⑴ oracle sql 语句执行顺序
where 里面条件 and 是先执行 and 前面 还是后面条件
这个其实和你写的顺序不大,这个先后顺序,是数据库来根据表/索引的信息来决定的。
例如一个 学生表, 有学号,姓名,性别
其中 学号是主键, 姓名上面有个索引。
找 名字叫 强妹 的女生:
SELECT * FROM 学生 WHERE 姓名='强妹' AND 性别 = '女'
与
SELECT * FROM 学生 WHERE 性别 = '女' AND 姓名='强妹'
数据库在处理 SQL 以前,都会去分析, 发现 查询的条件中, 姓名上面有索引,而性别上面没有。 那么优先根据 姓名的条件, 去检索,然后再去把通过索引得到的数据,去筛选 性别=女的
比如表里面共有10000行。姓名叫 '强妹' 的只有一个。
那么通过索引,一步就定位到那一行。
然后再判断这一行数据的 性别字段, 是不是 = '女'
假如 姓名/性别 都没有索引呢?
那就是执行 全表扫描。
不分先后。
什么意思呢?
就是假如 表里面10000行数据。
那就是从第一行开始, 查看 姓名与性别 条件。 满足的返回。 不满足的丢弃。 直到100行都处理完。
并不是一口气把所有的数据,都放到内存里面,然后 姓名判断一次, 去掉部分, 性别判断一次,再去掉部分。
⑵ 请问,在数据库查询语句中(SQL SERVER)子查询的执行顺序是怎样的
打开查询分析器,输入相应的查询语句;
在工具栏中紧邻数据库下拉列表的右侧,有一个按钮,叫“显示预计的执行计划”,点击它就可以看到相应的查询语句的执行顺序,不但可以看到子查询的执行顺序,也可以看到每一步执行使用的时间大约占总体时间的百分比。
⑶ sql查询语句的各个命令执行的标准顺序是什么为什么
查询语句是sql语句中使用最多的操作,也涉及到非常多的命令。比如where过滤,group
by分组,order by 排序 limit取值 having等。虽然多,但是各个命令执行的时候却是有顺序的,顺序如下:
select *
from 表名
①-- where 条件1
②-- group by 依据列
③-- having 条件2
④-- order by 依据列
⑤-- limit 0,1
为什么是这么个顺序,原因:
limit取值永远是最后一个.
如果你要order by排序,前提是要首先得到一个查询结果.
查询结果中的三个关键词,where总是是放在表名的后面,而havin过滤永远是放在group后面,所以就有了这么个顺序.如果不遵循顺序,就会出现错误。
是不是这样,我们可以用下面的建表语句验证下.
drop table if exists students;
create table students (
studentNo varchar(10) primary key,
name varchar(10),
sex varchar(1),
hometown varchar(20),
age tinyint(4),
class varchar(10),
card varchar(20)
);
insert into students values
('001', '王昭君', '女', '北京', '20', '1班', '340322199001247654'),
('002', '诸葛亮', '男', '上海', '18', '2班', '340322199002242354'),
('003', '张飞', '男', '南京', '24', '3班', '340322199003247654'),
('004', '白起', '男', '安徽', '22', '4班', '340322199005247654'),
('005', '大乔', '女', '天津', '19', '3班', '340322199004247654'),
('006', '孙尚香', '女', '河北', '18', '1班', '340322199006247654'),
('007', '百里玄策', '男', '山西', '20', '2班', '340322199007247654'),
('008', '小乔', '女', '河南', '15', '3班', null),
('009', '百里守约', '男', '湖南', '21', '1班', ''),
