当前位置:首页 » 数据仓库 » 查合成配体的数据库
扩展阅读
webinf下怎么引入js 2023-08-31 21:54:13
堡垒机怎么打开web 2023-08-31 21:54:11

查合成配体的数据库

发布时间: 2022-04-22 23:20:18

1. 计算机辅助药物设计的数据库

2. 数据库搜寻
数据库搜寻方法分为两类。一类是基于配体的,即根据药效基团模型进行三维结构数据库搜寻。该类方法一般需先建立一系列活性分子的药效构象,抽提出共有的 药效基团,进而在现有的数据库中寻找符合药效基团模型的化合物。该类方法中比较着名的软件有Catalyst和Unity,而以前者应用更普遍。另一类方 法是基于受体的,也称为分子对接法,即将小分子配体对接到受体的活性位点,并搜寻其合理的取向和构象,使得配体与受体的形状和相互作用的匹配最佳。在药物 设计中,分子对接方法主要用来从化合物数据库中搜寻与受体生物大分子有较好亲和力的小分子,从而发现全新的先导化合物。分子对接由于从整体上考虑配体与受 体的结合效果,所以能较好地避免其他方法中容易出现的局部作用较好,整体结合欠佳的情况。具代表性的分子对接软件主要有 DOCK、F1exX和GOLD。

2. 毕业设计配合物的合成

配合物一般表征最准的是X-单晶衍射,单晶制法目前比较流行且几乎所有实验室都能做的有水热法合成、微波法、超声、回流、常温挥发法……数据分析一般有紫外、红外、荧光、热重、XRD……

