当前位置:首页 » 数据仓库 » 计算法数据库设计
扩展阅读
webinf下怎么引入js 2023-08-31 21:54:13
堡垒机怎么打开web 2023-08-31 21:54:11

计算法数据库设计

发布时间: 2022-05-05 04:06:55

⑴ 大型Oracle数据库如何设计

超大型系统的特点为: 1、处理的用户数一般都超过百万,有的还超过千万,数据库的数据量一般超过1TB; 2、系统必须提供实时响应功能,系统需不停机运行,要求系统有很高的可用性及可扩展性。 为了能达到以上要求,除了需要性能优越的计算机和海量存储设备外,还需要先进的数据库结构设计和优化的应用系统。 一般的超大型系统采用双机或多机集群系统。下面以数据库采用Oracle 8.0.6并行服务器为例来谈谈超大型数据库设计方法: 确定系统的ORACLE并行服务器应用划分策略 数据库物理结构的设计 系统硬盘的划分及分配 备份及恢复策略的考虑 二、Oracle并行服务器应用划分策略 Oracle并行服务器允许不同节点上的多个INSTANCE实例同时访问一个数据库,以提高系统的可用性、可扩展性及性能。Oracle并行服务器中的每个INSTANCE实例都可将共享数据库中的表或索引的数据块读入本地的缓冲区中,这就意味着一个数据块可存在于多个INSTANCE实例的SGA区中。那么保持这些缓冲区的数据的一致性就很重要。Oracle使用 PCM( Parallel Cache Management)锁维护缓冲区的一致性,Oracle同时通过I DLM(集成的分布式锁管理器)实现PCM 锁,并通过专门的LCK进程实现INSTANCE实例间的数据一致。 考虑这种情况:INSTANCE1对BLOCK X块修改,这时INSTANCE2对BLOCK X块也需要修改。Oracle并行服务器利用PCM锁机制,使BLOCK X从INSTANCE 1的SGA区写入数据库数据文件中,又从数据文件中把BLOCK X块读入INSTANCE2的SGA区中。发生这种情况即为一个PING。PING使原来1个MEMORY IO可以完成的工作变成2个DISK IO和1个 MEMORY IO才能够完成,如果系统中有过多的PING,将大大降低系统的性能。 Oracle并行服务器中的每个PCM锁可管理多个数据块。PCM锁管理的数据块的个数与分配给一个数据文件的PCM锁的个数及该数据文件的大小有关。当INSTANCE 1和INSTANCE 2要操作不同的BLOCK,如果这些BLOCK 是由同一个PCM锁管理的,仍然会发生PING。这些PING称为FALSE PING。当多个INSTANCE访问相同的BLOCK而产生的PING是TRUE PING。 合理的应用划分使不同的应用访问不同的数据,可避免或减少TRUE PING;通过给FALSE PING较多的数据文件分配更多的PCM锁可减少 FALSE PING的次数,增加PCM锁不能减少TRUE PING。 所以,Oracle并行服务器设计的目的是使系统交易处理合理的分布在INSTANCE实例间,以最小化PING,同时合理的分配PCM锁,减少FALSE PING。设计的关键是找出可能产生的冲突,从而决定应用划分的策略。应用划分有如下四种方法: 1、根据功能模块划分,不同的节点运行不同的应用 2、根据用户划分,不同类型的用户运行在不同的节点上 3、根据数据划分,不同的节点访问不同的数据或索引 4、根据时间划分,不同的应用在不同的时间段运行 应用划分的两个重要原则是使PING最小化及使各节点的负载大致均衡。 三、数据库物理结构的设计 数据库物理结构设计包括确定表及索引的物理存储参数,确定及分配数据库表空间,确定初始的回滚段,临时表空间,redo log files等,并确定主要的初始化参数。物理设计的目的是提高系统的性能。整个物理设计的参数可以根据实际运行情况作调整。 表及索引数据量估算及物理存储参数的设置 表及索引的存储容量估算是根据其记录长度及估算的最大记录数确定的。在容量计算中考虑了数据块的头开销及记录和字段的头开销等等。