('010', '妲己', '女', '广东', '26', '2班', '340322199607247654'),
('011', '李白', '男', '北京', '30', '4班', '340322199005267754'),
('012', '孙膑', '男', '新疆', '26', '3班', '340322199000297655')
查询该表中除1班外,所有其他班级的最大年龄,最小年龄,并且按照班号进行降序排列(过滤掉2班,只显示最前面的一条信息)
那么sql语句就是: select class,max(age),min(age) from students where class !='1班' group by class having class !='2班' order by class desc limit 1
在这条语句中,新人非常容易犯的错误 就是根据题意,将having放在order by 后面导致错误。原因在于order by应该放在hving的后面。 还有其他疑问的话建议你去搜一下黑马程序员,在IT业内算是比较有实力的机构,里面有线上和线下的课程,还有免费的视频,每天看一点学一下还是比较有用的。不过,如果真的是想入行或者进阶的话,花一段时间高专注度的学习是非常有必要的,投资自己报课试一下吧。
⑷ 数据库按从小到大的顺序排列sql怎么写
select
top
10
from
表名
order
by
排序列
desc;
sql的执行顺序先按照你的要求排序,然后才返回查询的内容。例如有一个名为id自动增长的列,表中有100条数据,列的值得分别是1、2、3、4………9、99、100。那么查询加了desc你得到的是91到100条,就是最后十条,如果加asc你得到的将会是1到10,也就是最前面的那几条。
⑸ SQL语句执行流程与顺序原理解析
SQL语句执行流程与顺序原理解析
Oracle语句执行流程
第一步:客户端把语句发给服务器端执行
当我们在客户端执行SQL语句时,客户端会把这条SQL语句发送给服务器端,让服务器端的进程来处理这语句。也就是说,Oracle 客户端是不会做任何的操作,他的主要任务就是把客户端产生的一些SQL语句发送给服务器端。服务器进程从用户进程把信息接收到后, 在PGA 中就要此进程分配所需内存,存储相关的信息,如:在会话内存存储相关的登录信息等。
虽然在客户端也有一个数据库进程,但是,这个进程的作用跟服务器上的进程作用是不相同的,服务器上的数据库进程才会对SQL 语句进行相关的处理。不过,有个问题需要说明,就是客户端的进程跟服务器的进程是一一对应的。也就是说,在客户端连接上服务器后,在客户端与服务器端都会形成一个进程,客户端上的我们叫做客户端进程,而服务器上的我们叫做服务器进程。
第二步:语句解析
当客户端把SQL语句传送到服务器后,服务器进程会对该语句进行解析。这个解析的工作是在服务器端所进行的,解析动作又可分为很多小动作。
1)查询高速缓存(library cache)
服务器进程在接到客户端传送过来的SQL语句时,不会直接去数据库查询。服务器进程把这个SQL语句的字符转化为ASCII等效数字码,接着这个ASCII码被传递给一个HASH函数,并返回一个hash值,然后服务器进程将到shared pool中的library cache(高速缓存)中去查找是否存在相同的hash值。如果存在,服务器进程将使用这条语句已高速缓存在SHARED POOL的library cache中的已分析过的版本来执行,省去后续的解析工作,这便是软解析。若调整缓存中不存在,则需要进行后面的步骤,这便是硬解析。硬解析通常是昂贵的操作,大约占整个SQL执行的70%左右的时间,硬解析会生成执行树,执行计划,等等。
所以,采用高速数据缓存的话,可以提高SQL 语句的查询效率。其原因有两方面:一方面是从内存中读取数据要比从硬盘中的数据文件中读取数据效率要高,另一方面也是因为避免语句解析而节省了时间。
不过这里要注意一点,这个数据缓存跟有些客户端软件的数据缓存是两码事。有些客户端软件为了提高查询效率,会在应用软件的客户端设置数据缓存。由于这些数据缓存的存在,可以提高客户端应用软件的查询效率。但是,若其他人在服务器进行了相关的修改,由于应用软件数据缓存的存在,导致修改的数据不能及时反映到客户端上。从这也可以看出,应用软件的数据缓存跟数据库服务器的高速数据缓存不是一码事。
