当前位置:首页 » 文件传输 » 进程访问其他进程的内存
扩展阅读
webinf下怎么引入js 2023-08-31 21:54:13
堡垒机怎么打开web 2023-08-31 21:54:11

进程访问其他进程的内存

发布时间: 2023-02-05 12:57:09

A. Linux中一个进程能访问另一个进程所在的内存吗

子进程共享父进程的某些内存,所以一定程度上可以说,子进程能够访问父进程的内存

B. Linux 进程间通信方式有哪些

1、无名管道通信
无名管道(pipe):管道是一种半双工的通信方式,数据只能单向流动,而且只能在具有亲缘关系的进程间使用,进程的亲缘关系通常是指父子进程关系。
2、高级管道通信
高级管道(popen):将另一个程序当做一个新的进程在当前程序进程中启动,则它算是当前程序的子进程,这种方式我们称为高级管道方式。
3、有名管道通信
有名管道(named pipe):有名管道也是半双工的通信方式,但是它允许无亲缘关系进程间的通信。
4、消息队列通信
消息队列(message
queue):消息队列是由消息的链表,存放在内核中并由消息队列标识符标识,消息队列克服了信号传递信息少、管道只能承载无格式字节流以及缓冲区大小受限等缺点。
5、信号量通信
信号量(semophore):信号量是一个计数器,可以用来控制多个进程对共享资源的访问,它常作为一种锁机制,防止某进程正在访问共享资源时,其他进程访问该资源。因此,主要作为进程间以及同一进程内不同线程之间的同步手段。
6、信号
信号(sinal):信号是一种比较复杂的通信方式,用于通知接收进程某个事件已经发生。
7、共享内存通信
共享内存(shared
memory):共享内存就是映射一段能被其他进程所访问的内存,这段共享内存由一个进程创建,但多个进程都可以访问。共享内存是最快的IPC方式,它是针对其他进程间通信方式运行效率低而专门设计的。它往往与其他通信机制,如信号量,配合使用,来实现进程间的同步和通信。
8、套接字通信
套接字(socket):套接字也是一种进程间通信机制,与其他通信机制不同的是,它可用于不同机器间的进程通信。

C. 如果没有使用共享内存,操作系统进程之间会不会访问

不会。操作系统会阻止一个进程访问另一个进程的内存地址空间。共享内存会要求两个或更过进程同意删除这个限制。

D. 进程间的通信方式有

进程间的通信方式有:无名管道、高级管道、有名管道、消息队列、信号量、信号、共享内存、套接字。

1、无名管道(pipe):管道是一种半双工的通信方式,数据只能单向流动,而且只能在具有亲缘关系的进程间使用。进程的亲缘关系通常是指父子进程关系。

2、高级管道(popen):将另一个程序当做一个新的进程在当前程序进程中启动,则它算是当前程序的子进程,这种方式我们成为高级管道方式。

3、有名管道(named pipe):有名管道也是半双工的通信方式,但是它允许无亲缘关系进程间的通信。

4、消息队列(message queue):消息队列是由消息的链表,存放在内核中并由消息队列标识符标识。消息队列克服了信号传递信息少、管道只能承载无格式字节流以及缓冲区大小受限等缺点。

5、信号量(semophore):信号量是一个计数器,可以用来控制多个进程对共享资源的访问。它常作为一种锁机制,防止某进程正在访问共享资源时,其他进程也访问该资源。因此,主要作为进程间以及同一进程内不同线程之间的同步手段。

6、信号(sinal):信号是一种比较复杂的通信方式,用于通知接收进程某个事件已经发生。

7、共享内存(shared memory):共享内存就是映射一段能被其他进程所访问的内存,这段共享内存由一个进程创建,但多个进程都可以访问。共享内存是最快的IPC方式,它是针对其他进程间通信方式运行效率低而专门设计的。

8、套接字(socket):套解字也是一种进程间通信机制,与其他通信机制不同的是,它可用于不同机器间的进程通信。

E. 进程间通信方式

在操作系统中,一个进程可以理解为是关于计算机资源集合的一次运行活动,其就是一个正在执行的程序的实例。从概念上来说,一个进程拥有它自己的虚拟CPU和虚拟地址空间,任何一个进程对于彼此而言都是相互独立的,这也引入了一个问题 —— 如何让进程之间互相通信?