⑵ 数据库设计的主要步骤

我就以一个学校的班级录给楼主做个说明吧比如你要做一个学校的网站里面有什么学生,班级 每个学生有一个账号那么你就需要一个张userinfo表。这表里面需要什么呢?最简单的只需要loginID和pwd就可以了。但是除了登陆还不够。假设我要知道每个学生的名字,那么我就又需要一个字段,username这样在一个用户登陆后我们就能看到他的名字,对于一个班级系统来说。你可能需要知道这位用户是老师还是学生,这时又需要一个字段userType。对于一个校友录来说。不同的人应该是有不同的权限,这时你就可以加以个userLevel来记录用户级别(这里举个简单的,实际上大型系统很少通过一个字段定义权限,级别) 如果需要更安全的,你也需要用户的最后登陆时间,等等,这时又需要一个lastLoginTime 这样一张初步的userinfo表就完成 作为班级录,肯定需要知道用户是否加入班级。这时我们是否应该再给userinfo加个字段userClass.记录用户所在的班级ID呢?答案是否定的,首先你要考虑到用户和班级是一对多的关系。因为一个学生可能在很多班级呆过的。所以这时最好的做法是新建一张表。这张表记录用户ID和班级ID。这样就可以关联用户和班级的信息 这是一个简单的例子。。所以你从数据库设计时应从你的系统实际需要去分析。分析你的系统需要什么。一点点。从最小的开始分析。慢慢从简单到复杂,要知道很少有人是能一步到位的。。写的不是很完善,希望能帮到你。

⑶ 数据库如何设计

数据库设计的基本步骤

按照规范设计的方法,考虑数据库及其应用系统开发全过程,将数据库设计分为以下6个阶段

1.需求分析

2.概念结构设计

3.逻辑结构设计

4.物理结构设计

5.数据库实施

6.数据库的运行和维护


数据库设计通常分为6个阶段1分析用户的需求,包括数据、功能和性能需求;2概念结构设计:主要采用E-R模型进行设计,包括画E-R图;3逻辑结构设计:通过将转换成表,实现从E-R模型到关系模型的转换;4:主要是为所设计的数据库选择合适的和存取路径;5数据库的实施:包括编程、测试和试运行;6数据库运行与维护:系统的运行与数据库的日常维护。),主要讨论其中的第3个阶段,即逻辑设计。



在数据库设计过程中,需求分析和概念设计可以独立于任何数据库管理系统进行,逻辑设计和物理设计与选用的DAMS密切相关。

1.需求分析阶段(常用自顶向下)

进行数据库设计首先必须准确了解和分析用户需求(包括数据与处理)。需求分析是整个设计过程的基础,也是最困难,最耗时的一步。需求分析是否做得充分和准确,决定了在其上构建数据库大厦的速度与质量。需求分析做的不好,会导致整个数据库设计返工重做。

需求分析的任务,是通过详细调查现实世界要处理的对象,充分了解原系统工作概况,明确用户的各种需求,然后在此基础上确定新的系统功能,新系统还得充分考虑今后可能的扩充与改变,不仅仅能够按当前应用需求来设计。

调查的重点是,数据与处理。达到信息要求,处理要求,安全性和完整性要求。

分析方法常用SA(Structured Analysis) 结构化分析方法,SA方法从最上层的系统组织结构入手,采用自顶向下,逐层分解的方式分析系统。

数据流图表达了数据和处理过程的关系,在SA方法中,处理过程的处理逻辑常常借助判定表或判定树来描述。在处理功能逐步分解的同事,系统中的数据也逐级分解,形成若干层次的数据流图。系统中的数据则借助数据字典(data dictionary,DD)来描述。数据字典是系统中各类数据描述的集合,数据字典通常包括数据项,数据结构,数据流,数据存储,和处理过程5个阶段。

2.概念结构设计阶段(常用自底向上)

概念结构设计是整个数据库设计的关键,它通过对用户需求进行综合,归纳与抽象,形成了一个独立于具体DBMS的概念模型。

设计概念结构通常有四类方法:

  • 自顶向下。即首先定义全局概念结构的框架,再逐步细化。

  • 自底向上。即首先定义各局部应用的概念结构,然后再将他们集成起来,得到全局概念结构。

  • 逐步扩张。首先定义最重要的核心概念结构,然后向外扩张,以滚雪球的方式逐步生成其他的概念结构,直至总体概念结构。

  • 混合策略。即自顶向下和自底向上相结合。

  • 3.逻辑结构设计阶段(E-R图)

