当前位置:首页 » 文件传输 » 在以太网上使用哪种介质访问方法
扩展阅读
webinf下怎么引入js 2023-08-31 21:54:13
堡垒机怎么打开web 2023-08-31 21:54:11

在以太网上使用哪种介质访问方法

发布时间: 2022-04-15 04:52:00

① 以太网是目前应用最广泛的局域网,使用介质访问方式是什么

咨询记录 · 回答于2021-10-17

② 以太网络的介质控制方式是什么(介质访问方式),工作原理是什么

以太网的介质访问控制(MAC)技术称为:载波监听多路存取和冲突检测(CSMA/CD),下面我们分步来说明其原理:
1、载波监听:当你所在的网站(包括服务器和工作站)要向另一个网站发送信息时,先监听网络信道上有无信息正在传输,信道是否空闲。
2、信道忙碌:如果发现网络信道正忙,则等待,直到发现网络信道空闲为止。
3、信道空闲:如果发现网络信道空闲,则向网上发送信息。由于整个网络信道为共享总线结构,网上所有网站都能够收到你所发出的信息,所以网站向网络信道发送信息也称为“广播”。但只有你想要发送数据的网站识别和接收这些信息。
4、冲突检测:网站发送信息的同时,还要监听网络信道,检测是否有另一台网站同时在发送信息。如果有,两个网站发送的信息会产生碰撞,即产生冲突,从而使数据信息包被破坏。
5、遇忙停发:如果发送信息的网站检测到网上的冲突,则立即停止该此网络信息发送,并向网上发送一个“冲突”信号,让其它网站也发现该冲突,从而摈弃可能一直在接收的受损的信息包。
6、多路存取:如果发送信息的网站因“碰撞冲突”而停止发送,就需等待一段时间,再回到第一步,重新开始载波监听和发送,直到数据成功发送为止。
以太网规范具体规定了如何在临近的物理区域,即局域网内,实现计算机之间的数据传送。如果希望将一台计算机接入局域网成为整个网络的一部分,该计算机需要具备一个用于分割和包装数据的网络接口以及一个用于连接线缆的连接端口。连接端口一般被集成到系统的主板上或做为内置网卡将数据发送到网络上,同时接收来自网络上其它计算机的数据。

以太网不仅仅是一种硬件规范,同时它还是一种通讯协议,可以控制如何在相互连接的计算机中传送数据。通过以太网技术连接的计算机首先把需要发送的信息分割成小的许多小的数据包,然后再通过网线发送出去。我们可以把数据包想象为一个个的行李箱,加上标签之后,通过运输通经发送到不同的目的城市。除了需要传送的信息之外,数据包中还包含用于指定接收方的目标地址和用于标明发送方的源地址。

以太网接口使用一种被称为 Carrier Sense Multiple Access With Collision Detection即CSMA/CD(载波监听多路存取和冲突检测) 的协议发送数据包。该协议为避免多台计算机同时发送数据所造成的数据丢失和网络阻塞,规定在任意时刻内网络上只能有一台计算机向外发送数据,每一台计算机在发送数据之前必须等待网络上的空闲间隔时间。当一个被发送出的数据包到达接收方时,发送方会收到确认信息,然后等待下一次网络空闲时间发送下一个数据包。所有在数据包传输路径上的设备都会读取数据包内的目标地址,以判断是否接收数据包或继续转发数据包。

③ 简述以太网的介质访问控制方式的原理

在CSMA中,由于信道传播时延的存在,即使通信双方的站点都没有侦听到载波信号,在发送数据时仍可能会发生冲突,因为他们可能会在检测到介质空闲时同时发送数据,致使冲突发生。尽管CSMA可以发现冲突,但它并没有先知的冲突检测和阻止功能,致使冲突发生频繁。

一种CSMA的改进方案是使发送站点在传输过程中仍继续侦听介质,以检测是否存在冲突。如果两个站点都在某一时间检测到信道是空闲的,并且同时开始传送数据,则它们几乎立刻就会检测到有冲突发生。

