当前位置:首页 » 文件传输 » 共享介质访问控制方案
扩展阅读
webinf下怎么引入js 2023-08-31 21:54:13
堡垒机怎么打开web 2023-08-31 21:54:11

共享介质访问控制方案

发布时间: 2023-02-15 17:57:00

A. 在共享介质以太网中,采用的介质访问控制方法是

控制方法是CSMA/CD方法。

在传统的共享以太网中,所有的节点共享传输介质。为了保证传输介质有序、高效地为许多节点提供传输服务,就需要以太网的介质访问控制协议解决问题。

CSMA/CD是一种争用型的介质访问控制协议。它起源于美国夏威夷大学开发的ALOHA网所采用的争用型协议,并进行了改进,使之具有比ALOHA协议更高的介质利用率。主要应用于现场总线Ethernet中。另一个改进是,对于每一个站而言,一旦它检测到有冲突,它就放弃它当前的传送任务。

因为需要使用CSMA/CD协议来控制以太网的介质访问,所以答案是(D )CSMA/CD方法。

(1)共享介质访问控制方案扩展阅读:

CSMA/CD控制方式的优点是:

原理比较简单,技术上易实现,网络中各工作站处于平等地位 ,不需集中控制,不提供优先级控制。但在网络负载增大时,发送时间增长,发送效率急剧下降。

它的工作原理是: 发送数据前 先侦听信道是否空闲 ,若空闲,则立即发送数据。若信道忙碌,则等待一段时间至信道中的信息传输结束后再发送数据;若在上一段信息发送结束后,同时有两个或两个以上的节点都提出发送请求,则判定为冲突。若侦听到冲突,则立即停止发送数据,等待一段随机时间,再重新尝试。

B. 目前局域网常用的介质访问控制研方法主要有哪些请分别简述它们的主要特点。

布线主要有:星型、总线型、环型、树型其介质控制主要有:1 CSMA/CD最早的CSMA方法起源于美国夏威夷大学的ALOHA广播分组网络,1980年美国DEC、Intel和Xerox公司联合宣布Ethernet网采用CSMA技术,并增加了检测碰撞功能,称之为CSMA/CD。这种 方式适用于总线型和树形拓扑结构,主要解决如何共享一条公用广播传输介质。其简单原理 是:在网络中,任何一个工作站在发送信息前,要侦听一下网络中有无其它工作站在发送信 号,如无则立即发送,如有,即信道被占用,此工作站要等一段时间再争取发送权。等待时 间可由二种方法确定,一种是某工作站检测到信道被占用后,继续检测,直到信道出现空闲 。另一种是检测到信道被占用后,等待一个随机时间进行检测,直到信道出现空闲后再发送 。 CSMA/CD要解决的另一主要问题是如何检测冲突。当网络处于空闲的某一瞬间,有两个或两 个以上工作站要同时发送信息,这时,同步发送的信号就会引起冲突,现由IEEE802.3标准确定的CSMA/CD检测冲突的方法是:当一个工作站开始占用信道进行发送信息时,再用碰撞 检测器继续对网络检测一段时间,即一边发送,一边监听,把发送的信息与监听的信息进行比较,如结果一致,则说明发送正常,抢占总线成功,可继续发送。如结果不一致,则说明 有冲突,应立即停止发送。等待一随机时间后,再重复上述过程进行发送。CSMA/CD控制方式的优点是:原理比较简单,技术上易实现,网络中各工作站处于平等地位 ,不需集中控制,不提供优先级控制。但在网络负载增大时,发送时间增长,发送效率急剧下降。 2 令牌环令牌环只适用于环形拓扑结构的局域网。其主要原理是:使用一个称之为“令牌”的控制标 志(令牌是一个二进制数的字节,它由“空闲”与“忙”两种编码标志来实现,既无目的地 址 ,也无源地址),当无信息在环上传送时,令牌处于“空闲”状态,它沿环从一个工作站到 另 一个工作站不停地进行传递。当某一工作站准备发送信息时,就必须等待,直到检测并捕获 到经过该站的令牌为止,然后,将令牌的控制标志从“空闲”状态改变为“忙”状态,并发送出一帧信息。其他的工作站随时检测经过本站的帧,当发送的帧目的地址与本站地址相符时,就接收该帧,待复制完毕再转发此帧,直到该帧沿环一周返回发送站,并收到接收站指向发送站的肯定应签信息时,才将发送的帧信息进行清除,并使令牌标志又处于“空闲”状 态,继续插入环中。当另一个新的工作站需要发送数据时,按前述过程,检测到令牌,修改状态,把信息装配成帧,进行新一轮的发送。令牌环控制方式的优点是它能提供优先权服务,有很强的实时性,在重负载环路中,“令牌 ”以循环方式工作,效率较高。其缺点是控制电路较复杂,令牌容易丢失。但IBM在1985年 已解决了实用问题,近年来采用令牌环方式的令牌环网实用性已大大增强。 3 令牌总线令牌总线主要用于总线形或树形网络结构中。它的访问控制方式类似于令牌环,但它是把总 线形或树形网络中的各个工作站按一定顺序如按接口地址大小排列形成一个逻辑环。只有令牌持有者才能控制总线,才有发送信息的权力。信息是双向传送,每个站都可检测到其它站 点发出的信息。在令牌传递时,都要加上目的地址,所以只有检测到并得到令牌的工作站, 才能发送信息,它不同于CSMA/CD方式,可在总线和树形结构中避免冲突。这种控制方式的优点是各工作站对介质的共享权力是均等的,可以设置优先级,也可以不设 ;有较好的吞吐能力,吞吐量随数据传输速率增高而加大,连网距离较CSMA/CD方式大。缺 点是控制电路较复杂、成本高,轻负载时,线路传输效率低。