    逻辑结构设计是将概念结构转换为某个DBMS所支持的数据模型,并将进行优化。

    在这阶段,E-R图显得异常重要。大家要学会各个实体定义的属性来画出总体的E-R图。

    各分E-R图之间的冲突主要有三类:属性冲突,命名冲突,和结构冲突。

    E-R图向关系模型的转换,要解决的问题是如何将实体性和实体间的联系转换为关系模式,如何确定这些关系模式的属性和码。

    4.物理设计阶段

    物理设计是为逻辑数据结构模型选取一个最适合应用环境的物理结构(包括存储结构和存取方法)。

    首先要对运行的事务详细分析,获得选择物理数据库设计所需要的参数,其次,要充分了解所用的RDBMS的内部特征,特别是系统提供的存取方法和存储结构。

    常用的存取方法有三类:1.索引方法,目前主要是B+树索引方法。2.聚簇方法(Clustering)方法。3.是HASH方法。

    5.数据库实施阶段

    数据库实施阶段,设计人员运营DBMS提供的数据库语言(如sql)及其宿主语言,根据逻辑设计和物理设计的结果建立数据库,编制和调试应用程序,组织数据入库,并进行试运行。

    6.数据库运行和维护阶段

    数据库应用系统经过试运行后,即可投入正式运行,在数据库系统运行过程中必须不断地对其进行评价,调整,修改。

    数据库设计5步骤
    Five Steps to design the Database

    1.确定entities及relationships

    a)明确宏观行为。数据库是用来做什么的?比如,管理雇员的信息。

    b)确定entities。对于一系列的行为,确定所管理信息所涉及到的主题范围。这将变成table。比如,雇用员工,指定具体部门,确定技能等级。

    c)确定relationships。分析行为,确定tables之间有何种关系。比如,部门与雇员之间存在一种关系。给这种关系命名。

    d)细化行为。从宏观行为开始,现在仔细检查这些行为,看有哪些行为能转为微观行为。比如,管理雇员的信息可细化为:

    · 增加新员工

    · 修改存在员工信息

    · 删除调走的员工

    e)确定业务规则。分析业务规则,确定你要采取哪种。比如,可能有这样一种规则,一个部门有且只能有一个部门领导。这些规则将被设计到数据库的结构中。

    ====================================================================
    范例:
    ACME是一个小公司,在5个地方都设有办事处。当前,有75名员工。公司准备快速扩大规模,划分了9个部门,每个部门都有其领导。
    为有助于寻求新的员工,人事部门规划了68种技能,为将来人事管理作好准备。员工被招进时,每一种技能的专业等级都被确定。


    定义宏观行为
    一些ACME公司的宏观行为包括:
    ● 招聘员工
    ● 解雇员工
    ● 管理员工个人信息
    ● 管理公司所需的技能信息
    ● 管理哪位员工有哪些技能
    ● 管理部门信息
    ● 管理办事处信息
    确定entities及relationships
    我们可以确定要存放信息的主题领域(表)及其关系,并创建一个基于宏观行为及描述的图表。
    我们用方框来代表table,用菱形代表relationship。我们可以确定哪些relationship是一对多,一对一,及多对多。
    这是一个E-R草图,以后会细化。


    细化宏观行为
    以下微观行为基于上面宏观行为而形成:
    ● 增加或删除一个员工
    ● 增加或删除一个办事处
    ● 列出一个部门中的所有员工
    ● 增加一项技能
    ● 增加一个员工的一项技能
    ● 确定一个员工的技能
    ● 确定一个员工每项技能的等级
    ● 确定所有拥有相同等级的某项技能的员工
    ● 修改员工的技能等级

    这些微观行为可用来确定需要哪些table或relationship。

    确定业务规则
    业务规则常用于确定一对多,一对一,及多对多关系。
    相关的业务规则可能有:
    ● 现在有5个办事处;最多允许扩展到10个。
    ● 员工可以改变部门或办事处
    ● 每个部门有一个部门领导
    ● 每个办事处至多有3个电话号码
    ● 每个电话号码有一个或多个扩展
    ● 员工被招进时,每一种技能的专业等级都被确定。
    ● 每位员工拥有3到20个技能
    ● 某位员工可能被安排在一个办事处,也可能不安排办事处。