由于进程之间是互相独立的,没有任何手段直接通信,因此我们需要借助操作系统来辅助它们。举个通俗的例子,假如A与B之间是独立的,不能彼此联系,如果它们想要通信的话可以借助第三方C,比如A将信息交给C,C再将信息转交给B —— 这就是进程间通信的主要思想 —— 共享资源。

这里要解决的一个重要的问题就是如何避免竞争,即避免多个进程同时访问临界区的资源。

共享内存是进程间通信中最简单的方式之一。共享内存允许两个或更多进程访问同一块内存。当一个进程改变了这块地址中的内容的时候,其它进程都会察觉到这个更改。

你可能会想到,我直接创建一个文件,然后进程不就都可以访问了?

是的,但这个方法有几个缺陷:

Linux下采用共享内存的方式来使进程完成对共享资源的访问,它将磁盘文件复制到内存,并创建虚拟地址到该内存的映射,就好像该资源本来就在进程空间之中,此后我们就可以像操作本地变量一样去操作它们了,实际的写入磁盘将由系统选择最佳方式完成,例如操作系统可能会批量处理加排序,从而大大提高IO速度。

如同上图一样,进程将共享内存映射到自己的虚拟地址空间中,进程访问共享进程就好像在访问自己的虚拟内存一样,速度是非常快的。

共享内存的模型应该是比较好理解的:在物理内存中创建一个共享资源文件,进程将该共享内存绑定到自己的虚拟内存之中。

这里要解决的一个问题是如何将同一块共享内存绑定到自己的虚拟内存中,要知道在不同进程中使用 malloc 函数是会顺序分配空闲内存,而不会分配同一块内存,那么要如何去解决这个问题呢?

Linux操作系统已经想办法帮我们解决了这个问题,在 #include <sys/ipc.h> 和 #include <sys/shm.h> 头文件下,有如下几个shm系列函数:

通过上述几个函数,每个独立的进程只要有统一的共享内存标识符便可以建立起虚拟地址到物理地址的映射,每个虚拟地址将被翻译成指向共享区域的物理地址,这样就实现了对共享内存的访问。

还有一种相像的实现是采用mmap函数,mmap通常是直接对磁盘的映射——因此不算是共享内存,存储量非常大,但访问慢; shmat与此相反,通常将资源保存在内存中创建映射,访问快,但存储量较小。

不过要注意一点,操作系统并不保证任何并发问题,例如两个进程同时更改同一块内存区域,正如你和你的朋友在线编辑同一个文档中的同一个标题,这会导致一些不好的结果,所以我们需要借助信号量或其他方式来完成同步。

信号量是迪杰斯特拉最先提出的一种为解决 同步不同执行线程问题 的一种方法,进程与线程抽象来看大同小异,所以 信号量同样可以用于同步进程间通信

信号量 s 是具有非负整数值的全局变量,由两种特殊的 原子操作 来实现,这两种原子操作称为 P 和 V :

信号量并不用来传送资源,而是用来保护共享资源,理解这一点是很重要的,信号量 s 的表示的含义为 同时允许最大访问资源的进程数量 ,它是一个全局变量。来考虑一个上面简单的例子:两个进程同时修改而造成错误,我们不考虑读者而仅仅考虑写者进程,在这个例子中共享资源最多允许一个进程修改资源,因此我们初始化 s 为1。

开始时,A率先写入资源,此时A调用P(s),将 s 减一,此时 s = 0,A进入共享区工作。

此时,进程B也想进入共享区修改资源,它调用P(s)发现此时s为0,于是挂起进程,加入等待队列。

A工作完毕,调用V(s),它发现s为0并检测到等待队列不为空,于是它随机唤醒一个等待进程,并将s加1,这里唤醒了B。

B被唤醒,继续执行P操作,此时s不为0,B成功执行将s置为0并进入工作区。

此时C想要进入工作区......