C. 局域网从介质访问控制方法的角度可分为哪两类它们的主要特点是什么

局域网介质访问控制方法的角度可以分为共享式局域网和交换式局域网。
共享式以太网最大的问题是采用CSMA/CD介质访问控制方式,通过集线器级联或堆叠后形成的网络仍是属于同一个冲突域。在同一个冲突域中,任一时刻只允许一个站点发送数据,每一次的传送都会占用整个传输介质。传输介质是共享的,所有站点平分带宽。
交换式以太网是在10Base-T和100Base-TX双绞线基础上发展起来的一种高速网络,它的关键设备是交换机(Switch)。交换机是一种特殊的网桥,它的一个端口是一个冲突域。

D. 局域网的访问控制有哪几种,分别适用于哪些网络

1、冲突检测的载波侦听多路访问法:适用于所有局域网。

2、令牌环访问控制法:只适用于环形拓扑结构的局域网。

3、令牌总线访问控制法:主要用于总线形或树形网络结构中。


(4)共享介质访问控制方案扩展阅读

令牌总线访问控制方式类似于令牌环,但把总线形或树形网络中的各个工作站按一定顺序如按接口地址大小排列形成一个逻辑环。只有令牌持有者才能控制总线,才有发送信息的权力。信息是双向传送,每个站都可检测到站点发出的信息。