如果发生冲突,信道上可以检测到超过发送站点本身发送的载波信号幅度的电磁波,由此判断出冲突的存在。一旦检测到冲突,发送站点就立即停止发送,并向总线上发一串阻塞信号,用以通知总线上通信的对方站点,快速地终止被破坏的帧,可以节省时间和带宽。

这种方案就是本节要介绍的CSMA/CD(Carrier Sense Multiple Access with Collision Detection,载波侦听多路访问/冲突检测协议),已广泛应用于局域网中。

(3)在以太网上使用哪种介质访问方法扩展阅读:

介质访问控制地址:

在局域网(LAN)或其他网络中,介质访问控制地址(MAC address,Media Access Control address)是您计算机唯一的硬件号。

在局域网(LAN)或其他网络中,介质访问控制地址(MAC address,Media Access Control address)是您计算机唯一的硬件号。(在以太网局域网中,它与您的以太网地址相同。)当您从计算机连接到互联网,一个对应表将您的IP地址连到局域网中您计算机的物理(MAC)地址。

介质访问控制子层(通信协议的数据链路层)使用MAC(Media Access Control)地址。每个物理设备类型有一个不同的MAC子层。数据链路层(DLC)的另一个子层是逻辑链路控制子层。

④ 以太网采用何种媒体访问技术

以太网是当今现有局域网采用的最通用的通信协议标准,组建于七十年代早期。Ethernet(以太网)是一种传输速率为10Mbps的常用局域网(LAN)标准。在以太网中,所有计算机被连接一条同轴电缆上,采用具有冲突检测的载波感应多处访问(CSMA/CD)方法,采用竞争机制和总线拓朴结构。基本上,以太网由共享传输媒体,如双绞线电缆或同轴电缆和多端口集线器、网桥或交换机构成。在星型或总线型配置结构中,集线器/交换机/网桥通过电缆使得计算机、打印机和工作站彼此之间相互连接。

以太网具有的一般特征概述如下:

共享媒体:所有网络设备依次使用同一通信媒体。

广播域:需要传输的帧被发送到所有节点,但只有寻址到的节点才会接收到帧。

CSMA/CD:以太网中利用载波监听多路访问/冲突检测方法(Carrier Sense Multiple Access/Collision Detection)以防止 twp 或更多节点同时发送。

MAC 地址:媒体访问控制层的所有 Ethernet 网络接口卡(NIC)都采用48位网络地址。这种地址全球唯一。

Ethernet 基本网络组成:

共享媒体和电缆:10BaseT(双绞线),10Base-2(同轴细缆),10Base-5(同轴粗缆)。

转发器或集线器:集线器或转发器是用来接收网络设备上的大量以太网连接的一类设备。通过某个连接的接收双方获得的数据被重新使用并发送到传输双方中所有连接设备上,以获得传输型设备。

网桥:网桥属于第二层设备,负责将网络划分为独立的冲突域获分段,达到能在同一个域/分段中维持广播及共享的目标。网桥中包括一份涵盖所有分段和转发帧的表格,以确保分段内及其周围的通信行为正常进行。

交换机:交换机,与网桥相同,也属于第二层设备,且是一种多端口设备。交换机所支持的功能类似于网桥,但它比网桥更具有的优势是,它可以临时将任意两个端口连接在一起。交换机包括一个交换矩阵,通过它可以迅速连接端口或解除端口连接。与集线器不同,交换机只转发从一个端口到其它连接目标节点且不包含广播的端口的帧。

以太网协议:IEEE 802.3标准中提供了以太帧结构。当前以太网支持光纤和双绞线媒体支持下的四种传输速率:

10 Mbps – 10Base-T Ethernet(802.3)

100 Mbps – Fast Ethernet(802.3u)

1000 Mbps – Gigabit Ethernet(802.3z))

10 Gigabit Ethernet – IEEE 802.3ae

以太网简史:

1972年,罗伯特•梅特卡夫(Robert Metcalfe)和施乐公司帕洛阿尔托研究中心(Xerox PARC)的同事们研制出了世界上第一套实验型的以太网系统,用来实现Xerox Alto(一种具有图形用户界面的个人工作站)之间的互连,这种实验型的以太网用于Alto工作站、服务器以及激光打印机之间的互连,其数据传输率达到了2.94Mbps。

梅特卡夫发明的这套实验型的网络当时被称为Alto Aloha网。1973年,梅特卡夫将其命名为以太网,并指出这一系统除了支持Alto工作站外,还可以支持任何类型的计算机,而且整个网络结构已经超越了Aloha系统。他选择“以太”(ether)这一名词作为描述这一网络的特征:物理介质(比如电缆)将比特流传输到各个站点,就像古老的“以太理论”(luminiferous ether)所阐述的那样,古代的“以太理论”认为“以太”通过电磁波充满了整个空间。就这样,以太网诞生了。

最初的以太网事一种实验型的同轴电缆网,冲突检测采用CSMA/CD 。该网络的成功,引起了大家的关注。1980年,三家公司(数字设备公司、Intel公司、施乐公司)联合研发了10M以太网1.0规范。最初的IEEE802.3即基于该规范,并且与该规范非常相似。802.3工作组于1983年通过了草案,并于1985年出版了官方标准ANSI/IEEE Std 802.3-1985。从此以后,随着技术的发展,该标准进行了大量的补充与更新,以支持更多的传输介质和更高的传输速率等。

1979年,梅特卡夫成立了3Com公司,并生产出第一个可用的网络设备:以太网卡(NIC), 它是允许从主机到IBM终端和PC机等不同设备相互之间实现无缝通信的第一款产品,使企业能够以无缝方式共享和打印文件,从而增强工作效率,提高企业范围的通信能力。

以太网和IEEE802.3:

以太网是Xerox公司发明的基带LAN标准。它采用带冲突检测的载波监听多路访问协议(CSMA/CD),速率为10Mbps,传输介质为同轴电缆。以太网是在20世纪70年代为解决网络中零散的和偶然的堵塞而开发的,而IEEE802.3标准是在最初的以太网技术基础上于1980年开发成功的。现在,以太网一词泛指所有采用CSMA/CD协议的局域网。以太网2.0版由数字设备公司、Intel公司和Xerox公司联合开发,它与IEEE802.3兼容。

以太网和IEEE802.3通常由接口卡(网卡)或主电路板上的电路实现。以太网电缆协议规定用收发器将电缆连到网络物理设备上。收发器执行物理层的大部分功能,其中包括冲突检测及收发器电缆将收发器连接到工作站上。

IEEE802.3提供了多种电缆规范,10Base5就是其中的一种,它与以太网最为接近。在这一规范中,连接电缆称作连接单元接口(AUI),网络连接设备称为介质访问单元(MAU)而不再是收发器。

1.以太网和IEEE802.3的工作原理

在基于广播的以太网中,所有的工作站都可以收到发送到网上的信息帧。每个工作站都要确认该信息帧是不是发送给自己的,一旦确认是发给自己的,就将它发送到高一层的协议层。

在采用CSMA/CD传输介质访问的以太网中,任何一个CSMA/CDLAN工作站在任何一时刻都可以访问网络。发送数据前,工作站要侦听网络是否堵塞,只有检测到网络空闲时,工作站才能发送数据。

在基于竞争的以太网中,只要网络空闲,任一工作站均可发送数据。当两个工作站发现网络空闲而同时发出数据时,就发生冲突。这时,两个传送操作都遭到破坏,工作站必须在一定时间后重发,何时重发由延时算法决定。

2.以太网和IEEE802.3服务的差别

尽管以太网与IEEE802.3标准有很多相似之处,但也存在一定的差别。以太网提供的服务对应于OSI参考模型的第一层和第二层,而IEEE802.3提供的服务对应于OSI参考模型的第一层和第二层的信道访问部分(即第二层的一部分)。IEEE802.3没有定义逻辑链路控制协议,但定义了几个不同物理层,而以太网只定义了一个。