2)语句合法性检查(data dict cache)
当在高速缓存中找不到对应的SQL语句时,则服务器进程就会开始检查这条语句的合法性。这里主要是对SQL语句的语法进行检查,看看其是否合乎语法规则。如果服务器进程认为这条SQL语句不符合语法规则的时候,就会把这个错误信息反馈给客户端。在这个语法检查的过程中,不会对SQL语句中所包含的表名、列名等等进行检查,只是检查语法。
3)语言含义检查(data dict cache)
若SQL 语句符合语法上的定义的话,则服务器进程接下去会对语句中涉及的表、索引、视图等对象进行解析,并对照数据字典检查这些对象的名称以及相关结构,看看这些字段、表、视图等是否在数据库中。如果表名与列名不准确的话,则数据库会就会反馈错误信息给客户端。
所以,有时候我们写select语句的时候,若语法与表名或者列名同时写错的话,则系统是先提示说语法错误,等到语法完全正确后再提示说列名或表名错误。
4)获得对象解析锁(control structer)
当语法、语义都正确后,系统就会对我们需要查询的对象加锁。这主要是为了保障数据的一致性,防止我们在查询的过程中,其他用户对这个对象的结构发生改变。
5)数据访问权限的核对(data dict cache)
当语法、语义通过检查之后,客户端还不一定能够取得数据,服务器进程还会检查连接用户是否有这个数据访问的权限。若用户不具有数据访问权限的话,则客户端就不能够取得这些数据。要注意的是数据库服务器进程先检查语法与语义,然后才会检查访问权限。
6)确定最佳执行计划
当语法与语义都没有问题权限也匹配,服务器进程还是不会直接对数据库文件进行查询。服务器进程会根据一定的规则,对这条语句进行优化。在执行计划开发之前会有一步查询转换,如:视图合并、子查询解嵌套、谓语前推及物化视图重写查询等。为了确定采用哪个执行计划,Oracle还需要收集统计信息确定表的访问联结方法等,最终确定可能的最低成本的执行计划。
不过要注意,这个优化是有限的。一般在应用软件开发的过程中,需要对数据库的sql语句进行优化,这个优化的作用要大大地大于服务器进程的自我优化。
当服务器进程的优化器确定这条查询语句的最佳执行计划后, 就会将这条SQL语句与执行计划保存到数据高速缓存(library cache)。如此,等以后还有这个查询时,就会省略以上的语法、语义与权限检查的步骤,而直接执行SQL语句,提高SQL语句处理效率。
第三步:绑定变量赋值
如果SQL语句中使用了绑定变量,扫描绑定变量的声明,给绑定变量赋值,将变量值带入执行计划。若在解析的第一个步骤,SQL在高速缓冲中存在,则直接跳到该步骤。
第四步:语句执行
语句解析只是对SQL语句的语法进行解析,以确保服务器能够知道这条语句到底表达的是什么意思。等到语句解析完成之后,数据库服务器进程才会真正的执行这条SQL语句。
对于SELECT语句:
1)首先服务器进程要判断所需数据是否在db buffer存在,如果存在且可用,则直接获取该数据而不是从数据库文件中去查询数据,同时根据LRU 算法增加其访问计数;
2)若数据不在缓冲区中,则服务器进程将从数据库文件中查询相关数据,并把这些数据放入到数据缓冲区中(buffer cache)。
其中,若数据存在于db buffer,其可用性检查方式为:查看db buffer块的头部是否有事务,如果有事务,则从回滚段中读取数据;如果没有事务,则比较select的scn和db buffer块头部的scn,如果前者小于后者,仍然要从回滚段中读取数据;如果前者大于后者,说明这是一非脏缓存,可以直接读取这个db buffer块的中内容。
对于DML语句(insert、delete、update):
1)检查所需的数据库是否已经被读取到缓冲区缓存中。如果已经存在缓冲区缓存,则直接执行步骤3;
2)若所需的数据库并不在缓冲区缓存中,则服务器将数据块从数据文件读取到缓冲区缓存中;
3)对想要修改的表取得的数据行锁定(Row Exclusive Lock),之后对所需要修改的数据行取得独占锁;
4)将数据的Redo记录复制到redo log buffer;
5)产生数据修改的undo数据;
6)修改db buffer;
7)dbwr将修改写入数据文件;
其中,第2步,服务器将数据从数据文件读取到db buffer经经历以下步骤:
1)首先服务器进程将在表头部请求TM锁(保证此事务执行过程其他用户不能修改表的结构),如果成功加TM锁,再请求一些行级锁(TX锁),如果TM、TX锁都成功加锁,那么才开始从数据文件读数据。
2)在读数据之前,要先为读取的文件准备好buffer空间。服务器进程需要扫描LRU list寻找free db buffer,扫描的过程中,服务器进程会把发现的所有已经被修改过的db buffer注册到dirty list中。如果free db buffer及非脏数据块缓冲区不足时,会触发dbwr将dirty buffer中指向的缓冲块写入数据文件,并且清洗掉这些缓冲区来腾出空间缓冲新读入的数据。
3)找到了足够的空闲buffer,服务器进程将从数据文件中读入这些行所在的每一个数据块(db block)(DB BLOCK是ORACLE的最小操作单元,即使你想要的数据只是DB BLOCK中很多行中的一行或几行,ORACLE也会把这个DB BLOCK中的所有行都读入Oracle DB BUFFER中)放入db buffer的空闲的区域或者覆盖已被挤出LRU list的非脏数据块缓冲区,并且排列在LRU列表的头部,也就是在数据块放入db buffer之前也是要先申请db buffer中的锁存器,成功加锁后,才能读数据到db buffer。
若数据块已经存在于db buffer cache(有时也称db buffer或db cache),即使在db buffer中找到一个没有事务,而且SCN比自己小的非脏缓存数据块,服务器进程仍然要到表的头部对这条记录申请加锁,加锁成功才能进行后续动作,如果不成功,则要等待前面的进程解锁后才能进行动作(这个时候阻塞是tx锁阻塞)。
在记redo日志时,其具体步骤如下:
1)数据被读入到db buffer后,服务器进程将该语句所影响的并被读入db buffer中的这些行数据的rowid及要更新的原值和新值及scn等信息从PGA逐条的写入redo log buffer中。在写入redo log buffer之前也要事先请求redo log buffer的锁存器,成功加锁后才开始写入。
2)当写入达到redo log buffer大小的三分之一或写入量达到1M或超过三秒后或发生检查点时或者dbwr之前发生,都会触发lgwr进程把redo log buffer的数据写入磁盘上的redo file文件中(这个时候会产生log file sync等待事件)。
3)已经被写入redo file的redo log buffer所持有的锁存器会被释放,并可被后来的写入信息覆盖,redo log buffer是循环使用的。Redo file也是循环使用的,当一个redo file写满后,lgwr进程会自动切换到下一redo file(这个时候可能出现log file switch(check point complete)等待事件)。如果是归档模式,归档进程还要将前一个写满的redo file文件的内容写到归档日志文件中(这个时候可能出现log file switch(archiving needed)。
在为事务建立undo信息时,其具体步骤如下:
1)在完成本事务所有相关的redo log buffer之后,服务器进程开始改写这个db buffer的块头部事务列表并写入scn(一开始scn是写在redo log buffer中的,并未写在db buffer)。
2)然后包含这个块的头部事务列表及scn信息的数据副本放入回滚段中,将这时回滚段中的信息称为数据块的“前映像”,这个“前映像”用于以后的回滚、恢复和一致性读。(回滚段可以存储在专门的回滚表空间中,这个表空间由一个或多个物理文件组成,并专用于回滚表空间,回滚段也可在其它表空间中的数据文件中开辟)。
在修改信息写入数据文件时,其具体步骤如下:
1)改写db buffer块的数据内容,并在块的头部写入回滚段的地址。
2)将db buffer指针放入dirty list。如果一个行数据多次update而未commit,则在回滚段中将会有多个“前映像”,除了第一个“前映像”含有scn信息外,其他每个"前映像"的头部都有scn信息和"前前映像"回滚段地址。一个update只对应一个scn,然后服务器进程将在dirty list中建立一条指向此db buffer块的指针(方便dbwr进程可以找到dirty list的db buffer数据块并写入数据文件中)。接着服务器进程会从数据文件中继续读入第二个数据块,重复前一数据块的动作,数据块的读入、记日志、建立回滚段、修改数据块、放入dirty list。