可以发现,在无论何时只有一个进程能够访问共享资源,这就是信号量做的事情,他控制进入共享区的最大进程数量,这取决于初始化s的值。此后,在进入共享区之前调用P操作,出共享区后调用V操作,这就是信号量的思想。

在Linux下并没有直接的P&V函数,而是需要我们根据这几个基本的sem函数族进行封装:

正如其名,管道就如同生活中的一根管道,一端输送,而另一端接收,双方不需要知道对方,只需要知道管道就好了。

管道是一种最 基本的进程间通信机制。 管道由pipe函数来创建: 调用pipe函数,会在内核中开辟出一块缓冲区用来进行进程间通信,这块缓冲区称为管道,它有一个读端和一个写端。管道被分为匿名管道和有名管道。

匿名管道通过pipe函数创建,这个函数接收一个长度为2的Int数组,并返回1或0表示成功或者失败:

int pipe(int fd[2])

这个函数打开两个文件描述符,一个读端文件,一个写端,分别存入fd[0]和fd[1]中,然后可以作为参数调用 write 和 read 函数进行写入或读取,注意fd[0]只能读取文件,而fd[1]只能用于写入文件。

你可能有个疑问,这要怎么实现通信?其他进程又不知道这个管道,因为进程是独立的,其他进程看不到某一个进程进行了什么操作。

是的,‘其他’进程确实是不知道,但是它的子进程却可以!这里涉及到fork派生进程的相关知识,一个进程派生一个子进程,那么子进程将会复制父进程的内存空间信息,注意这里是复制而不是共享,这意味着父子进程仍然是独立的,但是在这一时刻,它们所有的信息又是相等的。因此子进程也知道该全局管道,并且也拥有两个文件描述符与管道挂钩,所以 匿名管道只能在具有亲缘关系的进程间通信。

还要注意,匿名管道内部采用环形队列实现,只能由写端到读端,由于设计技术问题,管道被设计为半双工的,一方要写入则必须关闭读描述符,一方要读出则必须关闭写入描述符。因此我们说 管道的消息只能单向传递。

注意管道是堵塞的,如何堵塞将依赖于读写进程是否关闭文件描述符。如果读管道,如果读到空时,假设此时写端口还没有被完全关闭,那么操作系统会假设还有数据要读,此时读进程将会被堵塞,直到有新数据或写端口被关闭;如果管道为空,且写端口也被关闭,此时操作系统会认为已经没有东西可读,会直接退出,并关闭管道。

对于写一个已经满了的管道同理而言。

管道内部由内核管理,在半双工的条件下,保证数据不会出现并发问题。

了解了匿名管道之后,有名管道便很好理解了。在匿名管道的介绍中,我们说其他进程不知道管道和文件描述符的存在,所以匿名管道只适用于具有亲缘关系的进程,而命名管道则很好的解决了这个问题 —— 现在管道有一个唯一的名称了,任何进程都可以访问这个管道。

注意,操作系统将管道看作一个抽象的文件,但管道并不是普通的文件,管道存在于内核空间中而不放置在磁盘(有名管道文件系统上有一个标识符,没有数据块),访问速度更快,但存储量较小,管道是临时的,是随进程的,当进程销毁,所有端口自动关闭,此时管道也是不存在的,操作系统将所有IO抽象的看作文件,例如网络也是一种文件,这意味着我们可以采用任何文件方法操作管道,理解这种抽象是很重要的,命名管道就利用了这种抽象。

Linux下,采用mkfifo函数创建,可以传入要指定的‘文件名’,然后其他进程就可以调用open方法打开这个特殊的文件,并进行write和read操作(那肯定是字节流对吧)。

注意,命名管道适用于任何进程,除了这一点不同外,其余大多数都与匿名管道相同。

消息队列亦称报文队列,也叫做信箱,是Linux的一种通信机制,这种通信机制传递的数据会被拆分为一个一个独立的数据块,也叫做消息体,消息体中可以定义类型与数据,克服了无格式承载字节流的缺陷(现在收到void*后可以知道其原本的格式惹):

