数据报,直到得到对方的确认为止。
TCP的首部和UDP首部一样,都有发送端口号和接收端口号。但是显然,TCP的首部信息要比UDP的多,可以看到,TCP协议提供了发送和确认所需要的所有必要的信息。可以想象一个TCP数据的发送应该是如下的一个过程。
双方建立连接
发送方给接受方TCP数据报,然后等待对方的确认TCP数据报,如果没有,就重新发,如果有,就发送下一个数据报。
接受方等待发送方的数据报,如果得到数据报并检验无误,就发送ACK(确认)数据报,并等待下一个TCP数据报的到来。直到接收到FIN(发送完成数据报)
中止连接
可以想见,为了建立一个TCP连接,系统可能会建立一个新的进程(最差也是一个线程),来进行数据的传送
--
TCP协议
TCP是一个面向连接的协议,在发送输送之前 ,双方需要确定连接。而且,发送的数据可以进行TCP层的分片处理。
TCP连接的建立过程 ,可以看成是三次握手 。而连接的中断可以看成四次握手 。
1.连接的建立
在建立连接的时候,客户端首先向服务器申请打开某一个端口(用SYN段等于1的TCP报文),然后服务器端发回一个ACK报文通知客户端请求报文收到,客户端收到确认报文以后再次发出确认报文确认刚才服务器端发出的确认报文(绕口么),至此,连接的建立完成。这就叫做三次握手。如果打算让双方都做好准备的话,一定要发送三次报文,而且只需要三次报文就可以了。
可以想见,如果再加上TCP的超时重传机制,那么TCP就完全可以保证一个数据包被送到目的地。
2.结束连接
TCP有一个特别的概念叫做half-close,这个概念是说,TCP的连接是全双工(可以同时发送和接收)连接,因此在关闭连接的时候,必须关闭传和送两个方向上的连接。客户机给服务器一个FIN为1的TCP报文,然后服务器返回给客户端一个确认ACK报文,并且发送一个FIN报文,当客户机回复ACK报文后(四次握手),连接就结束了。
3.最大报文长度
在建立连接的时候,通信的双方要互相确认对方的最大报文长度(MSS),以便通信。一般这个SYN长度是MTU减去固定IP首部和TCP首部长度。对于一个以太网,一般可以达到1460字节。当然如果对于非本地的IP,这个MSS可能就只有536字节,而且,如果中间的传输网络的MSS更加的小的话,这个值还会变得更小。
4.客户端应用程序的状态迁移图
客户端的状态可以用如下的流程来表示:
CLOSED->SYN_SENT->ESTABLISHED->FIN_WAIT_1->FIN_WAIT_2->TIME_WAIT->CLOSED
以上流程是在程序正常的情况下应该有的流程,从书中的图中可以看到,在建立连接时,当客户端收到SYN报文的ACK以后,客户端就打开了数据交互地连接。而结束连接则通常是客户端主动结束的,客户端结束应用程序以后,需要经历FIN_WAIT_1,FIN_WAIT_2等状态,这些状态的迁移就是前面提到的结束连接的四次握手。
5.服务器的状态迁移图
服务器的状态可以用如下的流程来表示:
CLOSED->LISTEN->SYN收到->ESTABLISHED->CLOSE_WAIT->LAST_ACK->CLOSED
在建立连接的时候,服务器端是在第三次握手之后才进入数据交互状态,而关闭连接则是在关闭连接的第二次握手以后(注意不是第四次)。而关闭以后还要等待客户端给出最后的ACK包才能进入初始的状态。
6.TCP服务器设计
前面曾经讲述过UDP的服务器设计,可以发现UDP的服务器完全不需要所谓的并发机制,它只要建立一个数据输入队列就可以。但是TCP不同,TCP服务器对于每一个连接都需要建立一个独立的进程(或者是轻量级的,线程),来保证对话的独立性。所以TCP服务器是并发的。而且TCP还需要配备一个呼入连接请求队列(UDP服务器也同样不需要),来为每一个连接请求建立对话进程,这也就是为什么各种TCP服务器都有一个最大连接数的原因。而根据源主机的IP和端口号码,服务器可以很轻松的区别出不同的会话,来进行数据的分发。