CSMA/CD要解决的另一主要问题是如何检测冲突。当网络处于空闲的某一瞬间,有两个或两 个以上工作站要同时发送信息,同步发送的信号就会引起冲突。

E. 共享介质和介质访问控制

当作历史了解下就行了。 现在不用了、、、 与时俱进呵。。。

F. 局域网基本技术中有哪几种媒体访问控制方法

计算机局域网一般采用共享介质,这样可以节约局域网的造价。对于共享介质,关键问题是当多个站点要同时访问介质时,如何进行控制,这就涉及到局域网的介质访问控制(Medium Access Control,MAC)协议。在网络中服务器和计算机众多,每台设备随时都有发送数据的需求,这就需要有某些方法来控制对传输媒体的访问,以便两个特定的设备在需要时可以交换数据。传输媒体的访问控制方式与局域网的拓扑结构、工作过程有密切关系。目前,计算机局域网常用的访问控制方式有3种,分别是载波多路访问/冲突检测(CSMA/CD)、令牌环访问控制法(Token Ring)和令牌总线访问控制法(Toking Bus)。其中,载波多路访问/冲突检测(CSMA/CD)是由ALOHA随机访问控制技术发展而来的,在此,对ALOHA随机访问控制技术简要介绍一下。
1.ALOHA协议
ALOHA协议是20世纪70年代在夏威夷大学由Norman Abramson及其同事发明的,目的是为了解决地面无线电广播信道的争用问题。ALOHA协议分为纯ALOHA和分槽ALOHA两种。
(1)纯ALOHA
ALOHA协议的思想很简单,只要用户有数据要发送,就尽管让他们发送。当然,这样会产生冲突从而造成帧的破坏。但是,由于广播信道具有反馈性,因此发送方可以在发送数据的过程中进行冲突检测,将接收到的数据与缓冲区的数据进行比较就可以知道数据帧是否遭到破坏。同样的道理,其他用户也是按照此过程工作。如果发送方知道数据帧遭到破坏(检测到冲突),那么它可以等待一段随机长的时间后重发该帧。对于局域网LAN,反馈信息很快就可以得到;而对于卫星网,发送方要在270ms后才能确认数据发送是否成功。通过研究证明,纯ALOHA协议的信道利用率最大不超过18%(1/2e)。
(2)分槽ALOHA
1972年,Roberts发明了一种能把信道利用率提高一倍的信道分配策略,即分槽ALOHA协议。其思想是用时钟来统一用户的数据发送。办法是将时间分为离散的时间片,用户每次必须等到下一个时间片才能开始发送数据,从而避免了用户发送数据的随意性,减少了数据产生冲突的可能性,提高了信道的利用率。在分槽ALOHA系统中,计算机并不是在用户按下回车键后就立即发送数据,而是要等到下一个时间片开始时才发送。这样,连续的纯ALOHA就变成离散的分槽ALOHA。由于冲突的危险区平均减少为纯ALOHA的一半,因此分槽ALOHA的信道利用率可以达到36%(1/e),是纯ALOHA协议的两倍。对于分槽ALOHA,用户数据的平均传输时间要高于纯ALOHA系统。
2.载波侦听多路访问/冲突检测(CSMA/CD)
CSMA/CD是Carrier Sense Multiple Access With Collision Detection的缩写,含有两方面的内容,即载波侦听(CSMA)和冲突检测(CD)。CSMA/CD访问控制方式主要用于总线型和树状网络拓扑结构、基带传输系统。信息传输是以“包”为单位,简称信包,发展为IEEE 802.3基带CSMA/CD局域网标准。
(1)CSMA/CD介质访问控制方案
先听后发,工作站在每次发送前,先侦听总线是否空闲,如发现已被占用,便推迟本次的发送,仅在总线空闲时才发送信息。介质的最大利用率取决于帧的长度和传播时间,与帧长成正比,与传播时间成反比。
载波监听多路访问CSMA的技术也称做先听后说LBT(Listen Before Talk)。要传输数据的站点首先对媒体上有无载波进行监听,以确定是否有别的站点在传输数据。如果媒体空闲,该站点便可传输数据;否则,该站点将避让一段时间后再做尝试。这就需要有一种退避算法来决定避让的时间,常用的退避算法有非坚持、1-坚持、P-坚持3种。
① 非坚持算法。算法规则如下:
如果媒本是空闲的,则可以立即发送。
如果媒体是忙的,则等待一个由概率分布决定的随机重发延迟后,再重复前一个步骤。