IEEE802.3的每个物理层协议都可以从三方面说明其特征,这三方面分别是LAN的速度、信号传输方式和物理介质类型

⑤ 在共享介质以太网中,采用的介质访问控制方法是

控制方法是CSMA/CD方法。

在传统的共享以太网中,所有的节点共享传输介质。为了保证传输介质有序、高效地为许多节点提供传输服务,就需要以太网的介质访问控制协议解决问题。

CSMA/CD是一种争用型的介质访问控制协议。它起源于美国夏威夷大学开发的ALOHA网所采用的争用型协议,并进行了改进,使之具有比ALOHA协议更高的介质利用率。主要应用于现场总线Ethernet中。另一个改进是,对于每一个站而言,一旦它检测到有冲突,它就放弃它当前的传送任务。

因为需要使用CSMA/CD协议来控制以太网的介质访问,所以答案是(D )CSMA/CD方法。

(5)在以太网上使用哪种介质访问方法扩展阅读:

CSMA/CD控制方式的优点是:

原理比较简单,技术上易实现,网络中各工作站处于平等地位 ,不需集中控制,不提供优先级控制。但在网络负载增大时,发送时间增长,发送效率急剧下降。

它的工作原理是: 发送数据前 先侦听信道是否空闲 ,若空闲,则立即发送数据。若信道忙碌,则等待一段时间至信道中的信息传输结束后再发送数据;若在上一段信息发送结束后,同时有两个或两个以上的节点都提出发送请求,则判定为冲突。若侦听到冲突,则立即停止发送数据,等待一段随机时间,再重新尝试。

⑥ 以太网采用的介质访问协议是

CSMA/CD访问法,也就是带有碰撞检测的载波侦听多点访问法

⑦ 以太网可以使用的主要传输介质

双绞线、细缆、粗缆、光缆。

在物理层上以太网的每个版本都有电缆的最大长度限制(即无须放大的长度),这个范围内的信号可以正常传播,超过这个范围信号将无法传播。

为了允许建设更大的网络,可以用中继器把多条电缆连接起来。中继器是一个物理层设备,它能接收、放大并在两个方向上重发信号。在这些电缆上,信息的发送使用曼彻斯特编码。

(7)在以太网上使用哪种介质访问方法扩展阅读:

以太网起源:

以太网的故事始于ALOHA时期,确切的时间是在一个名叫Bob Metcalfe的学生获得麻省理工学院的学士学位后,搬到河对岸的哈佛大学攻读博士学位之后。在他学习期间,他接触到了Abramson的工作,他对此很感兴趣。

从哈佛毕业之后,他决定前往施乐帕洛阿尔托研究中心正式工作之前留在夏威夷度假,以便帮助Abramson工作。当他到帕洛阿尔托研究中心,他看到那里的研究人员已经设计并建造出后来称为个人计算机的机器,但这些机器都是孤零零的;

他便运用帮助Abramson工作获得的知识与同事David Boggs 设计并实现了第一个局域网。该局域网采用一个长的粗同轴电缆,以3Mbps速率运行。

他们把这个系统命名为以太网,人们曾经认为通过它可以传播电磁辐射。

⑧ 以太网的介质访问规则是什么

介质访问控制(MAC)在OSI网络模型中是一个数据链路层的下层,它决定谁被在任何时间允许访问物理介质。它作为在逻辑链路子层和网络物理层之间的一个接口。这个介质访问控制子层最初与访问物理传输介质(例如那个站点附到线上或频率范围有权利进行传输)或低水平介质共享协议例如CSMA/CD控制有关。 MAC为在因特网协议(IP)网络上的计算机提供独特的鉴定和访问控制。MAC分配一个独特的编码到每个IP网络适配器叫做MAC地址。

⑨ 以太网的介质访问方法是什么

CSMA/CD 载波侦听/冲突检测

⑩ 局域网从介质访问控制方法的角度可分为哪两类以太网属于其中的哪一类局域网

传输访问控制方式与局域网的拓扑结构/工作过程有密切关系.目前,计算机局域网常用的访问控制方式有三种,分别用于不同的拓扑结构:带有冲突检测的载波侦听多路访问法(CSMA/CD),令牌环访问控制法(Token Ring),令牌总线访问控制法(token bus).