    2.确定所需数据

    要确定所需数据:

    a)确定支持数据

    b)列出所要跟踪的所有数据。描述table(主题)的数据回答这些问题:谁,什么,哪里,何时,以及为什么

    c)为每个table建立数据

    d)列出每个table目前看起来合适的可用数据

    e)为每个relationship设置数据

    f)如果有,为每个relationship列出适用的数据

    确定支持数据

    你所确定的支持数据将会成为table中的字段名。比如,下列数据将适用于表Employee,表Skill,表Expert In。

    Employee

  • Skill

  • Expert In

  • ID

  • ID

  • Level

  • Last Name

  • Name

  • Date acquired

  • First Name

  • Description

  • Department

  • Office

  • Address


  • 如果将这些数据画成图表,就像:


  • 需要注意:

  • ● 在确定支持数据时,请一定要参考你之前所确定的宏观行为,以清楚如何利用这些数据。

  • ● 比如,如果你知道你需要所有员工的按姓氏排序的列表,确保你将支持数据分解为名字与姓氏,这比简单地提供一个名字会更好。

  • ● 你所选择的名称最好保持一致性。这将更易于维护数据库,也更易于阅读所输出的报表。

  • ● 比如,如果你在某些地方用了一个缩写名称Emp_status,你就不应该在另外一个地方使用全名(Empolyee_ID)。相反,这些名称应当是Emp_status及Emp_id。

  • ● 数据是否与正确的table相对应无关紧要,你可以根据自己的喜好来定。在下节中,你会通过测试对此作出判断。
  • 3.标准化数据

    标准化是你用以消除数据冗余及确保数据与正确的table或relationship相关联的一系列测试。共有5个测试。本节中,我们将讨论经常使用的3个。
    关于标准化测试的更多信息,请参考有关数据库设计的书籍。

    标准化格式
    标准化格式是标准化数据的常用测试方式。你的数据通过第一遍测试后,就被认为是达到第一标准化格式;通过第二遍测试,达到第二标准化格式;通过第三遍测试,达到第三标准化格式。

    如何标准格式:
    1. 列出数据
    2. 为每个表确定至少一个键。每个表必须有一个主键。
    3. 确定relationships的键。relationships的键是连接两个表的键。
    4. 检查支持数据列表中的计算数据。计算数据通常不保存在数据库中。
    5. 将数据放在第一遍的标准化格式中:
    6. 从tables及relationships除去重复的数据。
    7. 以你所除去数据创建一个或更多的tables及relationships。
    8. 将数据放在第二遍的标准化格式中:
    9. 用多于一个以上的键确定tables及relationships。
    10. 除去只依赖于键一部分的数据。
    11. 以你所除去数据创建一个或更多的tables及relationships。
    12. 将数据放在第三遍的标准化格式中:
    13. 除去那些依赖于tables或relationships中其他数据,并且不是键的数据。
    14. 以你所除去数据创建一个或更多的tables及relationships。

    数据与键
    在你开始标准化(测试数据)前,简单地列出数据,并为每张表确定一个唯一的主键。这个键可以由一个字段或几个字段(连锁键)组成。

    主键是一张表中唯一区分各行的一组字段。Employee表的主键是Employee ID字段。Works In relationship中的主键包括Office Code及Employee ID字段。给数据库中每一relationship给出一个键,从其所连接的每一个table中抽取其键产生。

    RelationShip

  • Key

  • Office

  • *Office code

  • Office address

  • Phone number

  • Works in

  • *Office code

  • *Employee ID

  • Department

  • *Department ID

  • Department name

  • Heads

  • *Department ID

  • *Employee ID

  • Assoc with

  • *Department ID

  • *EmployeeID

  • Skill

  • *Skill ID

  • Skill name

  • Skill description

  • Expert In

  • *Skill ID

  • *Employee ID

  • Skill level

  • Date acquired

  • Employee

  • *Employee ID

  • Last Name

  • First Name

  • Social security number

  • Employee street

  • Employee city

  • Employee state

  • Employee phone

  • Date of birth


  • 将数据放在第一遍的标准化格式中
    ● 除去重复的组
    ● 要测试第一遍标准化格式,除去重复的组,并将它们放进他们各自的一张表中。
    ● 在下面的例子中,Phone Number可以重复。(一个工作人员可以有多于一个的电话号码。)将重复的组除去,创建一个名为Telephone的新表。在Telephone与Office创建一个名为Associated With的relationship。