采用随机的重发延迟时间可以减少冲突发生的可能性。
非坚持算法的缺点是:即使有几个着眼点位都有数据要发送,但由于大家都在延迟等待过程中,致使媒体仍可能处于空闲状态,使利用率降低。
② 1-坚持算法。算法规则如下:
如果媒体是空闲的,则可以立即发送。
如果媒体是忙的,则继续监听,直至检测到媒体是空闲,立即发送。
如果有冲突(在一段时间内未收到肯定的回复),则等待一个随机量的时间,重复前两步。
这种算法的优点是:只要媒体空闲,站点就可立即发送,避免了媒体利用率的损失。
其缺点是:假若有两个或两个以上的站点有数据要发送,冲突就不可避免。
③ P-坚持算法。算法规则如下:
监听总线,如果媒体是空闲的,则以P的概率发送,而以(1–P)的概率延迟一个时间单位。一个时间单位通常等于最大传播时延的2倍。
延迟一个时间单位后,再重复第一步。
如果媒体是忙的,继续监听直至媒体空闲并重复第一步。
P-坚持算法是一种既能像非坚持算法那样减少冲突,又能像1-坚持算法那样减少媒体空闲时间的折中方案。问题在于如何选择P的值,这要考虑到避免重负载下系统处于的不稳定状态。假如媒体忙时,有N个站有数据等待发送,一旦当前的发送完成,将要试图传输的站的总期望数为NP。如果选择P过大,使NP>1,表明有多个站点试图发送,冲突就不可避免。最坏的情况是,随着冲突概率的不断增大,而使吞吐量降低到零。所以必须选择适当P值使NP<1。当然P值选得过小,则媒体利用率又会大大降低。
(2)二进制指数退避算法
重发时间均匀分布在0~TBEB之间,TBEB=2i–1(2a),a为端-端的传输延迟,i为重发次数。该式表明,重发延迟将随着重发次数的增加而按指数规律迅速地延长。
(3)CSMA/CD
载波监听多路访问/冲突检测方法是提高总线利用率的一种CSMA改进方案。该方法为:使各站点在发送信息时继续监听介质,一旦检测到冲突,就立即停止发送,并向总线发送一串阻塞信号,通知总线上的各站点冲突已发生。
采用CSMA/CD介质访问控制方法的总线型局域网中,每一个结点在利用总线发送数据时,首先要侦听总线的忙、闲状态。如果总线上已经有数据信号传输,则为总线忙;如果总线上没有数据信号传输,则为总线空闲。由于Ethernet的数据信号是按差分曼彻斯特方法编码,因此如果总线上存在电平跳变,则判断为总线忙;否则判断为总线空。如果一个结点准备好发送的数据帧,并且此时总线空闲,它就可以启动发送。同时也存在着这种可能,那就是在几乎相同的时刻,有两个或两个以上结点发送了数据帧,那么就会产生冲突,所以结点在发送数据的同时应该进行冲突检测。
(4)CSMA/CD方式的主要特点
原理比较简单,技术上较易实现,网络中各工作站处于同等地位,不要集中控制,但这种方式不能提供优先级控制,各结点争用总线,不能满足远程控制所需要的确定延时和绝对可靠性的要求。此方式效率高,但当负载增大时,发送信息的等待时间较长。
3.令牌环(Token Ring)访问控制
Token Ring是令牌传输环(Token Passing Ring)的简写。令牌环介质访问控制方法是通过在环状网上传输令牌的方式来实现对介质的访问控制。只有当令牌传输至环中某站点时,它才能利用环路发送或接收信息。当环线上各站点都没有帧发送时,令牌标记为01111111,称为空标记。当一个站点要发送帧时,需等待令牌通过,并将空标记置换为忙标记01111110,紧跟着令牌,用户站点把数据帧发送至环上。由于是忙标记,所以其他站点不能发送帧,必须等待。
发送出去的帧将随令牌沿环路传输下去。在循环一周又回到原发送站点时,由发送站点将该帧从环上移去,同时将忙标记换为空标记,令牌传至后面站点,使之获得发送的许可权。发送站点在从环中移去数据帧的同时还要检查接收站载入该帧的应答信息,若为肯定应答,说明发送的帧已被正确接收,完成发送任务。若为否定应答,说明对方未能正确收到所发送的帧,原发送站点需要在带空标记的令牌第二次到来时,重发此帧。采用发送站从环上收回帧的策略,不仅具有对发送站点自动应答的功能,而且还具有广播特性,即可有多个站点接收同一个数据帧。