同管道类似,它有一个不足就是每个消息的最大长度是有上限的,整个消息队列也是长度限制的。

内核为每个IPC对象维护了一个数据结构struct ipc_perm,该数据结构中有指向链表头与链表尾部的指针,保证每一次插入取出都是O(1)的时间复杂度。

一个进程可以发送信号给另一个进程,一个信号就是一条消息,可以用于通知一个进程组发送了某种类型的事件,该进程组中的进程可以采取处理程序处理事件。

Linux下 unistd.h 头文件下定义了如图中的常量,当你在shell命令行键入 ctrl + c 时,内核就会前台进程组的每一个进程发送 SIGINT 信号,中止进程。

我们可以看到上述只有30个信号,因此操作系统会为每一个进程维护一个int类型变量sig,利用其中30位代表是否有对应信号事件,每一个进程还有一个int类型变量block,与sig对应,其30位表示是否堵塞对应信号(不调用处理程序)。如果存在多个相同的信号同时到来,多余信号会被存储在一个等待队列中等待。

我们要理解进程组是什么,每个进程属于一个进程组,可以有多个进程属于同一个组。每个进程拥有一个进程ID,称为 pid ,而每个进程组拥有一个进程组ID,称为 pgid ,默认情况下,一个进程与其子进程属于同一进程组。

软件方面(诸如检测键盘输入是硬件方面)可以利用kill函数发送信号,kill函数接受两个参数,进程ID和信号类型,它将该信号类型发送到对应进程,如果该pid为0,那么会发送到属于自身进程组的所有进程。

接收方可以采用signal函数给对应事件添加处理程序,一旦事件发生,如果未被堵塞,则调用该处理程序。

Linux下有一套完善的函数用以处理信号机制。

Socket套接字是用与网络中不同主机的通信方式,多用于客户端与服务器之间,在Linux下也有一系列C语言函数,诸如socket、connect、bind、listen与accept,我们无需花太多时间研究这些函数,因为我们可能一辈子都不会与他们打交道,对于原理的学习,后续我会对Java中的套接字socket源码进行剖析。

对于工作而言,我们可能一辈子都用不上这些操作,但作为对于操作系统的学习,认识到进程间是如何通信还是很有必要的。

面试的时候对于这些方法我们不需要掌握到很深的程度,但我们必须要讲的来有什么通信方式,这些方式都有什么特点,适用于什么条件,大致是如何操作的,能说出这些,基本足以让面试官对你十分满意了。

F. 计算机基础-内存管理介绍

物理内存,取决于寻址空间和实际内存条的大小

因为程序都是直接访问物理内存,所以一个进程可以修改其他进程的内存数据,甚至可以修改内核地址空间中的数据

一个程序想要访问自己程序内存的址0x00000000地址,但是在物理内存上分配内存是随机的,所以访问0x00000000可能不是自己的内存区域

假设内存是连续分配的(也就是程序在物理内存上是连续的)

1.进程A进来,向os申请了200的内存空间,于是os把0~199分配给A
2.进程B进来,向os申请了5的内存空间,os把200~204分配给它
3.进程C进来,向os申请了100的内存空间,os把205~304分配给它
4.这个时候进程B运行完了,把200~204还给os

但是很长时间以后,只要系统中的出现的进程的大小>5的话,200-204这段空间都不会被分配出去(只要A和C不退出)。过了一段更长的时间,内存中就会出现许许多多200-204这样不能被利用的碎片

为了解决直接操作物理内存带来的问题,所以引入了虚拟地址空间,因为这个空间是虚拟的,所以可以无限大。

每个进程都可以有自己的虚拟地址空间

在虚拟地址空间和物理地址空间之间做一一映射,这里映射的是一片连续的物理内存

将内存分为几个固定的区域,每个区域的大小固定(通常不同),需要加载程序是选择一个闲置且容量足够大的分区进行加载

上面共享队列的固定分区策略可能造成一个小程序占用一个大分区的情况,从而造成内存里虽然有小分区闲置但无法加载大程序的情况。可以采用多个队列,给每个分区一个队列,程序按照大小排在相应的队列里,如下图所示,这时一种分开队列的固定分区