3)当dirty queue的长度达到阀值(一般是25%),服务器进程将通知dbwr把脏数据写出,就是释放db buffer上的锁存器,腾出更多的free db buffer。前面一直都是在说明oracle一次读一个数据块,其实oracle可以一次读入多个数据块(db_file_multiblock_read_count来设置一次读入块的个数)
当执行commit时,具体步骤如下:
1)commit触发lgwr进程,但不强制dbwr立即释放所有相应db buffer块的锁。也就是说有可能虽然已经commit了,但在随后的一段时间内dbwr还在写这条sql语句所涉及的数据块。表头部的行锁并不在commit之后立即释放,而是要等dbwr进程完成之后才释放,这就可能会出现一个用户请求另一用户已经commit的资源不成功的现象。
2)从Commit和dbwr进程结束之间的时间很短,如果恰巧在commit之后,dbwr未结束之前断电,因为commit之后的数据已经属于数据文件的内容,但这部分文件没有完全写入到数据文件中。所以需要前滚。由于commit已经触发lgwr,这些所有未来得及写入数据文件的更改会在实例重启后,由smon进程根据重做日志文件来前滚,完成之前commit未完成的工作(即把更改写入数据文件)。
3)如果未commit就断电了,因为数据已经在db buffer更改了,没有commit,说明这部分数据不属于数据文件。由于dbwr之前触发lgwr也就是只要数据更改,(肯定要先有log)所有dbwr在数据文件上的修改都会被先一步记入重做日志文件,实例重启后,SMON进程再根据重做日志文件来回滚。
其实smon的前滚回滚是根据检查点来完成的,当一个全部检查点发生的时候,首先让LGWR进程将redologbuffer中的所有缓冲(包含未提交的重做信息)写入重做日志文件,然后让dbwr进程将dbbuffer已提交的缓冲写入数据文件(不强制写未提交的)。然后更新控制文件和数据文件头部的SCN,表明当前数据库是一致的,在相邻的两个检查点之间有很多事务,有提交和未提交的。
当执行rollback时,具体步骤如下:
服务器进程会根据数据文件块和db buffer中块的头部的事务列表和SCN以及回滚段地址找到回滚段中相应的修改前的副本,并且用这些原值来还原当前数据文件中已修改但未提交的改变。如果有多个”前映像“,服务器进程会在一个“前映像”的头部找到“前前映像”的回滚段地址,一直找到同一事务下的最早的一个“前映像”为止。一旦发出了commit,用户就不能rollback,这使得commit后dbwr进程还没有全部完成的后续动作得到了保障。
第五步:提取数据
当语句执行完成之后,查询到的数据还是在服务器进程中,还没有被传送到客户端的用户进程。所以,在服务器端的进程中,有一个专门负责数据提取的一段代码。他的作用就是把查询到的数据结果返回给用户端进程,从而完成整个查询动作。
从这整个查询处理过程中,我们在数据库开发或者应用软件开发过程中,需要注意以下几点:
一是要了解数据库缓存跟应用软件缓存是两码事情。数据库缓存只有在数据库服务器端才存在,在客户端是不存在的。只有如此,才能够保证数据库缓存中的内容跟数据库文件的内容一致。才能够根据相关的规则,防止数据脏读、错读的发生。而应用软件所涉及的数据缓存,由于跟数据库缓存不是一码事情,所以,应用软件的数据缓存虽然可以提高数据的查询效率,但是,却打破了数据一致性的要求,有时候会发生脏读、错读等情况的发生。所以,有时候,在应用软件上有专门一个功能,用来在必要的时候清除数据缓存。不过,这个数据缓存的清除,也只是清除本机上的数据缓存,或者说,只是清除这个应用程序的数据缓存,而不会清除数据库的数据缓存。
二是绝大部分SQL语句都是按照这个处理过程处理的。我们DBA或者基于Oracle数据库的开发人员了解这些语句的处理过程,对于我们进行涉及到SQL语句的开发与调试,是非常有帮助的。有时候,掌握这些处理原则,可以减少我们排错的时间。特别要注意,数据库是把数据查询权限的审查放在语法语义的后面进行检查的。所以,有时会若光用数据库的权限控制原则,可能还不能满足应用软件权限控制的需要。此时,就需要应用软件的前台设置,实现权限管理的要求。而且,有时应用数据库的权限管理,也有点显得繁琐,会增加服务器处理的工作量。因此,对于记录、字段等的查询权限控制,大部分程序涉及人员喜欢在应用程序中实现,而不是在数据库上实现。