3. 高通量药物筛选的简介

1. 化合物样品库
化合物样品主要有人工合成和从天然产物中分离纯化两个来源。其中,人工合成又可常规化学合成和组合化学合成两种方法。
2.自动化的操作系统
自动化操作系统利用计算机通过操作软件控制整个实验过程。操作软件采用实物图像代表实验用具,简洁明了的图示代表机器的动作。自动化操作系统的工作能力取决于系统的组分,根据需要可配置加样、冲洗、温解、离心等设备以进行相应的工作。
3.高灵敏度的检测系统
检测系统一般采用液闪计数器、化学发光检测计数器、宽谱带分光光度仪、荧光光度仪等。
4.数据库管理系统
数据库管理系统承担4个方面的功能: 样品库的管理功能;生物活性信息的管理功能; 对高通量药物筛选的服务功能; 药物设计与药物发现功能。 常用的筛选模型都在分子水平和细胞水平,观察的是药物与分子靶点的相互作用,能够直接认识药物的基本作用机制。
1.分子水平的药物筛选模型:受体筛选模型;酶筛选模型;离子通道筛选模型
1.1受体筛选模型:指受体与放射性配体结合模型。以受体为作用靶的筛选方法,包括检测功能反应、第二信使生成和标记配体与受体相互作用等不同类型。
1.2酶筛选模型:观察药物对酶活性的影响。根据酶的特点,酶的反应底物,产物都可以作为检测指标,并由此确定反应速度。典型的酶筛选包括1) 适当缓冲液中孵化;(2)控制反应速度,如:温度,缓冲液的pH值和酶的浓度等;(3)单时间点数器, 需测量产物的增加和底物的减少。
1.3离子通道筛选模型: (1)贝类动物毒素的高通量筛选,其作用靶为Na+通道上的蛤蚌毒素结合位点,用放射性配体进行竞争性结合试验考察受试样品。(2)用酵母双杂交的方法高通量筛选干扰N型钙通道β3亚单位与α1β亚单位相互作用的小分子,寻找新型钙通道拮抗剂。
2.细胞水平药物筛选模型
观察被筛样品对细胞的作用,但不能反映药物作用的具体途径和靶标,仅反映药物对细胞生长等过程的综合作用。包括: 内皮细胞激活; 细胞凋亡; 抗肿瘤活性; 转录调控检测; 信号转导通路; 细菌蛋白分泌; 细菌生长。
高通量筛选技术与传统的药物筛选方法相比有以下几个优点:反应体积小;自动化;灵敏快速检测;高度特异性。但是,高通量筛选作为药物筛选的方法,并不是一种万能的手段,首先,高通量筛选所采用的主要是分子、细胞水平的体外实验模型,任何模型都不可能充分反映药物的全面药理作用;其次,用于高通量筛选的模型是有限的和不断发展的,要建立反映机体全部生理机能的理想模型,也是不现实的。但我们应该相信,随着对高通量筛选研究的深入,随着对筛选模型的评价标准、新的药物作用靶点的发现以及筛选模型的新颖性和实用性的统一,高通量筛选技术必将在未来的药物研究中发挥越来越重要的作用。 光学测定技术。美、英两国研究人员在高通量筛选检测中,努力进行了光学测定方法的研究,建立了大量的非同位素标记测定法,如用分光光度检测法筛选蛋白酪氨酸激酶抑制剂、组织纤溶酶原激活剂等,均获得成功。
放射性检测技术。美国学者GanieSM在高通量药物筛选研究中,应用放射性测定法,特别是亲和闪烁(SPA)检测方法,使在96孔板上进行的样本量实验得到发展。该方法灵敏度高,特异性强,促进了高通量药物筛选的实现,但存在环境污染问题。
荧光检测技术。美国学者GiulianokA研究认为,采用FLIPR(fluor ometricimaging readet)荧光检测法,可在短时间内同时测定荧光的强度和变化,对测定细胞内钙离子流及测定细胞内pH和细胞内钠离子流等,是非常理想的一种高效检测方法。
多功能微板检测系统。由西安交通大学药学院研制的1536孔板高通量多功能微板检测系统,是国际上先进的高通量检测系统,它可使筛选量进一步提高,现已在该院投入使用。
1.基本原理
高通量药物筛选技术是将多种技术方法有机结合而形成的新的技术体系,它以分子水平和细胞水平的实验方法为基础,以微板形式作为实验工具载体,以自动化操作系统执行实验过程,以灵敏快速的检测仪器采集实验数据,以计算机对实验获得的数据进行分析处理。它的正常开展需要有一个高容量的化合物库、自动化的操作系统、高灵敏度的检测系统、高效率的数据处理系统以及高特异性的药物筛选模型。
1.1 化合物样品库
高通量筛选是一种利用已有的化合物进行的体外随机筛选。因此通过高通量药物筛选发现先导化合物(leading compounds)的有效性取决于化合物样品库中化合物的数量及其质量。化合物样品的数量是指不同样品的数量。化合物样品的质量主要由化合物结构的多样性决定的。许多活性反应基团(reactive groups)使初筛的假阳性大量增加,剔除这些化合物可以提高化合物样品库的质量。
化合物样品主要有人工合成和从天然产物中分离纯化两个来源。
人工合成又可分为常规化学合成和组合化学合成两种方法。采用常规化学合成的纯化合物一直是国外制药企业建立化合物样品库的主要来源。它们通过长年积累的化合物建立化合物样品库,通过购买和化合物交流使化合物样品库的数量和质量大幅度提高。
组合化学(combinatorial chemistry)的出现为大量增加化合物的数量提供另外一种来源。组合化学的基本原理是采用适当的化学方法,在特定的分子母核上加入不同的基团,在同样条件下,产生大量的新化合物。这种方法在化合物的结构改造和优化方面已经表现出强大的优势。但是,由于该方法是基于母核结构的改造,因此产生的大量化合物在结构多样性方面尚有极大的不足。解决组合化学产物结构多样性的问题,已经成为化学研究人员的研究课题。
从天然产物中分离出来的化合物,母核结构和活性基团是长期的自然选择形成的,它们通过高通量筛选所表现出来的生物活性在药物发现中具有人工合成化合物所不能比拟的优势。因此,增加样品库中具结构多样性的天然化合物及其衍生物是提高样品库质量的一个重要途径。跨国制药企业为了增加高通量筛选的阳性率,已经或正在寻求助买我国的天然产物单体。
1.2 自动操作系统
高通量药物筛选每天要对数千化台物样品进行检测,工作枯燥、步骤单一,人工操作容易疲劳、出错。自动化操作系统采用微孔板作为反应容器,具有固定的分布模式(format);不同的微孔板通过条形码加以标记。自动化操作系统通过光电阅读器对特定的微孔板上的特定位置进行操作,并将操作结果及相关数据存贮在计算机内,使筛选结果准确,实验过程快速。
自动化操作系统编程过程简洁明了,可操作性强。自动化操作系统的工作能力取决于系统的组成都分,根据需要可配置加样、冲洗、温解、离心等设备以进行相应的工作。
除了实验步骤的需要以外,自动化的加样方式是决定筛选速度的重要因素。主要有单孔、8孔、96孔、384孔等几种方式。单孔一般用于对照样品以及复筛中零散样品的转移。96孔、384孔在酶活性检测以及需同时开始、同时终止反应的筛选模型中是必需的。
自动化操作系统的一个重要组成部分是堆栈(hotel)。所谓堆栈是指在操作过程中用来放置样品板、反应板以及对它们进行转移所需的腾挪空间。因此,高通量筛选的样品数量取决于堆栈的容量。
由此可见,高通量药物筛选的自动化操作系统由计算机及其操作软件、自动化加样设备、温孵离心等设备、堆栈4个部分组成。不同的单位可根据主要筛选模型类型、筛选规模选购不同的部分整合成为一个完整的操作系统。
1.3 检测系统
快速、高灵敏度的检测技术是高通量药物筛选的关键技术之一。检测仪器灵敏度的不断提高,即使对微量样品的检测,也可以得到很好的检测效果。