接收帧的过程与发送帧不同,当令牌及数据帧通过环上站点时,该站将帧携带的目标地址与本站地址相比较。若地址符合,则将该帧复制下来放入接收缓冲器中,待接收站正确接收后,即在该帧上载入肯定应答信号;若不能正确接收则载入否定应答信号,之后再将该帧送入环上,让其继续向下传输。若地址不符合,则简单地将数据帧重新送入环中。所以当令牌经过某站点而它既不发送信息,又无处接收时,会稍经延迟,继续向前传输。
在系统负载较轻时,由于站点需等待令牌到达才能发送或接收数据,因此效率不高。但若系统负载较重,则各站点可公平共享介质,效率较高。为避免所传输数据与标记形式相同而造成混淆,可采用位填入技术,以区别数据和标记。
使用令牌环介质访问控制方法的网络,需要有维护数据帧和令牌的功能。例如,可能会出现因数据帧未被正确移去而始终在环上传输的情况;也可能出现令牌丢失或只允许一个令牌的网络中出现了多个令牌等异常情况。解决这类问题的办法是在环中设置监控器,对异常情况进行检测并消除。令牌环网上的各个站点可以设置成不同的优先级,允许具有较高优先权的站申请获得下一个令牌权。
归纳起来,在令牌环中主要有下面3种操作。
截获令牌并且发送数据帧。如果没有结点需要发送数据,令牌就由各个结点沿固定的顺序逐个传递;如果某个结点需要发送数据,它要等待令牌的到来,当空闲令牌传到这个结点时,该结点修改令牌帧中的标志,使其变为“忙”的状态,然后去掉令牌的尾部,加上数据,成为数据帧,发送到下一个结点。
接收与转发数据。数据帧每经过一个结点,该结点就比较数据帧中的目的地址,如果不属于本结点,则转发出去;如果属于本结点,则复制到本结点的计算机中,同时在帧中设置已经复制的标志,然后向下一个结点转发。
取消数据帧并且重发令牌。由于环网在物理上是个闭环,一个帧可能在环中不停地流动,所以必须清除。当数据帧通过闭环重新传到发送结点时,发送结点不再转发,而是检查发送是否成功。如果发现数据帧没有被复制(传输失败),则重发该数据帧;如果发现传输成功,则清除该数据帧,并且产生一个新的空闲令牌发送到环上。
4.令牌总线访问控制法(Token Bus)
Token Bus是令牌通行总线(Token Passing bus)的简写。这种方式主要用于总线型或树状网络结构中。1976年美国Data Point公司研制成功的ARCnet(Attached Resource Computer)网络,它综合了令牌传递方式和总线网络的优点,在物理总线结构中实现令牌传递控制方法,从而构成一个逻辑环路。此方式也是目前微机局域中的主流介质访问控制方式。
ARCnet网络把总线或树状传输介质上的各工作站形成一个逻辑上的环,即将各工作站置于一个顺序的序列内(例如可按照接口地址的大小排列)。方法可以是在每个站点中设一个网络结点标识寄存器NID,初始地址为本站点地址。网络工作前,要对系统初始化,以形成逻辑环路,其过程主要是:网中最大站号n开始向其后继站发送“令牌”信包,目的站号为n+1,若在规定时间内收到肯定的信号ACK,则n+1站连入环路,否则在n+1继续向下询问(该网中最大站号为n=255,n+1后变为0,然后1、2、3、…递增),凡是给予肯定回答的站都可连入环路并将给予肯定回答的后继站号放入本站的NID中,从而形成一个封闭逻辑环路,经过一遍轮询过程,网络各站标识寄存器NID中存放的都是其相邻的下游站地址。
逻辑环形成后,令牌的逻辑中的控制方法类似于Token Ring。在Token Bus中,信息是按双向传送的,每个站点都可以“听到”其他站点发出的信息,所以令牌传递时都要加上目的地址,明确指出下一个将到控制的站点。这种方式与CSMA/CD方式的不同在于除了当时得到令牌的工作站之外,所有的工作站只收不发,只有收到令牌后才能开始发送,所以拓扑结构虽是总线型但可以避免冲突。
Token Bus方式的最大优点是具有极好的吞吐能力,且吞吐量随数据传输速率的增高而增加,并随介质的饱和而稳定下来但并不下降;各工作站不需要检测冲突,故信号电压容许较大的动态范围,联网距离较远;有一定实时性,在工业控制中得到了广泛应用,如MAP网就是用的宽带令牌总线。其主要缺点在于其复杂性和时间开销较大,工作站可能必须等待多次无效的令牌传送后才能获得令牌。
应该指出,ARCnet网实际上采用称为集中器的硬件联网,物理拓扑上有星状和总线型两种连接方式。