Oracle SQL语句执行顺序
(8)SELECT (9) DISTINCT (11) <select_list>
(1) FROM <left_table>
(3) <join_type> JOIN <right_table>
(2) ON <join_condition>
(4) WHERE <where_condition>
(5) GROUP BY <group_by_list>
(6) WITH {CUBE | ROLLUP}
(7) HAVING <having_condition>
(10) ORDER BY <order_by_list>
1)FROM:对FROM子句中的表执行笛卡尔积(交叉联接),生成虚拟表VT1。
2)ON:对VT1应用ON筛选器,只有那些使为真才被插入到TV2。
3)OUTER (JOIN):如果指定了OUTER JOIN(相对于CROSS JOIN或INNER JOIN),保留表中未找到匹配的行将作为外部行添加到VT2,生成TV3。如果FROM子句包含两个以上的表,则对上一个联接生成的结果表和下一个表重复执行步骤1到步骤3,直到处理完所有的表位置。
4)WHERE:对TV3应用WHERE筛选器,只有使为true的行才插入TV4。
5)GROUP BY:按GROUP BY子句中的列列表对TV4中的行进行分组,生成TV5。
6)CUTE|ROLLUP:把超组插入VT5,生成VT6。
7)HAVING:对VT6应用HAVING筛选器,只有使为true的组插入到VT7。
8)SELECT:处理SELECT列表,产生VT8。
9)DISTINCT:将重复的行从VT8中删除,产品VT9。
10)ORDER BY:将VT9中的行按ORDER BY子句中的列列表顺序,生成一个游标(VC10),生成表TV11,并返回给调用者。
以上每个步骤都会产生一个虚拟表,该虚拟表被用作下一个步骤的输入。这些虚拟表对调用者(客户端应用程序或者外部查询)不可用。只有最后一步生成的表才会会给调用者。如果没有在查询中指定某一个子句,将跳过相应的步骤。
⑹ sql和客户端是什么关系,怎么执行的顺序
这问题问的,感觉你是不明白客户端的概念吧。
首先要明白,数据库(比如oracle或者mysql)是一个服务,提供数据存储和数据查询的服务,把他当成服务端,而有了服务端就有对应的客户端,客户端是为了让用户可以访问服务端而运行的一个程序,可以是数据库提供的标准服务端,也可以说第三方提供的服务端软件,比如oracle一般用plsqldeveleper,mysql的客户端就太多了,我一直在用HeidiSQL。
客户端可以执行各种sql语句,对数据库服务进行操作,而数据库服务端对客户端发起的各种sql命令进行解析、执行,然后返回结果,比如在客户端执行一个简单的查询当前时间的sql语句:
select now() from al
这样数据库服务端就会返回执行的结果。
至于执行顺序,你的客户端发起的sql执行顺序是什么样的,数据库服务端就按什么顺序给你返回结果。
⑺ oracle数据库语句执行顺序
先执行
(select
*
from
deptinfo)
因为
完成要用的结果作为一张表临时表,然后又需要用
这个临时表中的rownum
,最外成select
*
from
(select
a.*,rownum
rn
from
(select
*
from
deptinfo)
a
where
rownum<=10)
where
rn>=1
用到了第二成select
的字段
rownum
rn
所以先执行(select
*
from
deptinfo)
再执行(select
a.*,rownum
rn
from
(select
*
from
deptinfo)
a
where
rownum<=10)
最后
select
*
from
(select
a.*,rownum
rn
from
(select
*
from
deptinfo)
a
where
rownum<=10)
where
rn>=1
⑻ 请教数据库原理中的执行顺序问题
数据库原理中的关系代数讲了三个关系:
1,投影
2,选择
3,集合关系(其中集合关系中又包含了,并、差、交三种关系)
这三个的执行顺序是?