1.3.1 液闪计数 放射性同位素广泛用于受体结合测定、细胞毒性、细胞增殖实验、药物代谢示踪以及基因分析中。由于采用了双光电倍增管及时间分辨偶合回路(time-resolved coincidence circuit)技术,有效地降低了背景信号的干扰,使测定灵敏度提高,同位素用量少。在96孔板的分析检测中,背景信号可控制在10cpm左右。
亲和闪烁分析(scintil1ation proximity assay,SPA)是一种新的液闪分析法。该方法在细胞表面受体药物筛选中应用较为普遍。在高通量筛选测定细胞表面受体亲合结合作用时,放射配体标记滤过分析技术由于需要进行分离,现已被亲合闪烁分析所取代。亲合闪烁分析技术通过亲合结合,将放射性配基结合到具有受体的闪烁球上,从而产生光子,减少了放射配体标记分析中的游离配基与结合配基的分离过程,使得放射配基分析可完全以自动化的方式进行,适于进行高通量筛选。产生低能量放射粒子的同位素可被用来进行放射性标记,而这种低能量放射粒子在短距离内可被重吸收,以确保只有结合到受体表面的配基才被检测到。SPA技术被广泛的应用到激酶、核酸处理酶分析以及受体配体的相互作用分析中。
1.3.2 分光光度法 为了适应高通量药物筛选,许多公司都生产了具备计算机接口并能对多孔板进行同时检测的分光光度计。以Molecular Device公司的spectra 190为例,它采用8条光导纤维同时对8孔进行测定。测定波长以2nm为间隔,可以在190nm一850nm间进行选择。对未知物质,可在该范围内进行扫描以确定其特征吸收光谱。因此,大大增加了建立模型的多样性。检测数据以不同文件格式输出,可用随机软件或通用数据处理软件进行处理。方便、快速、准确、自动化程度高。分光光度法高灵敏仪器同自动化操作系统的连接,使得基于紫外、可见光谱的高通量药物筛选模型成为主要模型种类。
1.3.3 化学发光检测 化学发光指生色物质在酶促作用下,化学能以光子的形式释放出来。化学发光根据发光的形式和种类分为辉光型和闪光型发光两种。辉光型化学发光如以AMPPD、CDPS、ECL、Diagoxigein等为基础的发光反应。其发光时间较长且稳定。而以发光蛋白、ATP、荧光素酶等为底物的发光反应则是闪光型发光反应,其发光时间较短。由于时间分辨及偶合回路技术的使用,对于背景的去除更为有效,使得化学发光的检测灵敏度达到0.1pg数量级。在单孔多点喷射技术中,用于检测化学发光的光导纤维末端带有一喷头,用来加入反应性底物。反应性底物从100个小孔喷出,使反应性底物加入孔中后即可均匀混合。发光反应同时启动后,可立即进行测定,对于闪光性化学发光的测定更为有利。
1.3.4 激发荧光检测 新型激发荧光检测仪在传统仪器的基础上,用连续的激发光谐和测定光谱取代固定光谱,使模型的建立更具备灵活性。荧光检测方法灵敏是因为多数荧光基团都有短暂的半衰期,即使用较弱的激发光源也能获得大量的光子流。这种特性以及多种可采用的荧光模式,使得荧光检测技术成为高通量筛选必不可少的应用手段。荧光技术在均相筛选分析中广为应用。其中,包括荧光共振能量转移(FRET),荧光偏振(FP),时间分辨荧光(TRET)以及荧光相关谱(FCS)等技术。
1.4 数据库管理系统
高通量药物筛选的特点是对数以万计的化合物样品进行多模型的筛选。与高通量药物筛选相适应的数据库管理系统主要承担4个方面的功能。
样品库的管理功能:化合物样品库对进行高通量药物筛选的化合物样品的各种理化性质进行存储管理。对每一个新入库的化合物进行新颖性分析,排除结构雷同的化合物,避免不必要的筛选。由于高度反应性基团增加了假阳性出现的机率,样品库对新入库的化合物进行反应基因检测以去除这类化合物。
生物活性信息的管理功能:生物活性库存贮每一化合物经过不同模型检测后的结果,并根据多个模型的检测结果对化合物的生物活性进行综合评价。
对高通量药物筛选的服务功能:高通量药物筛选的工作量大,自动化程度高,也涉及到许多繁琐的工作。高通量药物筛选数据库管理系统对与药物筛选相关的业务往来通讯、档案管理以及各种样品标签的打印进行管理,使高通量药物筛选的各个环节程序化、标准化。
药物设计与药物发现功能:高通量药物筛选产生大量的化合物结构信息,随着筛选的进行,生物活性信息也特大幅度提高。高通量药物筛选数据库管理系统通过对同一模型不同的呈现阳性反应的化合物结构进行分析,找出其构效关系,从而为药物设计提供参考。
1.5 筛选模型
是指用于检测药物作用的实验方法。由于高通量筛选要求反应总体积小,而且,反应具有较高特异性和敏感性,因此对于筛选模型也要求较高。这些模型主要集中在受体、酶、通道以及各种细胞反应方面。基因水平的药物筛选模型,使药物筛选模型的范围更为广泛。
1.5.1 以酶为靶的高通量筛选 以酶为作用靶的高通量筛选方法,绝大多数是直接检测酶活性。具体方法根据酶的不同而不同,主要有基于放射性的方法和基于比色、荧光的方法两大类。
基于放射性的方法多是将底物标记,测定放射性产物的生成。Taft等建立了(1,3)β-葡聚糖合酶抑制剂(抗真菌)的高通量筛选方法。将含有酶的菌丝提取物、α-淀粉酶和UDP-14C-葡萄糖加入96孔板的孔中,温孵、反应。终止反应后,滤去未被合成进入的底物。闪烁计数检测滤器上保留的(1,3)β-葡聚糖,指示酶活性大小。
也有将酶标记,测定被特异结合的酶的方法。Vollmer等建立了一种以青霉素结合蛋白(PBP)为靶的抗生素的高通量筛选方法。PBP既是糖基转移酶又是肽转移酶,该法是筛选其糖基转移结构域的活性位点上的可结合物。将莫诺霉素(moenomycin)结合于一种小球上,制成混悬液,加入96孔板,然后加入3H标记的PBP(细菌膜粗提物)和受试化合物,孵育、过滤去掉非结合的放射性,闪烁计数测得的放射性指示PBP与莫诺霉素结合的情况及受试化合物对其影响。
另外,基于放射性而无需过滤分离的SPA也有应用。Brown等建立了内源性肽酶的水解活性检测方法,用以研究其抑制剂。用3H标记的肽底物,通过生物素(biotin)与抗生物素蛋白(avidin)包裹的SPA闪烁球相连。酶解使3H随肽的断裂而离开闪烁球。测定3H放射性作用于闪烁球产生的闪烁信号的丢失量,即指示酶活性大小。
基于比色、荧光等的方法有一些报道。Waslidge等建立了脂氧合酶抑制剂的筛选方法。酸性条件下,脂的过氧化物能把Fe2+氧化为Fe3+,然后氧化二甲酚橙(xylenol orange),产物在可见光区620nm有强烈吸收。在96孔板上测定。Zhang等建立了HIV逆转录酶抑制剂(抗病毒药物)的高通量筛选方法。方法使用了“同质时间分辨荧光”(homogenous time resolved fluorence,HTRF)技术,既实现了非分离操作(同质),又避免了放射性同位素的使用。该方法基于逆转录酶能很容易地将核苷酸类似物(如生物素-11-dUTP)引入新生DNA链。在96或384孔板上,将生物素化的引物/模板与抗生蛋白链菌素-铕在板孔中混合孵育,加入逆转录酶,再加入生物素-dUTP和d-TTP混合物启动反应。反应60min后,加入链亲和素-别藻蓝蛋白(streptavidin-allophycocyanin),孵育,用HTRF分析仪读取数据。该法也可用于多种其他的核酸聚合酶。
1.5.2 以受体为靶的高通量筛选 以受体为作用靶的高通量筛选方法。检测功能反应的优点是易于区分激动剂和拮抗剂。经典的功能检测方法通量低,而引入基于重组技术的报告基因检测方法极大地提高了筛选通量,既高效且节省成本。检测第二信使或下游机制如磷酸化,传统方法也比较麻烦,不适于高通量检测,但将这些机制与报告基因相偶联则能克服。