G. 共享介质以太网中,采用的访问控制方法是什么

CSMA/CD(Carrier Sense Multiple Access/Collision Detect)
即载波监听多路访问/冲突检测方法

H. 局域网最常用的介质访问控制方式是哪两种各有什么特点

局域网最常用的介质访问控制方式及特点如下: 令牌是一种特殊的帧,用于控制网络结点的发送权,只有持有令牌的结点才能发送数据。1. 令牌总线访问控制(Token-Bus) 令牌总线的优点 在于它的确定性、可调整性及较好的吞吐能力,适用于对数据传输实时性要求较高或通讯负荷较重的应用环境中,如生产过程控制领域。 它的缺点在于它的复杂性和时间开销较大,结点可能要等待多次无效的令牌传送后才能获得令牌。 2.令牌环访问控制(Token-Ring) 令牌环的主要优点 在于其访问方式具有可调整性和确定性,且每个结点具有同等的介质访问权。同时,还提供优先权服务,具有很强的适用性。 它的主要缺点 是环维护复杂,实现较困难。

I. 简述以太网的介质访问控制方式的原理

简述以太网的介质访问控制方式的原理

以太网采用CSMA/CD媒体访问机制,任何工作站都可以在任何时间访问网络。在发送数据之前,工作站首先需要侦听网络是否空闲,如果网络上没有任何数据传送,工作站就会把所要发送的信息投放到网络当中。否则,工作站只能等待网络下一次出现空闲的时候再进行数据的发送。

快速以太网与传统以太网 (10BASET) 的介质访问控制方式 ()

A

以太网采用CSMA/CD介质访问控制方式进行通信。这句话对吗?

是正确的!主要是用在使用集线器链接主机的情况

ieee802.3标准以太网的介质访问控制的工作原理

呵呵,兄弟,我们考试题目一样啊!你是哪个学校的啊? 下面给你答案:
试简述IEEE802.3标准以太网的介质访问控制的工作原理(包括发送端、接收端及冲突处理的原理)。
(1)工作站要发送数据时,先侦听信道是否有载波,如果有,表示信道忙,则继续侦听,直至检测到空闲,立即发送数据;
(2)在发送数据过程中进行冲突检测,如果在冲突窗口内没有发生冲突,则表示数据发送成功,否则立即停止发送,并采用二进制指数回退算法,等待一个随机时间后在重复发送过程;
(3)对于接收方,则根据数据包的校验和正确与否和物理地址是否为自己来决定是否将数据交给上层协议.

在共享介质以太网中,采用的介质访问控制方法是

答案是D,CSMA/CD又叫载波侦听多址访问/冲突检测

以太网络的介质控制方式是什么(介质访问方式),工作原理是什么?

以太网的介质访问控制(MAC)技术称为:载波监听多路存取和冲突检测(CSMA/CD),下面我们分步来说明其原理:
1、载波监听:当你所在的网站(包括服务器和工作站)要向另一个网站发送信息时,先监听网络信道上有无信息正在传输,信道是否空闲。
2、信道忙碌:如果发现网络信道正忙,则等待,直到发现网络信道空闲为止。
3、信道空闲:如果发现网络信道空闲,则向网上发送信息。由于整个网络信道为共享总线结构,网上所有网站都能够收到你所发出的信息,所以网站向网络信道发送信息也称为“广播”。但只有你想要发送数据的网站识别和接收这些信息。
4、冲突检测:网站发送信息的同时,还要监听网络信道,检测是否有另一台网站同时在发送信息。如果有,两个网站发送的信息会产生碰撞,即产生冲突,从而使数据信息包被破坏。
5、遇忙停发:如果发送信息的网站检测到网上的冲突,则立即停止该此网络信息发送,并向网上发送一个“冲突”信号,让其它网站也发现该冲突,从而摈弃可能一直在接收的受损的信息包。
6、多路存取:如果发送信息的网站因“碰撞冲突”而停止发送,就需等待一段时间,再回到第一步,重新开始载波监听和发送,直到数据成功发送为止。
以太网规范具体规定了如何在临近的物理区域,即局域网内,实现计算机之间的数据传送。如果希望将一台计算机接入局域网成为整个网络的一部分,该计算机需要具备一个用于分割和包装数据的网络接口以及一个用于连接线缆的连接端口。连接端口一般被集成到系统的主板上或做为内置网卡将数据发送到网络上,同时接收来自网络上其它计算机的数据。
以太网不仅仅是一种硬件规范,同时它还是一种通讯协议,可以控制如何在相互连接的计算机中传送数据。通过以太网技术连接的计算机首先把需要发送的信息分割成小的许多小的数据包,然后再通过网线发送出去。我们可以把数据包想象为一个个的行李箱,加上标签之后,通过运输通经发送到不同的目的城市。除了需要传送的信息之外,数据包中还包含用于指定接收方的目标地址和用于标明发送方的源地址。
以太网接口使用一种被称为 Carrier Sense Multiple Aess With Collision Detection即CSMA/CD(载波监听多路存取和冲突检测) 的协议发送数据包。该协议为避免多台计算机同时发送数据所造成的数据丢失和网络阻塞,规定在任意时刻内网络上只能有一台计算机向外发送数据,每一台计算机在发送数据之前必须等待网络上的空闲间隔时间。当一个被发送出的数据包到达接收方时,发送方会收到确认信息,然后等待下一次网络空闲时间发送下一个数据包。所有在数据包传输路径上的设备都会读取数据包内的目标地址,以判断是否接收数据包或继续转发数据包。