    将数据放在第二遍的标准化格式中
    ● 除去那些不依赖于整个键的数据。
    ● 只看那些有一个以上键的tables及relationships。要测试第二遍标准化格式,除去那些不依赖于整个键的任何数据(组成键的所有字段)。
    ● 在此例中,原Employee表有一个由两个字段组成的键。一些数据不依赖于整个键;例如,department name只依赖于其中一个键(Department ID)。因此,Department ID,其他Employee数据并不依赖于它,应移至一个名为Department的新表中,并为Employee及Department建立一个名为Assigned To的relationship。


    将数据放在第三遍的标准化格式中
    ● 除去那些不直接依赖于键的数据。
    ● 要测试第三遍标准化格式,除去那些不是直接依赖于键,而是依赖于其他数据的数据。
    ● 在此例中,原Employee表有依赖于其键(Employee ID)的数据。然而,office location及office phone依赖于其他字段,即Office Code。它们不直接依赖于Employee ID键。将这组数据,包括Office Code,移至一个名为Office的新表中,并为Employee及Office建立一个名为Works In的relationship。

    4.考量关系

    当你完成标准化进程后,你的设计已经差不多完成了。你所需要做的,就是考量关系。

    考量带有数据的关系
    你的一些relationship可能集含有数据。这经常发生在多对多的关系中。

    遇到这种情况,将relationship转化为一个table。relationship的键依旧成为table中的键。

    考量没有数据的关系
    要实现没有数据的关系,你需要定义外部键。外部键是含有另外一个表中主键的一个或多个字段。外部键使你能同时连接多表数据。

    有一些基本原则能帮助你决定将这些键放在哪里:

    一对多在一对多关系中,“一”中的主键放在“多”中。此例中,外部键放在Employee表中。

    一对一在一对一关系中,外部键可以放进任一表中。如果必须要放在某一边,而不能放在另一边,应该放在必须的一边。此例中,外部键(Head ID)在Department表中,因为这是必需的。

    多对多在多对多关系中,用两个外部键来创建一个新表。已存的旧表通过这个新表来发生联系。

    5.检验设计

    在你完成设计之前,你需要确保它满足你的需要。检查你在一开始时所定义的行为,确认你可以获取行为所需要的所有数据:
    ● 你能找到一个路径来等到你所需要的所有信息吗?
    ● 设计是否满足了你的需要?
    ● 所有需要的数据都可用吗?
    如果你对以上的问题都回答是,你已经差不多完成设计了。

    最终设计
    最终设计看起来就像这样:

    设计数据库的表属性
    数据库设计需要确定有什么表,每张表有什么字段。此节讨论如何指定各字段的属性。

    对于每一字段,你必须决定字段名,数据类型及大小,是否允许NULL值,以及你是否希望数据库限制字段中所允许的值。

    选择字段名
    字段名可以是字母、数字或符号的任意组合。然而,如果字段名包括了字母、数字或下划线、或并不以字母打头,或者它是个关键字(详见关键字表),那么当使用字段名称时,必须用双引号括起来。

    为字段选择数据类型
    SQL Anywhere支持的数据类型包括:
    整数(int, integer, smallint)
    小数(decimal, numeric)
    浮点数(float, double)
    字符型(char, varchar, long varchar)
    二进制数据类型(binary, long binary)
    日期/时间类型(date, time, timestamp)
    用户自定义类型

    关于数据类型的内容,请参见“SQL Anywhere数据类型”一节。字段的数据类型影响字段的最大尺寸。例如,如果你指定SMALLINT,此字段可以容纳32,767的整数。INTEGER可以容纳2,147,483,647的整数。对CHAR来讲,字段的最大值必须指定。

    长二进制的数据类型可用来在数据库中保存例如图像(如位图)或者文字编辑文档。这些类型的信息通常被称为二进制大型对象,或者BLOBS。

    关于每一数据类型的完整描述,见“SQL Anywhere数据类型”。

⑷ 关于mysql计算公式的数据库设计问题

那么麻烦干什么,这个教程写的也太不伦不类了;
你直接打开查询分析器,把你的txt文本中的语句复制,粘贴到你的查询分析器里,执行,
就把表创建好了,然后输入select
*
from
mytable即可查看结果。