1.5.3 以离子通道为靶的高通量筛选 Negri等建立了贝类动物毒素的高通量筛选方法。其作用靶为Na+通道上的蛤蚌毒素(STX)结合位点,用放射性配体(3H-STX)进行竞争性结合试验考察受试样品。Yong等用酵母双杂交的方法高通量筛选干扰N型钙通道β3亚单位与α1β亚单位相互作用的小分子,寻找新型钙通道拮抗剂。
1.5.4 以核酸为靶的高通量筛选 Hamasaki等建立了以16S rRNA编码区结构和HIV-RRE RNA结构为靶的抑制剂的高通量筛选方法。寻找类似氨基糖甙类抗生素而亲和力更高或作用于相同核酸的其他位点的新化合物,以及不易被代谢失活的新化合物。方法基于当含芘的氨基甙类似物结合于RNA时,芘的荧光被淬灭的原理。在96孔板上,将芘碳酰巴龙霉素(PCP),RNA结构配成溶液后加入有受试化合物的板孔中,用荧光读板器考察荧光恢复的程度。
1.5.5 以细胞功能为基础的高通量筛选
1.5.5.1 内皮细胞激活 内皮细胞激活是急慢性炎症过程中重要的组成环节。Rice等以E选择蛋白在细胞表面的表达作为标志,建立了内皮细胞激活抑制剂的高通量筛选方法。建立人脐静脉内皮细胞培养系统。IL-1刺激下,E选择蛋白在内皮细胞表面的表达用ELISA方法定量。方法包括细胞固定、加液、加受试化合物等操作,能保持细胞完整,不昂贵,可重复,筛选速度可达每星期1000种化合物。适用化合物范围很宽,并且方法用细胞作为检测对象,使能够较早地发现细胞对化合物的摄取及化合物的细胞毒性。
1.5.5.2 细胞凋亡 Erusalimsky等建立了新型细胞凋亡调节物的高通量筛选方法。细胞预先用3H 胸苷标记,与凋亡诱导物孵育后,连续经过两种玻璃滤器。一个是中性的,捕获完整的染色质和高分子量DNA。另一个装有DEAE活性基团,捕获低分子量DNA碎片。通过对滤器上放射性的测量,可以对DNA的破碎情况定量。
1.5.5.3 抗肿瘤活性 Lu等建立了用高通量“生物活性指纹”筛选抗肺癌药物的方法,考察受试分子(类维生素A及类维生素A相关分子)对许多不同细胞系的效应特点。检测指标包括:(1)肺癌细胞生长抑制检测。选择了约50种肿瘤和非肿瘤细胞,包括了大量不同的组织和(或)肿瘤来源。细胞暴露于受试化合物5d后,用标准比色法测定存活细胞百分率。20%生长抑制率指示有活性。(2)集落形成抑制检测,用以区分细胞生长抑制作用和细胞杀伤作用。6孔板上加NCI-H292非小细胞肺癌细胞,暴露于受试物一定时间。然后对细胞进行清洗,植于无受试物的培养介质共7d。用结晶紫对细胞染色,考察集落形成情况。(3)凋亡检测,用ELISA方法测量细胞DNA破碎。(4)转录调控检测,用以考察受试化合物是否有类维生素A受体介导的转录抑制作用。方法是将HeLa TK-细胞用73Col-CAT报告基因连同受体的表达载体转染,与受试物一起培养,用ELISA方法检测CAT活性。
1.5.5.4 G2检查点(G2 checkpoint) Roberge等建立了G2期检查点抑制剂的高通量筛选方法。将MCF-7m p53细胞培养,种在96孔聚苯乙烯组织培养板上。照射使细胞进入G2静止期,加入受试化合物用ELISA方法检测核仁蛋白(nucleolin)的磷酸化形式,从而得到从G2期释放进入M期的细胞数量,即抑制G2检查点程度。
1.5.5.5 信号转导通路 Su等建立了TGFβ3通路作用物的高通量筛选方法。构建融合报告基因,转染细胞,选择虫荧光素酶表达能被TGFβ高诱导的克隆。将细胞植于96孔板,与受试化合物孵育后,稀释并加入Steady-Glo底物测虫荧光素酶活力,与对照比较,计算相对酶活性增加值。
1.5.5.6 细菌蛋白分泌 Alksne等建立了以抑制细菌蛋白分泌为作用方式的新型抗生素的高通量筛选方法。该方法基于SecA-lacZ融合报告基因。SecA是一种自我调控翻译的蛋白,当细菌蛋白分泌被干扰时,该报告基因被诱导。
1.5.5.7 细菌生长 Chung等建立了抑制分枝杆菌生长化合物的高通量筛选方法。选择了一种腐生性分枝杆菌代替结核分枝杆菌,因其具有生长迅速以及非感染性的特点。通过测定细胞摄入放射性标记的尿嘧啶,考察受试化合物对分枝杆菌活力的作用。用96孔板的形式,1d内可以测试数千个样品。
2.生药活性成分的高通量筛选
样品是高通量药物筛选的物质基础,样品库来源的化学多样性是决定高通量筛选技术能否成功的关键因素之一。前面我们谈到,化合物样品主要有常规化学合成、组合化学合成和从天然产物中分离纯化几个来源。而从天然产物中分离出来的化合物,由于其母核结构和活性基团是长期的自然选择形成的,它们具有人工合成化合物所不能比拟的优势。
我国拥有非常丰富的药材资源,几十年来,我们应用药理学手段,对我国的传统药物进行了大规模的研究和筛选,取得了巨大成就。但是,仅仅依靠传统的药理实验方法,既耗时,劳动强度又大,还需要使用大量实验动物,显然不能适应大量样品的同时筛选。虽然经过努力,已从生药中分离、提取、纯化出大量化合物,但由于研究手段的落后,使大量分离出的化合物得不到充分的利用,造成了化合物资源的极大浪费。
因此,将高通量筛选技术应用于生药的活性成分研究,既是对高通量筛选技术的不断完善,又是将这一技术应用于中药现代化研究的有益尝试。
如何对生药的活性成分进行高通量筛选呢?其原理、方法和人工合成化合物的高通量筛选基本一致,区别主要在于筛选前需要从生药中将化合物提取出来并进行适当的分离和化学多样性的评价。相同的就不再赘述,这里主要谈一下提取、分离和多样性评价的问题。
2.1 提取 由于高通量筛选需要大量的样品来源,所以常规的提取方法显然不能满足这一要求。寻找一个快速、高效、连续、自动化的提取方法显得迫在眉睫。加速溶剂提取技术是一个新的提取技术,在准备好样品和对提取方法(或程序)进行设定后,自动进样和自动收集装置就可以连续对最多24个不同样品自动完成样品的提取和提取液的收集,简单方便。应用这一技术,可以得到大量的生药的提取物。
2.2 分离及化学多样性评价 我们都知道,生药的化学成分相当复杂,通过提取得到的提取物往往是大量单体组成的混合物,所以筛选前需要对生药的提取物进行适当的分离。在众多的分离手段中,制备型HPLC应该是最为理想的,它具有快速、高效、自动化等诸多优点。
分离完成后还需要对分离的物质进行化学多样性的评价,以提高高通量筛选的效率。以前,这种评价多是基于物种的地理分布、生物学分类、化学分类以及基源等关系,随着科技的进步,多种现代化手段开始应用于化学多样性的评价。其中,色谱-电喷雾质谱联用(HPLC-ESI-MS)技术在这方面做出了有力的尝试。首先,它做出成分的离子信号(m/z)对保留时间的平面图,然后对这些数据进行统计学的相似度评估从而对样品的多样性进行定量的评价。接着,三维的HPLC数据被转换为CDF文件格式并传输到UNIX工作站。数据文件中的每一个离子(包括保留时间、质量、离子强度等数据)被定位在一个二维图谱中,保留时间和质量分占一个轴,离子强度数据储存在位点中。滤除噪声以后,离子的中心时间和中心质量被计算出来。根据对LCMS的数据处理,混合物间的相似度被定量地计算出来。这种数据处理基于以下的一种关系,这种关系表征了样品1中的离子i和样品2中的离子j的“化学空间”距离。
其中,ti表示离子i的色谱保留时间,mi表示离子i的质荷比(m/z),wt是保留时间的权重系数,wm是质量的权重系数。dij是离子i和离子j的欧几里的距离,n1和n2分别是样品1和样品2中确认的离子数。sij是离子i和离子j之间的相似度(0-1),相似度值为1表明是相同样品,相反,相似度值接近0则表明样品具有很高的化学多样性。通过这种方法,可以很好的解决样品化学多样性的评价问题。