例如表:课程(课程名,课程号,学分,开课时间,先修课程)
π<课程号>(课程)-π<先修课程>(课程)
望采纳,谢谢!
⑼ sql 数据库执行次序的问题
CREATE DATABASE
创建一个新数据库及存储该数据库的文件,或从先前创建的数据库的文件中附加数据库。
说明 有关与 DISK INIT 向后兼容性的更多信息,请参见"Microsoft® SQL Server™ 向后兼容性详细信息"中的设备(级别 3)。
语法
CREATE DATABASE database_name
[ ON
[ < filespec > [ ,...n ] ]
[ , < filegroup > [ ,...n ] ]
]
[ LOG ON { < filespec > [ ,...n ] } ]
[ COLLATE collation_name ]
[ FOR LOAD | FOR ATTACH ]
< filespec > ::=
[ PRIMARY ]
( [ NAME = logical_file_name , ]
FILENAME = 'os_file_name'
[ , SIZE = size ]
[ , MAXSIZE = { max_size | UNLIMITED } ]
[ , FILEGROWTH = growth_increment ] ) [ ,...n ]
< filegroup > ::=
FILEGROUP filegroup_name < filespec > [ ,...n ]
参数
database_name
新数据库的名称。数据库名称在服务器中必须唯一,并且符合标识符的规则。database_name 最多可以包含 128 个字符,除非没有为日志指定逻辑名。如果没有指定日志文件的逻辑名,则 Microsoft® SQL Server™ 会通过向 database_name 追加后缀来生成逻辑名。该操作要求 database_name 在 123 个字符之内,以便生成的日志文件逻辑名少于 128 个字符。
ON
指定显式定义用来存储数据库数据部分的磁盘文件(数据文件)。该关键字后跟以逗号分隔的 <filespec> 项列表,<filespec> 项用以定义主文件组的数据文件。主文件组的文件列表后可跟以逗号分隔的 <filegroup> 项列表(可选),<filegroup> 项用以定义用户文件组及其文件。
n
占位符,表示可以为新数据库指定多个文件。
LOG ON
指定显式定义用来存储数据库日志的磁盘文件(日志文件)。该关键字后跟以逗号分隔的 <filespec> 项列表,<filespec> 项用以定义日志文件。如果没有指定 LOG ON,将自动创建一个日志文件,该文件使用系统生成的名称,大小为数据库中所有数据文件总大小的 25%。
FOR LOAD
支持该子句是为了与早期版本的 Microsoft SQL Server 兼容。数据库在打开 dbo use only 数据库选项的情况下创建,并且将其状态设置为正在装载。SQL Server 7.0 版中不需要该子句,因为 RESTORE 语句可以作为还原操作的一部分重新创建数据库。
FOR ATTACH
指定从现有的一组操作系统文件中附加数据库。必须有指定第一个主文件的 <filespec> 条目。至于其它 <filespec> 条目,只需要与第一次创建数据库或上一次附加数据库时路径不同的文件的那些条目。必须为这些文件指定 <filespec> 条目。附加的数据库必须使用与 SQL Server 相同的代码页和排序次序创建。应使用 sp_attach_db 系统存储过程,而不要直接使用 CREATE DATABASE FOR ATTACH。只有必须指定 16 个以上的 <filespec> 项目时,才需要使用 CREATE DATABASE FOR ATTACH。
如果将数据库附加到的服务器不是该数据库从中分离的服务器,并且启用了分离的数据库以进行复制,则应该运行 sp_removedbreplication 从数据库删除复制。