这种方式也有缺点:如果还有空闲分区,但等待的程序不在该分区的等待队列上,就将造成有空间而不能运行程序的情况

非固定分区的思想在于除了划分给OS的空间之外,其余的内存空间是作为一个整体存在的。当一个程序需要占用内存空间时,就在该片空间里面分出一个大小刚刚满足程序所需的空间。再来一个程序时,则在剩下的空间里再这样分出一块来。在这种模式下,一个程序可以加载到任何地方,也可以和物理内存一样大。

因为系统分配给程序的空间分段映射的是一段连续的物理内存,所以空间不够时可以将程序倒到外置存储中,再寻找足够的内存空间加载

要运行两个相同的程序,只是数据不一样,那么我们可不可以进行指令的共享?可以!那么我们怎么使在共享的过程中不产生错误呢?那就是双基址:给指令和数据各自配置基址。

其实就是将指令和数据分成不同的段

因为分段技术映射到物理内存上是一段连续的空间,所以无可避免的会造成内存利用率不高的问题

为了增加内存的利用率,需要使用分页技术

将虚拟内存空间和物理内存空间皆划分为大小相同的页面,如4KB、8KB或16KB等,并以页面作为内存空间的最小分配单位,一个程序的一个页面可以存放在任意一个物理页面里。

在分页系统中,一个程序的虚拟地址由页面号和页内偏移值两部分组成

32位寻址系统中,如果页面大小为4k,则页面号占20位,页内偏移值占12位

虚拟内存页到物理内存页的映射由内存管理单元完成(MMU)

页表的根本功能是提供从虚拟页面到物理页面的映射。因此,页表的记录条数与虚拟页面数相同。此外,内存管理单元依赖于页表来进行一切与页面有关的管理活动,这些活动包括判断某一页面号是否在内存里,页面是否受到保护,页面是否非法空间等等,页表是一个硬件数据结构

逻辑分段将一个程序按逻辑关系分解为多个段

如果一个程序需要使用比物理内存更大的内存空间怎么办?

此时,可以将程序按照功能分成一段一段功能相对完整的单元,一个单元执行完成后再执行下一个单元,这就是重叠(overlay)

相当于一列火车从上海到北京,不需要一整段完整的铁轨,只需要两段火车长度的铁轨,不断移动铁轨,就可以让火车一直往前开

综合了逻辑分段和分页的优点,将程序分为多个逻辑段,在每个段里面又进行分页,即将分段和分页组合起来使用。

采用多级页表,顶级为段表,次级为页表。由段号在段表里面获得所应该使用的页表,然后在该页表里面查找物理页面号

操作系统核心原理-5.内存管理(上):基本内存管理
操作系统核心原理-5.内存管理(中):分页内存管理
操作系统核心原理-5.内存管理(下):段式内存管理
基本内存管理的简单介绍

G. 如何访问一个进程中的内存

- 在WIN32中,每个应用程序都可“看见”4GB的线性地址空间,其中最开始的4MB和最后的2GB由操作系统保留,剩下不足2GB的空间用于应用程序私有空间。具体分配如下:0xFFFFFFFF-0xC0000000的1GB用于VxD、存储器管理和文件系统;0xBFFFFFFF-0x80000000的1GB用于共享的WIN32 DLL、存储器映射文件和共享存储区;0x7FFFFFFF-0x00400000为每个进程的WIN32专用地址;0x003FFFFF-0x00001000为MS-DOS 和 WIN16应用程序;0x00000FFF-0x00000000为防止使用空指针的4,096字节。以上都是指逻辑地址,也就是虚拟内存。
---- 虚拟内存通常是由固定大小的块来实现的,在WIN32中这些块称为“页”,每页大小为4,096字节。在Intel CPU结构中,通过在一个控制寄存器中设置一位来启用分页。启用分页时CPU并不能直接访问内存,对每个地址要经过一个映射进程,通过一系列称作“页表”的查找表把虚拟内存地址映射成实际内存地址。通过使用硬件地址映射和页表WIN32可使虚拟内存即有好的性能而且还提供保护。利用处理器的页映射能力,操作系统为每个进程提供独立的从逻辑地址到物理地址的映射,使每个进程的地址空间对另一个进程完全不可见。WIN32中也提供了一些访问进程内存空间的函数,但使用时要谨慎,一不小心就有可能破坏被访问的进程。本文介绍如何读另一个进程的内存,写内存与之相似,完善一下你也可以做个 FPE 之类的内存修改工具。好吧,先准备好编程利器Delphi 和参考手 册 MSDN ,Now begin!