TCP的交互数据流
对于交互性要求比较高的应用,TCP给出两个策略来提高发送效率和减低网络负担:(1)捎带ACK。(2)Nagle算法(一次尽量多的发数据)
捎带ACK的发送方式
这个策略是说,当主机收到远程主机的TCP数据报之后,通常不马上发送ACK数据报,而是等上一个短暂的时间,如果这段时间里面主机还有发送到远程主机的TCP数据报,那么就把这个ACK数据报“捎带”着发送出去,把本来两个TCP数据报整合成一个发送。一般的,这个时间是200ms。可以明显地看到这个策略可以把TCP数据报的利用率提高很多。
Nagle算法
上过bbs的人应该都会有感受,就是在网络慢的时候发贴,有时键入一串字符串以后,经过一段时间,客户端“发疯”一样突然回显出很多内容,就好像数据一下子传过来了一样,这就是Nagle算法的作用。
Nagle算法是说,当主机A给主机B发送了一个TCP数据报并进入等待主机B的ACK数据报的状态时,TCP的输出缓冲区里面只能有一个TCP数据报,并且,这个数据报不断地收集后来的数据,整合成一个大的数据报,等到B主机的ACK包一到,就把这些数据“一股脑”的发送出去。虽然这样的描述有些不准确,但还算形象和易于理解,我们同样可以体会到这个策略对于低减网络负担的好处。
在编写插口程序的时候,可以通过TCP_NODELAY来关闭这个算法。并且,使用这个算法看情况的,比如基于TCP的X窗口协议,如果处理鼠标事件时还是用这个算法,那么“延迟”可就非常大了。
2.TCP的成块数据流
对于FTP这样对于数据吞吐量有较高要求的要求,将总是希望每次尽量多的发送数据到对方主机,就算是有点“延迟”也无所谓。TCP也提供了一整套的策略来支持这样的需求。TCP协议中有16个bit表示“窗口”的大小,这是这些策略的核心。
2.1.传输数据时ACK的问题
在解释滑动窗口前,需要看看ACK的应答策略,一般来说,发送端发送一个TCP数据报,那么接收端就应该发送一个ACK数据报。但是事实上却不是这样,发送端将会连续发送数据尽量填满接受方的缓冲区,而接受方对这些数据只要发送一个ACK报文来回应就可以了,这就是ACK的累积特性,这个特性大大减少了发送端和接收端的负担。
2.2.滑动窗口
滑动窗口本质上是描述接受方的TCP数据报缓冲区大小的数据,发送方根据这个数据来计算自己最多能发送多长的数据。如果发送方收到接受方的窗口大小为0的TCP数据报,那么发送方将停止发送数据,等到接受方发送窗口大小不为0的数据报的到来。
2.3.数据拥塞
上面的策略用于局域网内传输还可以,但是用在广域网中就可能会出现问题,最大的问题就是当传输时出现了瓶颈(比如说一定要经过一个slip低速链路)所产生的大量数据堵塞问题(拥塞),为了解决这个问题,TCP发送方需要确认连接双方的线路的数据最大吞吐量是多少。这,就是所谓的拥塞窗口。
拥塞窗口的原理很简单,TCP发送方首先发送一个数据报,然后等待对方的回应,得到回应后就把这个窗口的大小加倍,然后连续发送两个数据报,等到对方回应以后,再把这个窗口加倍(先是2的指数倍,到一定程度后就变成现行增长,这就是所谓的慢启动),发送更多的数据报,直到出现超时错误,这样,发送端就了解到了通信双方的线路承载能力,也就确定了拥塞窗口的大小,发送方就用这个拥塞窗口的大小发送数据。要观察这个现象是非常容易的,我们一般在下载数据的时候,速度都是慢慢“冲起来的”
--
TCP的超时和重传
超时重传是TCP协议保证数据可靠性的另一个重要机制,其原理是在发送某一个数据以后就开启一个计时器,在一定时间内如果没有得到发送的数据报的ACK报文,那么就重新发送数据,直到发送成功为止。
超时
超时时间的计算是超时的核心部分,TCP要求这个算法能大致估计出当前的网络状况,虽然这确实很困难。要求精确的原因有两个:(1)定时长久会造成网络利用率不高。(2)定时太短会造成多次重传,使得网络阻塞。所以,书中给出了一套经验公式,和其他的保证计时器准确的措施。