collation_name
指定数据库的默认排序规则。排序规则名称既可以是 Windows 排序规则名称,也可以是 SQL 排序规则名称。如果没有指定排序规则,则将 SQL Server 实例的默认排序规则指派为数据库的排序规则。
有关 Windows 和 SQL 排序规则名称的更多信息,请参见 COLLATE。
PRIMARY
指定关联的 <filespec> 列表定义主文件。主文件组包含所有数据库系统表。还包含所有未指派给用户文件组的对象。主文件组的第一个 <filespec> 条目成为主文件,该文件包含数据库的逻辑起点及其系统表。一个数据库只能有一个主文件。如果没有指定 PRIMARY,那么 CREATE DATABASE 语句中列出的第一个文件将成为主文件。
NAME
为由 <filespec> 定义的文件指定逻辑名称。如果指定了 FOR ATTACH,则不需要指定 NAME 参数。
logical_file_name
用来在创建数据库后执行的 Transact-SQL 语句中引用文件的名称。logical_file_name 在数据库中必须唯一,并且符合标识符的规则。该名称可以是字符或 Unicode 常量,也可以是常规标识符或定界标识符。
FILENAME
为 <filespec> 定义的文件指定操作系统文件名。
'os_file_name'
操作系统创建 <filespec> 定义的物理文件时使用的路径名和文件名。os_file_name 中的路径必须指定 SQL Server 实例上的目录。os_file_name 不能指定压缩文件系统中的目录。
如果文件在原始分区上创建,则 os_file_name 必须只指定现有原始分区的驱动器字母。每个原始分区上只能创建一个文件。原始分区上的文件不会自动增长;因此,os_file_name 指定原始分区时,不需要指定 MAXSIZE 和 FILEGROWTH 参数。
SIZE
指定 <filespec> 中定义的文件的大小。如果主文件的 <filespec> 中没有提供 SIZE 参数,那么 SQL Server 将使用 model 数据库中的主文件大小。如果次要文件或日志文件的 <filespec> 中没有指定 SIZE 参数,则 SQL Server 将使文件大小为 1 MB。
size
<filespec> 中定义的文件的初始大小。可以使用千字节 (KB)、兆字节 (MB)、千兆字节 (GB) 或兆兆字节 (TB) 后缀。默认值为 MB。指定一个整数,不要包含小数位。size 的最小值为 512 KB。如果没有指定 size,则默认值为 1 MB。为主文件指定的大小至少应与 model 数据库的主文件大小相同。
MAXSIZE
指定 <filespec> 中定义的文件可以增长到的最大大小。
max_size
<filespec> 中定义的文件可以增长到的最大大小。可以使用千字节 (KB)、兆字节 (MB)、千兆字节 (GB) 或兆兆字节 (TB) 后缀。默认值为 MB。指定一个整数,不要包含小数位。如果没有指定 max_size,那么文件将增长到磁盘变满为止。
说明 在磁盘即将变满时,Microsoft Windows NT® S/B 系统日志会警告 SQL Server 系统管理员。
UNLIMITED
指定 <filespec> 中定义的文件将增长到磁盘变满为止。
FILEGROWTH
指定 <filespec> 中定义的文件的增长增量。文件的 FILEGROWTH 设置不能超过 MAXSIZE 设置。
growth_increment
每次需要新的空间时为文件添加的空间大小。指定一个整数,不要包含小数位。0 值表示不增长。该值可以 MB、KB、GB、TB 或百分比 (%) 为单位指定。如果未在数量后面指定 MB、KB 或 %,则默认值为 MB。如果指定 %,则增量大小为发生增长时文件大小的指定百分比。如果没有指定 FILEGROWTH,则默认值为 10%,最小值为 64 KB。指定的大小舍入为最接近的 64 KB 的倍数。
参考资料:SQL联机丛书