ReadProcessMemory 读另一个进程的内存,原形如下:
BOOL ReadProcessMemory(
HANDLE hProcess, // 被读取进程的句柄;
LPCVOID lpBaseAddress, // 读的起始地址;
LPVOID lpBuffer, // 存放读取数据缓冲区;
DWORD nSize, // 一次读取的字节数;
LPDWORD lpNumberOfBytesRead // 实际读取的字节数;
);
hProcess 进程句柄可由OpenProcess 函数得到,原形如下:
HANDLE OpenProcess(
DWORD dwDesiredAccess, // 访问标志;
BOOL bInheritHandle, // 继承标志;
DWORD dwProcessId // 进程ID;
);

---- 当然,用完别忘了用 CloseHandle 关闭打开的句柄。读另一个进程的内存 dwDesiredAccess 须指定为 PROCESS_VM_READ ,写另一个进程的内存 dwDesiredAccess 须指定为 PROCESS_VM_WRITE ,继承标志无所谓,进程ID可由 Process32First 和 Process32Next 得到,这两个函数可以枚举出所有开启的进程,这样进程的信息也就得到了。 Process32First 和 Process32Next是由 TLHelp32 单元提供的,需在 uses 里加上TLHelp32。ToolsHelp32 封装了一些访问堆、线程、进程等 的函数,只适用于Win9x,原形如下:

BOOL WINAPI Process32First(
HANDLE hSnapshot //
由 CreateToolhelp32Snapshot 返回
的系统快照句柄;
LPPROCESSENTRY32 lppe // 指向一个 PROCESSENTRY32 结构;
);
BOOL WINAPI Process32Next(
HANDLE hSnapshot // 由 CreateToolhelp32Snapshot 返回
的系统快照句柄;
LPPROCESSENTRY32 lppe // 指向一个 PROCESSENTRY32 结构;
);
hSnapshot 由 CreateToolhelp32Snapshot 返回的系统快照句柄;
CreateToolhelp32Snapshot 原形如下:
HANDLE WINAPI CreateToolhelp32Snapshot(
DWORD dwFlags, // 快照标志;
DWORD th32ProcessID // 进程ID;
);
现在需要的是进程的信息,所以将 dwFlags
指定为 TH32CS_SNAPPROCESS,
th32ProcessID 忽略;PROCESSENTRY32 结构如下:
typedef struct tagPROCESSENTRY32 {
DWORD dwSize; // 结构大小;
DWORD cntUsage; // 此进程的引用计数;
DWORD th32ProcessID; // 进程ID;
DWORD th32DefaultHeapID; // 进程默认堆ID;
DWORD th32MoleID; // 进程模块ID;
DWORD cntThreads; // 此进程开启的线程计数;
DWORD th32ParentProcessID;// 父进程ID;
LONG pcPriClassBase; // 线程优先权;
DWORD dwFlags; // 保留;
char szExeFile[MAX_PATH]; // 进程全名;
} PROCESSENTRY32;