⑸ 如何设计数据库树状数据结构

然后我觉得首先不要太关注里面数据结构用C语言的实现方法。第一步,先把书看一遍,省略里面C语言的具体描述,也就是先不看这些。也不要看那些计算公式,只需要弄清楚里面的概念,比如说线性表,首先只需要弄清楚什么是线性表,最好能给自己列个大纲,比如,线性结构-树状结构-图状结构,然后在细分,把所有的概念全部看懂。第二步,看第二遍书的时候,在去仔细看那些结构的定义语句,以及每种结构有哪些基本算法,以及是怎样用C语言来实现的。第三步,最后再去看一些公式,比如时间复杂度,等等。当然,这个是需要有高等数学的根基的。第四步,尽量用自己掌握的一些数据结构来用C语言描述,找些实例来做做,也就是实践一下。最后如果还有兴趣的话可以再深一层的去看看一些软件工程里的一些基本算法。相信你会学好数据结构的~

⑹ 系统数据库和模型库设计

(一)系统数据库类型

数据库是整个农用地分等信息系统的基础,是系统开发设计要考虑的重中之重。在数据形式上,系统数据库包括两大块:一是空间数据库,二是属性数据库。目前的空间数据技术已从以MapInfo为代表的混合型数据库(空间数据库+关系型数据库)发展到以ArcInfo的Coverage为代表的拓展型数据库。鉴于农用地分等属性数据量庞大,为减少数据冗余,提高数据检索的速度,本研究采用空间数据和属性数据分开管理的模式,依据关键字段进行绑定,进行科学索引,从而实现空间数据和属性动态链接和高效整合。

1.空间数据库

江苏省农用地分等信息系统空间数据库内容包括以下方面:

(1)土地利用现状图层:全省13个省辖市以1996年土地利用现状图为基础,经变更调绘形成以2000年为基准年的土地利用现状图,以现行的土地分类标准按八大类分类进行信息提取并分层存储,系统分别存储为耕地、林地、水域、未利用地、建设用地等图层。

(2)全省土壤类型图层:以土属为分类单位,比例尺为1:20万。

(3)1996年和2000年全省行政区划图层:在行政区划中精确到乡镇级别,分别提取存储了市名图层、县(区)名图层、乡(镇)名图层、全省行政界线图层、市级行政界线图层、县(区)级行政界线图层、乡(镇)级行政界线图层。

(4)评价单元图层:通过GIS空间叠加功能,利用土地利用现状图、行政区划图和土壤类型图叠加产生的评价单元图层,建立分等评价单元数据库。

2.属性数据库

江苏省农用地分等信息系统属性数据库内容包括以下方面:

(1)土壤属性数据:以全国第二次土壤普查为基础,结合全省土壤监测样点数据,建立土壤质量状况数据库,最小单位为土种,包括pH值、有机质含量、表层土壤质地、耕层厚度、障碍层深度、水土侵蚀程度、盐渍化程度数据。

(2)农田水利环境数据:建立了1996~2000年间各乡镇农田水利环境基础数据库,包括灌溉保证率、排水条件数据。

(3)土地利用现状数据:建立了全省13个省辖市的以1996年土地利用现状图为基础,经变更调绘形成的以2000年为基准年的土地利用现状数据库,区分耕地中的详细用地类型差异,标示水田、旱地、荒草地等纳入本次评价范围的用地内容。

(4)全省地形地貌数据库。

(5)农业区划数据:输入了江苏省农业区划数据,把江苏全省划分为6大区划,以乡镇为最小级别,建立全省乡镇的区划归属数据库。

(6)农业耕作制度数据:建立了全省各市、县、乡镇的农业耕作制度数据库,包括指定作物水稻和小麦的播种空间分布状况数据库。

(7)光温生产潜力数据:建立了全省各市、县指定作物水稻和小麦的光温生产潜力和气候生产潜力数据库。

(8)农业投入-产出数据:全省13个省辖市以乡镇为单位,建立了1996~2000年农业生产投入-产出数据库。

(9)作物产量数据:全省13个省辖市以乡镇为单位,建立了1996~2000年的指定作物水稻和小麦的产量数据库。

(10)土地利用详查分类面积数据:全省13个省辖市以乡镇为单位,建立了2000年土地利用详查分类面积数据库。

从数据格式上分,数据库又可分为:①图件数据库:指空间数据以及绑定在空间数据上的相关属性数据,本次江苏省农用地分等建立了以分等单元为记录的属性数据库,并通过关键字段与空间数据关联;②分类统计数据库:包括全省13个省辖市以乡镇为单位的1996~2000年指定作物产量统计数据和全省13个省辖市以乡镇为单位的2000年土地利用详查分类面积统计数据。