4. 怎么筛选PDB数据库中的蛋白

打开PDB数据库输入你知道的PDB编号 如果不知道编号就输入英文名称或者简称,搜索后出现蛋白质列表 一个个看 看哪个是你想要的.点一下,右上方有下载链接.下载xxx.pdb到本地磁盘后 用pymol或者rasmol软件打开看.或者用文本编辑器打开看详细的附加信息.

5. 常用的查询蛋白质结构以及序列的数据库主要有哪些

1. PIR和PSD
PIR国际蛋白质序列数据库(PSD)是由蛋白质信息资源(PIR)、慕尼黑蛋白质序列信息中心(MIPS)和日本国际蛋白质序列数据库(JIPID)共同维护的国际上最大的公共蛋白质序列数据库,可在这里下载。这是一个全面的、经过注释的、非冗余的蛋白质序列数据库,其中包括来自几十个完整基因组的蛋白质序列。所有序列数据都经过整理,超过99%的序列已按蛋白质家族分类,一半以上还按蛋白质超家族进行了分类。PSD的注释中还包括对许多序列、结构、基因组和文献数据库的交叉索引,以及数据库内部条目之间的索引,这些内部索引帮助用户在包括复合物、酶-底物相互作用、活化和调控级联和具有共同特征的条目之间方便的检索。每季度都发行一次完整的数据库,每周可以得到更新部分。
PSD数据库有几个辅助数据库,如基于超家族的非冗余库等。PIR提供三类序列搜索服务:基于文本的交互式检索;标准的序列相似性搜索,包括BLAST、FASTA等;结合序列相似性、注释信息和蛋白质家族信息的高级搜索,包括按注释分类的相似性搜索、结构域搜索GeneFIND等。
2. SWISS-PROT
SWISS-PROT是经过注释的蛋白质序列数据库,由欧洲生物信息学研究所(EBI)维护。数据库由蛋白质序列条目构成,每个条目包含蛋白质序列、引用文献信息、分类学信息、注释等,注释中包括蛋白质的功能、转录后修饰、特殊位点和区域、二级结构、四级结构、与其它序列的相似性、序列残缺与疾病的关系、序列变异体和冲突等信息。SWISS-PROT中尽可能减少了冗余序列,并与其它30多个数据建立了交叉引用,其中包括核酸序列库、蛋白质序列库和蛋白质结构库等。
利用序列提取系统(SRS)可以方便地检索SWISS-PROT和其它EBI的数据库。SWISS-PROT只接受直接测序获得的蛋白质序列,序列提交可以在其Web页面上完成。
3. PROSITE
PROSITE数据库收集了生物学有显着意义的蛋白质位点和序列模式,并能根据这些位点和模式快速和可靠地鉴别一个未知功能的蛋白质序列应该属于哪一个蛋白质家族。有的情况下,某个蛋白质与已知功能蛋白质的整体序列相似性很低,但由于功能的需要保留了与功能密切相关的序列模式,这样就可能通过PROSITE的搜索找到隐含的功能motif,因此是序列分析的有效工具。PROSITE中涉及的序列模式包括酶的催化位点、配体结合位点、与金属离子结合的残基、二硫键的半胱氨酸、与小分子或其它蛋白质结合的区域等;除了序列模式之外,PROSITE还包括由多序列比对构建的profile,能更敏感地发现序列与profile的相似性。PROSITE的主页上提供各种相关检索服务。
4. PDB
蛋白质数据仓库(PDB)是国际上唯一的生物大分子结构数据档案库,由美国Brookhaven国家实验室建立。PDB收集的数据来源于X光晶体衍射和核磁共振(NMR)的数据,经过整理和确认后存档而成。目前PDB数据库的维护由结构生物信息学研究合作组织(RCSB)负责。RCSB的主服务器和世界各地的镜像服务器提供数据库的检索和下载服务,以及关于PDB数据文件格式和其它文档的说明,PDB数据还可以从发行的光盘获得。使用Rasmol等软件可以在计算机上按PDB文件显示生物大分子的三维结构。
5. SCOP
蛋白质结构分类(SCOP)数据库详细描述了已知的蛋白质结构之间的关系。分类基于若干层次:家族,描述相近的进化关系;超家族,描述远源的进化关系;折叠子(fold),描述空间几何结构的关系;折叠类,所有折叠子被归于全α、全β、α/β、α+β和多结构域等几个大类。SCOP还提供一个非冗余的ASTRAIL序列库,这个库通常被用来评估各种序列比对算法。此外,SCOP还提供一个PDB-ISL中介序列库,通过与这个库中序列的两两比对,可以找到与未知结构序列远缘的已知结构序列。
6. COG
蛋白质直系同源簇(COGs)数据库是对细菌、藻类和真核生物的21个完整基因组的编码蛋白,根据系统进化关系分类构建而成。COG库对于预测单个蛋白质的功能和整个新基因组中蛋白质的功能都很有用。利用COGNITOR程序,可以把某个蛋白质与所有COGs中的蛋白质进行比对,并把它归入适当的COG簇。COG库提供了对COG分类数据的检索和查询,基于Web的COGNITOR服务,系统进化模式的查询服务等。

6. 基于配体结构的计算机辅助药物分子设计有哪些研究内容和方法

基于配体结构的计算机辅助药物分子设计可以按照要求。

基于配体的药物分子设计,既可以用于药物虚拟筛选,也可以用于反向寻靶,譬如药物筛选管理系统(DSMS),基于二维或三维相似度等手段,进行虚拟筛选;又譬如药物靶点预测系统(DTPS),基于相似度进行靶点预测。

(6)查合成配体的数据库扩展阅读:

计算机辅助药物设计的一般原理是,首先通过X-单晶衍射技等技术获得受体大分子结合部位的结构,并且采用分子模拟软件分析结合部位的结构性质,如静电场、疏水场、氢键作用位点分布等信息。

然后再运用数据库搜寻或者全新药物分子设计技术,识别得到分子形状和理化性质与受体作用位点相匹配的分子,合成并测试这些 分子的生物活性,经过几轮循环,即可以发现新的先导化合物。因此,计算机辅助药物设计大致包括活性位点分析法、数据库搜寻、全新药物设计。

7. ligand traps是什么意思

ligand trap可以理解为“配体捕获”,(通常被翻译为“配体陷阱”)主要是指人工合成的、能通过配体与受体识别方式识别特定的配体。一般文章中所说的ligand trap是指人工抗体药物,具有抗体一样的功能,但不是天然的抗体,而是经过人工修饰的“抗体”。