计时器的使用
一个连接中,有且仅有一个测量定时器被使用。也就是说,如果TCP连续发出3组数据,只有一组数据会被测量。
ACK数据报不会被测量,原因很简单,没有ACK的ACK回应可以供结束定时器测量。
重传
前面曾经提到过,数据在传输的时候不能只使用一个窗口协议,我们还需要有一个拥塞窗口来控制数据的流量,使得数据不会一下子都跑到网路中引起“拥塞”。也曾经提到过,拥塞窗口最初使用指数增长的速度来增加自身的窗口,直到发生超时重传,再进行一次微调。但是没有提到,如何进行微调,拥塞避免算法和慢启动门限就是为此而生。
所谓的慢启动门限就是说,当拥塞窗口超过这个门限的时候,就使用拥塞避免算法,而在门限以内就采用慢启动算法。所以这个标准才叫做门限,通常,拥塞窗口记做cwnd,慢启动门限记做ssthresh。下面我们来看看拥塞避免和慢启动是怎么一起工作的
算法概要
对一个给定的连接,初始化cwnd为1个报文段,ssthresh为65535个字节。
TCP输出例程的输出不能超过cwnd和接收方通告窗口的大小。拥塞避免是发送方使用 的流量控制,而通告窗口则是接收方进行的流量控制。前者是发送方感受到的网络拥塞的估 计,而后者则与接收方在该连接上的可用缓存大小有关。
当拥塞发生时(超时或收到重复确认),ssthresh被设置为当前窗口大小的一半(cwnd 和接收方通告窗口大小的最小值,但最少为2个报文段)。此外,如果是超时引起了拥塞,则 cwnd被设置为1个报文段(这就是慢启动)。
当新的数据被对方确认时,就增加cwnd,但增加的方法依赖于我们是否正在进行慢启 动或拥塞避免。如果cwnd小于或等于ssthresh,则正在进行慢启动,否则正在进行拥塞避免。 慢启动一直持续到我们回到当拥塞发生时所处位置的半时候才停止(因为我们记录了在步骤2 中给我们制造麻烦的窗口大小的一半),然后转为执行拥塞避免。
快速重传和快速恢复算法
这是数据丢包的情况下给出的一种修补机制。一般来说,重传发生在超时之后,但是如果发送端接受到3个以上的重复ACK的情况下,就应该意识到,数据丢了,需要重新传递。这个机制是不需要等到重传定时器溢出的,所以叫做快速重传,而重新传递以后,因为走的不是慢启动而是拥塞避免算法,所以这又叫做快速恢复算法。流程如下:
当收到第3个重复的ACK时,将ssthresh设置为当前拥塞窗口cwnd的一半。重传丢失的 报文段。设置cwnd为ssthresh加上3倍的报文段大小。
每次收到另一个重复的ACK时, cwnd增加1个报文段大小并发送1个分组(如果新的 cwnd允许发送)。
当下一个确认新数据的ACK到达时,设置cwnd为ssthresh(在第1步中设置的值)。这个 ACK应该是在进行重传后的一个往返时间内对步骤1中重传的确认。另外,这个ACK也应该 是对丢失的分组和收到的第1个重复的ACK之间的所有中间报文段的确认。这一步采用的是拥 塞避免,因为当分组丢失时我们将当前的速率减半。
TCP的其它定时器
坚持定时器
用于防止通告窗口为0以后双方互相等待死锁的情况
坚持定时器的原理是简单的,当TCP服务器收到了客户端的0滑动窗口报文的时候,就启动一个定时器来计时,并在定时器溢出的时候向向客户端查询窗口是否已经增大,如果得到非零的窗口就重新开始发送数据,如果得到0窗口就再开一个新的定时器准备下一次查询。通过观察可以得知,TCP的坚持定时器使用1,2,4,8,16……64秒这样的普通指数退避序列来作为每一次的溢出时间。
2.保活定时器
保活定时器更加的简单,还记得FTP或者Http服务器都有Sesstion Time机制么?因为TCP是面向连接的,所以就会出现只连接不传送数据的“半开放连接”,服务器当然要检测到这种连接并且在某些情况下释放这种连接,这就是保活定时器的作用。其时限根据服务器的实现不同而不通。另外要提到的是,当其中一端如果崩溃并重新启动的情况下,如果收到该端“前生”的保活探察,则要发送一个RST数据报文帮助另一端结束连接。