---- 至此,所用到的主要函数已介绍完,实现读内存只要从下到上依次调用上述函数即可,具体参见原代码:

procere TForm1.Button1Click(Sender: TObject);
var
FSnapshotHandle:THandle;
FProcessEntry32:TProcessEntry32;
Ret : BOOL;
ProcessID : integer;
ProcessHndle : THandle;
lpBuffer:pByte;
nSize: DWORD;
lpNumberOfBytesRead: DWORD;
i:integer;
s:string;
begin
FSnapshotHandle:=CreateToolhelp32Snapshot(
TH32CS_SNAPPROCESS,0);
//创建系统快照
FProcessEntry32.dwSize:=Sizeof(FProcessEntry32);
//先初始化 FProcessEntry32 的大小
Ret:=Process32First(FSnapshotHandle,FProcessEntry32);
while Ret do
begin
s:=ExtractFileName(FProcessEntry32.szExeFile);
if s='KERNEL32.DLL' then
begin
ProcessID:=FProcessEntry32.th32ProcessID;
s:='';
break;
end;
Ret:=Process32Next(FSnapshotHandle,FProcessEntry32);
end;
//循环枚举出系统开启的所有进程,找出“Kernel32.dll”
CloseHandle(FSnapshotHandle);
Memo1.Lines.Clear ;
memo1.lines.add('Process ID '+IntToHex(
FProcessEntry32.th32ProcessID,8));
memo1.lines.Add('File name '+FProcessEntry32.szExeFile);
////输出进程的一些信息
nSize:=4;
lpBuffer:=AllocMem(nSize);
ProcessHndle:=OpenProcess(PROCESS_VM_READ,false,ProcessID);
memo1.Lines.Add ('Process Handle '+intTohex(ProcessHndle,8));
for i:=$00800001 to $0080005f do
begin
ReadProcessMemory(
ProcessHndle,
Pointer(i),
lpBuffer,
nSize,
lpNumberOfBytesRead
);
s:=s+intTohex(lpBuffer^,2)+' ';
//读取内容
if (i mod 16) =0 then
begin
Memo1.Lines.Add(s);
s:='';
end;
//格式化输出
end;
FreeMem(lpBuffer,nSize);
CloseHandle(ProcessHndle);
//关闭句柄,释放内存
end;

H. 线程、进程在跨线程(进程)访问内存,权限有什么不同


说法一:进程是具有一定独立功能的程序关于某个数据集合上的一次运行活动,进程是系统进行资源分配和调度的一个独立单位.

线程是进程的一个实体,是CPU调度和分派的基本单位,它是比进程更小的能独立运行的基本单位.线程自己基本上不拥有系统资源,只拥有一点在运行中必不可少的资源(如程序计数器,一组寄存器和栈),但是它可与同属一个进程的其他的线程共享进程所拥有的全部资源.

一个线程可以创建和撤销另一个线程;同一个进程中的多个线程之间可以并发执行

说法二:进程和线程都是由操作系统所体会的程序运行的基本单元,系统利用该基本单元实现系统对应用的并发性。进程和线程的区别在于:

简而言之,一个程序至少有一个进程,一个进程至少有一个线程.

线程的划分尺度小于进程,使得多线程程序的并发性高。

另外,进程在执行过程中拥有独立的内存单元,而多个线程共享内存,从而极大地提高了程序的运行效率。

线程在执行过程中与进程还是有区别的。每个独立的线程有一个程序运行的入口、顺序执行序列和程序的出口。但是线程不能够独立执行,必须依存在应用程序中,由应用程序提供多个线程执行控制。

从逻辑角度来看,多线程的意义在于一个应用程序中,有多个执行部分可以同时执行。但操作系统并没有将多个线程看做多个独立的应用,来实现进程的调度和管理以及资源分配。这就是进程和线程的重要区别。

说法三:多线程共存于应用程序中是现代操作系统中的基本特征和重要标志。用过UNIX操作系统的读者知道进程,在UNIX操作系统中,每个应用程序的执行都在操作系统内核中登记一个进程标志,操作系统根据分配的标志对应用程序的执行进行调度和系统资源分配,但进程和线程有什么区别呢?