IEEE802.3协议的以太网(ETHEERNET)介质访问控制方法(MAC)是怎么样工作的

1.物理层
物理层包括物理介质、物理介质连接设备(PMA)、连接单元(AUI)和物理收发信号格式(PS)。物理层的主要功能是提供编码、解码、时钟提取与同步、发送、接收和载波检测等,为数据链路层提供服务。
2.数据链路层
数据链路层包括逻辑链路控制(LLC)子层和介质访问控制(MAC)子层
LLC子层的主要功能是控制对传输介质的访问。目前,常用LLC协议有:CSMA/CD、Token-Bus、Token-Ring和FDDI。
MAC子层的主要功能是提供连接服务类型,其中,面向连接的服务能提供可靠的通信。

共享介质以太网中,采用的访问控制方法是什么?

CSMA/CD(Carrier Sense Multiple Aess/Collision Detect)
即载波监听多路访问/冲突检测方法

什么是介质访问控制方法

介质访问控制方式,也就是信道访问控制方法,可以简单的把它理解为如何控制网络节点何时发送数据、如何传输数据以及怎样在介质上接收数据。常用的介质访问控制方式有时分多路复用(TDM)、带冲突检测的载波监听多路访问介质控制(CSMA/CD)和令牌环(Token Ring)。

介质网的控制方式

CSMACD 带有载波侦听的随机冲突检测

J. 局域网中的介质访问控制方法都有什么

常用的介质访问控制方式有时分多路复用(TDM)、带冲突检测的载波监听多路访问介质控制(CSMA/CD)和令牌环(Token Ring)。

1、CSMA/CD为标准以太网、快速以太网和千兆以太网中统一采用的介质争用处理协议(但在万兆以太网中,由于采用的是全双工通信,所以不再采用这一协议)。

2、令牌环工作原理:网上站点要求发送帧,必须等待空令牌。当获取空令牌,则将它改为忙令牌,后随数据帧;环内其它站点不能发送数据。环上站点接收、移位数据,并进行检测。如果与本站地址相同,则同时接收数据,接收完成后,设置相应标记。

该帧在环上循环一周后,回到发送站,发送站检测相应标记后,将此帧移去。将忙令牌改成空令牌,继续传送,供后续站发送帧。



(10)共享介质访问控制方案扩展阅读

在CSMA中,由于信道传播时延的存在,即使通信双方的站点都没有侦听到载波信号,在发送数据时仍可能会发生冲突,因为他们可能会在检测到介质空闲时同时发送数据,致使冲突发生。尽管CSMA可以发现冲突,但它并没有先知的冲突检测和阻止功能,致使冲突发生频繁。

一种CSMA的改进方案是使发送站点在传输过程中仍继续侦听介质,以检测是否存在冲突。如果两个站点都在某一时间检测到信道是空闲的,并且同时开始传送数据,则它们几乎立刻就会检测到有冲突发生。

如果发生冲突,信道上可以检测到超过发送站点本身发送的载波信号幅度的电磁波,由此判断出冲突的存在。一旦检测到冲突,发送站点就立即停止发送,并向总线上发一串阻塞信号,用以通知总线上通信的对方站点,快速地终止被破坏的帧,可以节省时间和带宽。