8. 计算机辅助药物分子设计的目录

第一章药物研究及计算机辅助药物分子设计1
第一节 药物研究和开发的历史及现状1
第二节现代药物研究的四大技术支柱3
一、分子生物学、基因组学及蛋白质组学3
二、组合化学5
三、高通量筛选6
四、与药物研究相关的信息科学及技术7
第三节计算机辅助药物分子设计11
一、概述11
二、CADD方法的分类12
第二章计算化学中的最优化方法17
第一节 引论17
一、 最优化问题概述17
二、 数学预备知识18
三、最优化条件26
第二节数值最优化方法30
一、最优化算法的基本结构30
二、无约束问题的最优化方法33
第三章计算化学中的非数值最优化方法54
第一节引论54
一、计算复杂性54
二、局部搜索算法56
三、组合优化问题算法设计的思路58
第二节模拟退火63
第三节遗传算法77
第四节神经网络94
一、人工神经网络基本模型简介94
二、用于优化计算的网络模型连续型Hopfield网络96
三、自组织网100
第四章分子力场和力场参数化106
第一节分子力场的势函数形式108
第二节分子力场的分类115
一、 传统力场115
二、第二代力场118
三、 通用力场120
四、其他力场121
第三节力场参数的拟合121
第五章构象分析方法139
第一节小分子的构象分析方法139
一、系统搜索方法139
二、片段连接方法142
三、随机搜索方法143
四、距离几何方法143
五、分子动力学方法146
六、基于遗传算法的构象分析方法148
第二节蛋白质结构的预测149
第六章分子动力学164
第一节积分方法165
第二节初始化167
第三节粒子受力的求算 169
第四节边界条件173
第五节非键相互作用能的处理175
一、截断值方法175
二、FMM方法177
三、Barnes?Huts算法180
四、周期性边界条件方法181
第六节约束条件动力学186
第七节恒温和恒压分子动力学188
第八节分子动力学轨迹分析189
第七章溶剂效应197
第一节显示溶剂模型198
第二节连续介质模型199
一、表面加和模型199
二、泊松?玻耳兹曼模型202
三、GB/SA模型208
四、模型多级矩展开方法213
五、极化的连续介质模型213
六、SMx系列溶剂化模型215
第八章结合自由能计算218
第一节 引言218
一、 熵增加原理和Gibbs自由能218
二、受体?配体结合的亲和力220
三、自由能计算方法的分类223
第二节自由能微扰和热力学积分方法223
三、FEP和TI在药物设计中的应用227
第三节基于主方程的自由能计算方法229
一、MM/PBSA方法的原理229
二、MM/PBSA方法的应用230
三、MM/PBSA方法的发展和完善232
第四节基于经验方程的自由能预测234
一、B?hm的自由能预测模型234
二、Eldredge的自由能预测模型235
三、Head的自由能预测模型236
第五节LIE方法237
第九章定量构效关系方法研究246
第一节 二维定量构效关系方法246
一、Hansch法246
二、Free?Wilson法250
三、各种参数250
第二节建立定量构效关系模型的统计方法263
一、回归分析263
二、遗传算法265
三、人工神经网络267
第三节三维定量构效关系方法268
一、距离几何3D?QSAR268
二、分子形状分析270
三、比较分子场分析方法272
四、虚拟受体方法277
第四节QSAR的应用281
一、2D?QSAR的应用281
二、3D?QSAR的应用287
参考文献289
第十章 药效团模型方法295
第一节药效团模型的表达296
一、药效特征元素296
二、几何约束299
第二节药效团模型的识别300
一、药效团识别的基本步骤301
二、分子叠合和活性构象301
第三节基于药效团模型的数据库搜索303
一、基于药效团的数据库搜索303
二、柔性构象搜索304
第四节药效团识别系统305
一、Receptor305
二、Apex?3D306
三、DISCO307
四、GASP308
五、CATALYST309
六、几种药效团识别系统的性能比较311
第五节药效团模型方法的应用314
一、Muscarinic M3受体拮抗剂的设计315
二、5?HT3受体拮抗剂的设计317
三、MC增生抑制剂的设计318
四、PKC抑制剂的设计319
五、HIV?1整合酶抑制剂的设计320
第十一章分子对接方法325
第一节分子对接的原理325
一、分子对接的理论基础325
二、分子对接方法的分类326
三、分子对接方法中的重要问题326
第二节几种有代表性的分子对接方法327
一、DOCK328
二、AUTODOCK332
三、FlexX335
四、Affinity337
五、LigandFit340
六、SFDOCK341
第三节虚拟筛选的策略343
第四节分子对接在药物设计中的应用345
一、胸苷酸合成酶抑制剂的设计348
二、DHFR抑制剂的设计349
三、EGFR和抑制剂间相互作用模式的研究349
第十二章从头设计方法354
第一节从头设计方法的分类354
一、片段定位法355
二、位点连接法356
三、片段连接法357
四、逐步生长法360
第二节几种重要的从头设计方法362
一、GRID362
二、MCSS363
三、HINT365
四、LUDI366
五、Leapfrog369
第三节从头设计在药物开发中的应用371
一、fⅩa抑制剂的设计372
二、全新FKBP?12配体的设计373
第十三章分子三维结构数据库和虚拟组合化学377
第一节三维结构数据库378
一、剑桥结构数据库379
二、国家癌症研究所380
三、Available Chemicals Directory 3D(ACD?3D)380
四、Available Chemicals Directory?Screening(ACD?SC)381
五、MDL Drug Data Report 3D(MDDR?3D)381
六、Comprehensive Medicinal Chemistry(CMC)381
七、类似物设计的结构数据库BIOSTER382
八、Chapman & Hall Dictionary of Natural Proct(DNP)382
九、Metabolite382
十、Toxicity382
十一、中草药三维结构数据库383
第二节分子结构的拓扑表达和结构转化385
一、分子结构的拓扑表达386
二、分子三维结构的转化387
第三节数据库搜索技术388
一、子结构匹配388
二、相似性搜索392
第四节重要的三维结构搜索系统395
一、MDL/Base395
二、Unity396
第五节计算组合化学方法396
第十四章药代动力学特征和毒性的预测405
第一节药代动力学特征的预测406
一、脂水分配系数406
二、脑血分配系数414
三、肠通透性420
四、水溶性422
第二节分子毒性的预测425
一、引论425
二、计算机辅助的化合物毒性预测方法427
三、常见化合物毒性预测软件436
第十五章EGF?R和抑制剂间相互作用模式的研究447
第一节酪氨酸蛋白激酶447
一、PTK的结构特征447
二、EGF?R的结构特征448
三、EGF?R抑制剂的分类450
第二节苯胺喹唑啉类抑制剂的三维构效关系454
第三节EGF?R和喹唑啉类抑制剂结合模式的预测466
第十六章HIV?1蛋白酶抑制剂的设计476
第一节HIV?1病毒的结构和侵袭靶细胞的机制476
第二节基于HIV蛋白酶的抑制剂设计480
附录一分子模拟方法中常用概念和名词495
一、分子坐标表示495
二、分子表面498
三、分子图形显示模型500
四、量化计算常见术语简介502
附录二药物分子设计中常用软件列表505
1?大型分子模拟软件系统505
2?小型分子模拟软件系统507
3?小型药物设计软件系统508
4?常用量化计算软件509
5?分子力学、分子动力学和蒙特卡罗模拟软件510
6?QSAR和分子参数计算软件513
7?药效团模拟软件518
8?分子对接软件519
9?从头设计方法522
10?分子相似性和差异性分析以及组合库设计524
11?药代动力学和毒性预测软件526
12?蛋白质三维结构模建、结构评估和活性位点预测软件529
13?数据库搜索软件532
14?分子叠合532
15?二维转三维和文件格式转换软件533
16?分子显示软件534
17?求解PB方程的软件536
18?化学软件开发包536
19?国内主要软件代理商的相关信息537