(二)系统数据库管理模式

为减少数据存储冗余,同时提高索引速度,江苏省农用地分等信息系统数据文件采用普遍的目录树形式进行管理,按省-市-县行政体系分别存储相关数据。全省建立13个省辖市分目录,分目录下按照各自所含的县(区)建立子目录。根据目前行政管理体系现状,基础资料大多来源于县级行政单位,因此采用县(区)为基本行政单位较为合理,在保证资料来源的同时,也利于资料的分类归档存储。其相对应的空间图件数据也按精度要求分割到县级行政单位,既能减少系统调用数据的吞吐量,同时也满足了系统的精度需求。空间数据、属性数据、文本数据按照各自所属的行政级别归类存储,同时设立数据文件管理器进行目录文件的索引管理,见图3-86。

图3-86 江苏省农用地分等信息系统数据文件管理模式图

(三)系统数据库结构

数据库的结构设计决定了数据之间的调用及接口关系,清晰的逻辑调用关系和统一的数据接口格式有利于数据的组织、管理、调用。

1.空间数据库

江苏省农用地分等信息系统空间数据库以矢量图件的形式存在,以分图层的方式管理,包括了全省行政界线、土壤类型、按八大类分别提取的土地利用现状、分等单元等图层。其中,分等单元图层作为农用地分等的基础,考虑到图层本身信息量大,可能影响到系统运行效率,因此所在图层的属性表中只保留了ID字段,通过ID字段与外部属性库绑定,实现分等单元与外部属性库一一对应关系。ID字段是本图层的特征代码,表征了单元的唯一性,能体现出单元的图上位置和行政归属。《农用地分等定级规程》(国土资源大调查专用)和《中华人民共和国行政区划代码》(GB/T 2260-1999)为本研究分等单元代码的编码依据;本研究有1996年和2000年两套行政区划工作底图,为此分等单元特征代码共设14位,依次为江苏省代码(2位)-市代码(2位)-2000年县或区代码(2位)-2000年乡镇代码(2位)-1996年县或区代码(2位)-1996年乡镇代码(2位)-分等单元号(2位)。其中,省、市、县(区)的行政代码按国家统一代码,乡镇级代码在县(区)范围内根据划分分等单元的需要依次编码;分等单元编号的原则是不破乡镇界,即单元号是在同一乡镇内部自行编码。示例:32011501210101,指1996年江苏(32)南京(01)市江宁县(21)由于2000年行政调整变更为南京(01)的江宁区(15)。按行政体系分级编码的优点是有利于空间查询和国土资源管理部门根据工作需求按行政级别分类汇总统计数据。

2.属性数据库

江苏省农用地分等信息系统采用关系型数据库来存储数据,优点是结构清晰明了,数据的更新维护方便,通过索引能优化数据库,建立快速的查询浏览(表3-26~表3-30)。

表3-26 行政代码数据结构表

表3-27 土壤属性数据结构表

表3-28 农田水利设施数据结构表

表3.29 指定农作物投入-产出数据结构表

表3-30 农业耕作制度及农业区划表

(四)系统模型库

系统以《农用地分等定级规程》(国土资源大调查专用)中的相关技术方法和计算模型为基础,在模型库中预先内置了分等计算模型。模型库是动态,它允许专家根据情况动态调整计算模型形式及其参数。系统主要模型的数学计算公式如下:

(1)农用地自然质量分值(Clij)计算公式见式(3-11)。

(2)样点土地利用系数计算公式:

中国耕地质量等级调查与评定(江苏卷)

式中:

Klj´——样点的第j种指定作物土地利用系数;

Yj——样点的第j种指定作物实际单产;

Yj,max——第j种指定作物最大标准粮单产。

(3)等值区土地利用系数计算公式:

中国耕地质量等级调查与评定(江苏卷)

式中:

Klj——等值区内第j种指定作物土地利用系数;

Klj´——参与计算的同一等值区内合格样点第j种指定作物土地利用系数;

n——排除异常数据后参与计算的样点的个数。

(4)样点土地经济系数计算公式:

中国耕地质量等级调查与评定(江苏卷)

式中:

Kcj′——样点的第j种指定作物土地经济系数;