进程和线程都是由操作系统所体会的程序运行的基本单元,系统利用该基本单元实现系统对应用的并发性。进程和线程的区别在于:

线程的划分尺度小于进程,使得多线程程序的并发性搞。

另外,进程在执行过程中拥有独立的内存单元,而多个线程共享内存,从而极大地提高了程序的运行效率。

线程在执行过程中与进程还是有区别的。每个独立的线程有一个程序运行的入口、顺序执行序列和程序的出口。但是线程不能够独立执行,必须依存在应用程序中,由应用程序提供多个线程执行控制。

从逻辑角度来看,多线程的意义在于一个应用程序中,有多个执行部分可以同时执行。但操作系统并没有将多个线程看做多个独立的应用,来实现进程的调度和管理以及资源分配。这就是进程和线程的重要区别。

进程(Process)是最初定义在Unix等多用户、多任务操作系统环境下用于表示应用程序在内存环境中基本执行单元的概念。以Unix操作系统为例,进程是Unix操作系统环境中的基本成分、是系统资源分配的基本单位。Unix操作系统中完成的几乎所有用户管理和资源分配等工作都是通过操作系统对应用程序进程的控制来实现的。

C、C++、Java等语言编写的源程序经相应的编译器编译成可执行文件后,提交给计算机处理器运行。这时,处在可执行状态中的应用程序称为进程。从用户角度来看,进程是应用程序的一个执行过程。从操作系统核心角度来看,进程代表的是操作系统分配的内存、CPU时间片等资源的基本单位,是为正在运行的程序提供的运行环境。进程与应用程序的区别在于应用程序作为一个静态文件存储在计算机系统的硬盘等存储空间中,而进程则是处于动态条件下由操作系统维护的系统资源管理实体。多任务环境下应用程序进程的主要特点包括:

●进程在执行过程中有内存单元的初始入口点,并且进程存活过程中始终拥有独立的内存地址空间;

●进程的生存期状态包括创建、就绪、运行、阻塞和死亡等类型;

●从应用程序进程在执行过程中向CPU发出的运行指令形式不同,可以将进程的状态分为用户态和核心态。处于用户态下的进程执行的是应用程序指令、处于核心态下的应用程序进程执行的是操作系统指令。

在Unix操作系统启动过程中,系统自动创建swapper、init等系统进程,用于管理内存资源以及对用户进程进行调度等。在Unix环境下无论是由操作系统创建的进程还要由应用程序执行创建的进程,均拥有唯一的进程标识(PID)。

说法四:应用程序在执行过程中存在一个内存空间的初始入口点地址、一个程序执行过程中的代码执行序列以及用于标识进程结束的内存出口点地址,在进程执行过程中的每一时间点均有唯一的处理器指令与内存单元地址相对应。

Java语言中定义的线程(Thread)同样包括一个内存入口点地址、一个出口点地址以及能够顺序执行的代码序列。但是进程与线程的重要区别在于线程不能够单独执行,它必须运行在处于活动状态的应用程序进程中,因此可以定义线程是程序内部的具有并发性的顺序代码流。

Unix操作系统和Microsoft Windows操作系统支持多用户、多进程的并发执行,而Java语言支持应用程序进程内部的多个执行线程的并发执行。多线程的意义在于一个应用程序的多个逻辑单元可以并发地执行。但是多线程并不意味着多个用户进程在执行,操作系统也不把每个线程作为独立的进程来分配独立的系统资源。进程可以创建其子进程,子进程与父进程拥有不同的可执行代码和数据内存空间。而在用于代表应用程序的进程中多个线程共享数据内存空间,但保持每个线程拥有独立的执行堆栈和程序执行上下文(Context)。

基于上述区别,线程也可以称为轻型进程 (Light Weight Process,LWP)。不同线程间允许任务协作和数据交换,使得在计算机系统资源消耗等方面非常廉价。

线程需要操作系统的支持,不是所有类型的计算机都支持多线程应用程序。Java程序设计语言将线程支持与语言运行环境结合在一起,提供了多任务并发执行的能力。这就好比一个人在处理家务的过程中,将衣服放到洗衣机中自动洗涤后将大米放在电饭锅里,然后开始做菜。等菜做好了,饭熟了同时衣服也洗好了。

需要注意的是:在应用程序中使用多线程不会增加 CPU 的数据处理能力。只有在多CPU 的计算机或者在网络计算体系结构下,将Java程序划分为多个并发执行线程后,同时启动多个线程运行,使不同的线程运行在基于不同处理器的Java虚拟机中,才能提高应用程序的执行效率。