9. 化学信息学的发展现状

伴随着药物发现和制造技术发展而产生的化学信息学最早是由Frank Brown 用下述简洁语言定义的:综合信息资源,将数据(data)转化为信息(information),将信息转化为知识(knowledge),并将它用于特定药物先导化合物的辨识和优化领域的一门学科。众所周知,由于组合化学的出现使得药物学发生了革命性的变化。现代药物设计可以利用计算化学的方法,通过分子建模和仿真虚拟合成各种化合物(solid phase synthesis)。但是,通过这种方法得到的可供筛选的化合物库非常庞大,理论上可以合成的类药分子超过1040个。显然,如果去实际合成每一个药物来进行筛选是不可能的,因此必须从大量的数据中总结出规律,并利用这些规律进行虚拟的高通量筛选(HTS),以减少需要实际合成的化合物,同时尽可能地接近目标化合物。面对如此大量的数据,需要将原本独立的化学、数学及计算机等学科融合起来,构建一系列计算技术工具,以便完成从数据到信息,从信息到知识的整个化学信息处理过程。这些技术工具不仅包括实验数据的分析处理,同时也包括分子各种性质的计算、化合物数据库的建立、分子的虚拟合成、QSAR的研究、化学结构和性质数据库的建立、基于三维结构的分子设计、统计方法的研究等。化学信息学正是在上述需求基础上发展起来的一门交叉学科。它综合了数学、化学、生物学、信息学、计算机应用、药物学等学科知识,主要研究如何适当地选取化合物库(library)的多样性(diversity)、如何表征药物分子特征、如何度量不同分子间的差异性、如何识别类药(drug like)分子、分子结构和生物性能(bioactivity)关系、如何研发相应的计算机软硬件等,这就包括了化学计量学及计算化学的研究任务和内容。
化学信息学方法与传统的化学计量学方法相比,更注重于有用信息的提取和更注重计算速度的提高。为满足信息提取的需要,它大量采用了人工智能领域和信息科学领域的先进方法和工具。例如,运用数据挖掘技术去发现大量原始数据中的隐含规则;运用特征提取技术和编码技术进行模式的表达;运用数据库技术完成大型数据的储存和搜索;运用计算机仿真技术模拟分子的合成,以及受体和配体之间的匹配等。而为满足计算速度方面的要求,它一方面采用更高性能的计算机硬件,如并行计算机等;另一方面研究设计更为高效的算法,以最大限度地利用计算机硬件所能提供的计算能力。显然,化学信息学所研究的问题已经超越了传统化学计量学所研究的范畴,现有的化学计量学方法难以解决分子设计研究领域大量出现的新问题。从这个意义上讲,化学信息学的创立和发展是化学学科拓展的历史必然。化学信息学在化学领域、化工领域、药物设计领域、材料科学领域等许多领域中都已得到广泛的应用。例如,在化工领域中,化学信息学被用来对反应条件进行优化和筛选催化剂等,这主要是通过对实验数据进行建模,然后使用该预测模型实现对实验工作的指导;在药物设计领域,主要被用来进行分子模拟、虚拟合成、构效关系分析、虚拟筛选等;在材料科学领域,化学信息学被用于分子模拟和分子设计,并在分子性能预测的基础上,从所设计的分子中筛选出进行实际合成的分子,以便得到经过性能优化的材料。

10. 计算机辅助药物设计的基本原理是什么

计算机辅助药物设计的基本方法

21世纪新药研究的热点将集中于先导化合物的发掘与设计,其中使用计算机辅助设计是先导化合物设计的重要方法之一。计算机辅助药物设计是应用量子力学、分子动力学、构效关系等基础理论数据研究药物对酶、受体等的作用的药效模型,从而达到药物设计之目的。

计算机辅助药物设计的方法始于1980年代早期。当今,随着人类基因组计划的完成、蛋白组学的迅猛发展,以及大量与人类疾病相关基因的发现,药物作用的靶标分子急剧增加;同时,在计算机技术推动下,计算机药物辅助设计在近几年取得了巨大的进展。在我国,中科院上海药物所承担的国家863项目“基于蛋白质和核酸三维结构知识的药物设计”也致力于该领域的研究发展和改进药物分子设计的理论计算方法,并编制相应的软件,对一系列具有重要的药理作用的药物进行了三维定量构效关系和计算辅助药物设计的理论研究,发现了一些活性超过左旋氧氟沙星的化合物和活性超过银杏内酯的化合物。

为了便于公众了解计算机辅助药物设计的基本原理与方法,以及该领域的最新的进展,本文根据现有的相关文献对此作一综述。

计算机辅助药物设计的一般原理是,首先通过X-单晶衍射技等技术获得受体大分子结合部位的结构,并且采用分子模拟软件分析结合部位的结构性质,如静电场、疏水场、氢键作用位点分布等信息。然后再运用数据库搜寻或者全新药物分子设计技术,识别得到分子形状和理化性质与受体作用位点相匹配的分子,合成并测试这些分子的生物活性,经过几轮循环,即可以发现新的先导化合物。因此,计算机辅助药物设计大致包括活性位点分析法、数据库搜寻、全新药物设计。

1.活性位点分析法
该方法可以用来探测与生物大分子的活性位点较好地相互作用的原子或者基团。用于分析的探针可以是一些简单的分子或者碎片,例如水或者苯环,通过分析探针与活性位点的相互作用情况,最终可以找到这些分子或碎片在活性部位中的可能结合位置。由活性位点分析得到的有关受体结合的信息对于全新药物的设计具有指导性。目前,活性位点分析软件有DRID、GREEN、HSITE等。另外还有一些基于蒙特卡罗、模拟退火技术的软件如MCSS、HINT、BUCKETS等。

其中,GRID由Goodford研究小组开发,其基本原理是将受体蛋白的活性部位划分为有规则的网格点,将探针分子(水分子或甲基等)放置在这些网格点上,采用分子力场方法计算探针分子与受体活性部位各原子的相互作用能,这样便获得探针分子与受体活性部位相互作用的分布情况,从中可发现最佳作用位点。GRID最初运算的例子是用水分子作为探针分子,搜寻到了二氢叶酸还原酶(DHFR)活性部位中水的结合位点以及抑制剂的氢键作用位点。由此软件成功设计的药物有抗A型感冒病毒药物4-胍基Neu5Ac2en(GG167, RelenzaTM)。该化合物有很强的抗感冒病毒能力,克服了以往抗感冒病毒药物的耐药性缺陷,具有很好的市场前景。