Yj——样点第j种指定作物实际单产;

Cj——样点第j种指定作物实际成本;

Aj——第j种指定作物最高“产量-成本”指数。

(5)等值区土地经济系数计算公式:

中国耕地质量等级调查与评定(江苏卷)

式中:

Kcj——等值区内土地经济系数;

Kcj´——参与计算的同一等值区内合格样点第j种指定作物土地经济系数;

n——排除异常数据后参与计算的样点的个数。

(6)农用地自然质量等指数(Ri)计算公式见式(3-12)和式(3-13)。

(7)农用地利用等指数(Yi)计算公式见式(3-14)和式(3-15)。

(8)农用地经济等指数(Gi)计算公式见式(3-16)和式(3-17)。

⑺ (20) 数据库设计包括两个方面的设计内容,它们是______。

A.概念设计和逻辑设计

分析:

数据库设计的设计内容包括:需求分析、概念结构设计、逻辑结构设计、物理结构设计、数据库的实施和数据库的运行和维护。

概念设计

对用户要求描述的现实世界(可能是一个工厂、一个商场或者一个学校等),通过对其中诸处的分类、聚集和概括,建立抽象的概念数据模型。这个概念模型应反映现实世界各部门的信息结构、信息流动情况、信息间的互相制约关系以及各部门对信息储存、查询和加工的要求等。

所建立的模型应避开数据库在计算机上的具体实现细节,用一种抽象的形式表示出来。

以扩充的实体—(E-R模型)联系模型方法为例,第一步先明确现实世界各部门所含的各种实体及其属性、实体间的联系以及对信息的制约条件等,从而给出各部门内所用信息的局部描述(在数据库中称为用户的局部视图)。

第二步再将前面得到的多个用户的局部视图集成为一个全局视图,即用户要描述的现实世界的概念数据模型。

逻辑设计

主要工作是将现实世界的概念数据模型设计成数据库的一种逻辑模式,即适应于某种特定数据库管理系统所支持的逻辑数据模式。与此同时,可能还需为各种数据处理应用领域产生相应的逻辑子模式。这一步设计的结果就是所谓“逻辑数据库”。

(7)计算法数据库设计扩展阅读:

数据结构设计形成过程:

需求分析阶段:综合各个用户的应用需求。

概念设计阶段:形成独立于机器特点,独立于各个DBMS产品的概念模式。

逻辑设计阶段:首先将E-R图转换成具体的数据库产品支持的数据模型,如关系模型,形成数据库逻辑模式;然后根据用户处理的要求、安全性的考虑,在基本表的基础上再建立必要的视图(View),形成数据的外模式。

物理设计阶段:根据DBMS特点和处理的需要,进行物理存储安排,建立索引,形成数据库内模式。

参考资料来源:数据库设计-网络

⑻ 计算方法与程序设计学什么的

计算机科学与技术专业培养和造就适应会主义现代化建设需要,德智体全面发展、基础扎实、知识面宽、能力强、素质高具有创新精神,系统掌握计算机硬件、软件的基本理论与应用基本技能,具有较强的实践能力,能在企事业单位、政府机关、行政管理部门从事计算机技术研究和应用,硬件、软件和网络技术的开发,计算机管理和维护的应用型专门技术人才。
本专业学生主要学习计算机科学与技术方面的基本理论和基本知识,接受从事研究与应用计算机的基本训练,具有研究和开发计算机系统的基本能力。
本科毕业生应获得以下几方面的知识和能力:
1.掌握计算机科学与技术的基本理论、基本知识;
2.掌握计算机系统的分析和设计的基本方法;
3.具有研究开发计算机软、硬件的基本能力;
4.了解与计算机有关的法规;
5.了解计算机科学与技术的发展动态;
6.掌握文献检索、资料查询的基本方法,具有获取信息的能力。
主要课程:电路原理、模拟电子技术、数字逻辑、数值分析、计算机原理、微型计算机技术、计算机系统结构、计算机网络、高级语言、汇编语言、数据结构、操作系统、数据库原理、编译原理、图形学、人工智能、计算方法、离散数学、概率统计、线性代数以及算法设计与分析、人机交互、面向对象方法、计算机英语等。
主要实践性教学环节:包括电子工艺实习、硬件部件设计及调试、计算机基础训练、课程设计、计算机工程实践、生产实习、毕业设计(论文)。