1 CSMA/CD

最早的CSMA方法起源于美国夏威夷大学的ALOHA广播分组网络,1980年美国DEC、Intel和Xerox公司联合宣布Ethernet网采用CSMA技术,并增加了检测碰撞功能,称之为CSMA/CD。这种 方式适用于总线型和树形拓扑结构,主要解决如何共享一条公用广播传输介质。其简单原理 是:在网络中,任何一个工作站在发送信息前,要侦听一下网络中有无其它工作站在发送信 号,如无则立即发送,如有,即信道被占用,此工作站要等一段时间再争取发送权。等待时 间可由二种方法确定,一种是某工作站检测到信道被占用后,继续检测,直到信道出现空闲 。另一种是检测到信道被占用后,等待一个随机时间进行检测,直到信道出现空闲后再发送 。

CSMA/CD要解决的另一主要问题是如何检测冲突。当网络处于空闲的某一瞬间,有两个或两 个以上工作站要同时发送信息,这时,同步发送的信号就会引起冲突,现由IEEE802.3标准确定的CSMA/CD检测冲突的方法是:当一个工作站开始占用信道进行发送信息时,再用碰撞 检测器继续对网络检测一段时间,即一边发送,一边监听,把发送的信息与监听的信息进行比较,如结果一致,则说明发送正常,抢占总线成功,可继续发送。如结果不一致,则说明 有冲突,应立即停止发送。等待一随机时间后,再重复上述过程进行发送。

CSMA/CD控制方式的优点是:原理比较简单,技术上易实现,网络中各工作站处于平等地位 ,不需集中控制,不提供优先级控制。但在网络负载增大时,发送时间增长,发送效率急剧下降。

2 令牌环

令牌环只适用于环形拓扑结构的局域网。其主要原理是:使用一个称之为“令牌”的控制标 志(令牌是一个二进制数的字节,它由“空闲”与“忙”两种编码标志来实现,既无目的地 址 ,也无源地址),当无信息在环上传送时,令牌处于“空闲”状态,它沿环从一个工作站到 另 一个工作站不停地进行传递。当某一工作站准备发送信息时,就必须等待,直到检测并捕获 到经过该站的令牌为止,然后,将令牌的控制标志从“空闲”状态改变为“忙”状态,并发送出一帧信息。其他的工作站随时检测经过本站的帧,当发送的帧目的地址与本站地址相符时,就接收该帧,待复制完毕再转发此帧,直到该帧沿环一周返回发送站,并收到接收站指向发送站的肯定应签信息时,才将发送的帧信息进行清除,并使令牌标志又处于“空闲”状 态,继续插入环中。当另一个新的工作站需要发送数据时,按前述过程,检测到令牌,修改状态,把信息装配成帧,进行新一轮的发送。

令牌环控制方式的优点是它能提供优先权服务,有很强的实时性,在重负载环路中,“令牌 ”以循环方式工作,效率较高。其缺点是控制电路较复杂,令牌容易丢失。但IBM在1985年 已解决了实用问题,近年来采用令牌环方式的令牌环网实用性已大大增强。

3 令牌总线

令牌总线主要用于总线形或树形网络结构中。它的访问控制方式类似于令牌环,但它是把总 线形或树形网络中的各个工作站按一定顺序如按接口地址大小排列形成一个逻辑环。只有令牌持有者才能控制总线,才有发送信息的权力。信息是双向传送,每个站都可检测到其它站 点发出的信息。在令牌传递时,都要加上目的地址,所以只有检测到并得到令牌的工作站, 才能发送信息,它不同于CSMA/CD方式,可在总线和树形结构中避免冲突。

这种控制方式的优点是各工作站对介质的共享权力是均等的,可以设置优先级,也可以不设 ;有较好的吞吐能力,吞吐量随数据传输速率增高而加大,连网距离较CSMA/CD方式大。缺 点是控制电路较复杂、成本高,轻负载时,线路传输效率低。