MCSS是Miranker和Karplus在CHARMM力场基础上发展而来,它的基本要点是在运用 CHARMM力场进行分子动力学模拟时,取消溶剂分子间的非键相互作用。这样,在分子动力学模拟时,溶剂在能量合适的区域叠合在一起,从而提高了搜寻溶剂分子与受体分子结合区域的效率。小分子碎片(如水和苯分子)可当作溶剂分子,运用上述动力学方法搜寻出分子碎片与受体的结合区域,然后对每个碎片选择100-1000个拷贝,在低能碎片结合域进行能量优化。在最后的能量搜寻过程中,可以用随机取样或网格点的方法来实施。搜寻时每个碎片的各个拷贝可以作刚性转动,最后直接比较每个碎片各个拷贝与受体的结合能,以此选择碎片的最佳作用位点。2001年Adlington等利用MCSS对前列腺特异性免疫抗原(PSA)的活性位点进行了详细分析,以此对已有的PSA抑制剂进行结构优化,从而得到了迄今为止活性最高的PSA抑制剂。

2. 数据库搜寻
目前数据库搜寻方法分为两类。一类是基于配体的,即根据药效基团模型进行三维结构数据库搜寻。该类方法一般需先建立一系列活性分子的药效构象,抽提出共有的药效基团,进而在现有的数据库中寻找符合药效基团模型的化合物。该类方法中比较着名的软件有Catalyst和Unity,而以前者应用更普遍。另一类方法是基于受体的,也称为分子对接法,即将小分子配体对接到受体的活性位点,并搜寻其合理的取向和构象,使得配体与受体的形状和相互作用的匹配最佳。在药物设计中,分子对接方法主要用来从化合物数据库中搜寻与受体生物大分子有较好亲和力的小分子,从而发现全新的先导化合物。分子对接由于从整体上考虑配体与受体的结合效果,所以能较好地避免其他方法中容易出现的局部作用较好,整体结合欠佳的情况。目前具代表性的分子对接软件主要有 DOCK、F1exX和GOLD。

DOCK由Kuntz小组于1982年开发,最新版本为DOCK 5.0。DOCK的开发经历了一个由简单到复杂的过程:DOCK1.0考虑的是配体与受体间的刚性形状对接;DOCK2.0引入了“分而治之”算法,提高了计算速度;DOCK 3.0采用分子力场势能函数作为评价函数;DOCK 3.5引入了打分函数优化以及化学性质匹配等;DOCK4.0开始考虑配体的柔性;DOCK 5.0在前面版本基础上,采用C++语言重新编程实现,并进一步引入GB/SA打分。DOCK程序现已成功地应用于药物分子设计领域。 Kuntz等利用用DOCK程序研究HIV-1蛋白酶,根据分子相似性对剑桥晶体数据库进行搜寻,得到化合物haloperidol,通过测试,其对HIV-1蛋白酶的Ki值为100μmol/L;进一步的结构改造得到化合物thioletal,其IC50高达1 5μmol/L。DesJarlais利用DOCK程序的一个改进版target-DOCK搜寻HIV-1蛋白酶抑制剂,得到一系列HIV-1蛋白酶抑制剂,其中活性最高的化合物其Ki值为7μmol/L。

F1exX是一种快速、精确的柔性对接算法,在对接时考虑了配体分子的许多构象。F1exX首先在配体分子中选择一个核心部分,并将其对接到受体的活性部位,然后再通过树搜寻方法连接其余片断。F1exX的评价函数采用改进的Bhöm结合自由能函数。F1exX的对接算法建立在逐步构造策略的基础之上,分以下三步:第一步是选择配体的一个连接基团,称为核心基团;第二步将核心基团放置于活性部位,此时不考虑配体的其他部分;最后一步称为构造,通过在已放置好的核心基团上逐步增加其他基团,构造出完整的配体分子。F1exX对接一个典型的药物分子大约需要3分钟,表明它可用于中等规模的三维数据库搜寻;此外,由于其采用了经验结合自由能函数进行评价,结果可能要优于以相互作用能为评价函数的分子对接方法。因此,F1exX是一个非常有前途的药物设计方法,近年来发展迅速。

3.全新药物设计
数据库搜寻技术在药物设计中广为应用,该方法发现的化合物大多可以直接购买得到,即使部分化合物不能直接购买得到,其合成路线也较为成熟,可以从专利或文献中查得,这都大大加快了先导化合物的发现速度。但是,数据库搜寻得到的化合物通常都是已知化合物,而非新颖结构。近年来,全新药物设计越来越受到人们的重视,它根据受体活性部位的形状和性质要求,让计算机自动构建出形状、性质互补的新分子,该新分子能与受体活性部位很好地契合,从而有望成为新的先导化合物;它通常能提出一些新的思想和结构类型,但对所设计的化合物需要进行合成,有时甚至是全合成。全新药物设计方法出现的时间虽然不长,但发展极为迅速,现已开发出一批实用性较强的软件,其主要软件有LUDI、Leapfrog、GROW、SPROU以及北京大学来鲁华等开发的LigBuilder等,其中LUDI最为常用。

LUDI是由Bhöm开发的进行全新药物设计的有力工具,已广泛地被制药公司和科研机构使用,其特点是以蛋白质三维结构为基础,通过化合物片段自动生长的方法产生候选的药物先导化合物。它可根据用户确定好的蛋白质受体结合部位的几何形状和物理化学特征(氢键形成能力、疏水作用位点),通过对已有数据库中化合物的筛选并在此基础上自动生长或连接其他化合物的形式,产生大量候选先导化合物并按评估的分值大小排列,供下一步筛选;可以对已知的药物分子进行修改,如添加/去除基团、官能团之间的连接等。在受体蛋白质结构未知的情况下,此模块也可以根据多个已知的同系化合物结构的叠合确定功能团,再根据功能团的空间排列和理化性质推测可能的蛋白质受体结合部位特征,根据此特征进行新型药物设计。目前研究人员利用LUDI设计出数十个针对不同疾病的活性化合物。

【参考文献】
1.中国科技成果库(CSTAD):http://www.wanfangdata.com.cn
2.宋云龙等 基于结构的计算机辅助药物设计方法学与应用研究,药学进展.2002,26(6).-359-364
3.陈凯先等 计算机辅助药物设计——原理、方法及运用,上海科学技术出版社,2000
4.Von Itzstein M, Wu W Y et al. Rational design of potent sialidase-based inhibitors of influenza virus replication. Nature, 1993, 363: 418-423
5.Adlington R M, Baldwin J E et al. Design, synthesis, and proposed active site binding analysis of monocylic 2-azetidinone inhibitors of prostate specific antigen. J Med Chem, 2001, 44(10):1491-1508
6.Leapfrog. Tripos Associates, St Louis, MO, USA