当前位置:首页 » 硬盘大全 » 并发系统缓存设计
扩展阅读
webinf下怎么引入js 2023-08-31 21:54:13
堡垒机怎么打开web 2023-08-31 21:54:11

并发系统缓存设计

发布时间: 2022-12-09 16:06:50

Ⅰ 高性能高并发网站架构,教你搭建Redis5缓存集群

一、Redis集群介绍

Redis真的是一个优秀的技术,它是一种key-value形式的Nosql内存数据库,由ANSI C编写,遵守BSD协议、支持网络、可基于内存亦可持久化的日志型、Key-Value数据库,并提供多种语言的API。 Redis最大的特性是它会将所有数据都放在内存中,所以读写速度性能非常好。Redis是基于内存进行操作的,性能较高,可以很好的在一定程度上解决网站一瞬间的并发量,例如商品抢购秒杀等活动。

网站承受高并发访问压力的同时,还需要从海量数据中查询出满足条件的数据,需要快速响应,前端发送请求、后端和mysql数据库交互,进行sql查询操作,读写比较慢,这时候引入Redis ,把从mysql 的数据缓存到Redis 中,下次读取时候性能就会提高;当然,它也支持将内存中的数据以快照和日志的形式持久化到硬盘,这样即使在断电、机器故障等异常情况发生时数据也不会丢失,Redis能从硬盘中恢复快照数据到内存中。

Redis 发布了稳定版本的 5.0 版本,放弃 Ruby的集群方式,改用 C语言编写的 redis-cli的方式,是集群的构建方式复杂度大大降低。Redis-Cluster集群采用无中心结构,每个节点保存数据和整个集群状态,每个节点都和其他所有节点连接。

为了保证数据的高可用性,加入了主从模式,一个主节点对应一个或多个从节点,主节点提供数据存取,从节点则是从主节点拉取数据备份,当这个主节点挂掉后,就会有这个从节点选取一个来充当主节点,从而保证集群不会挂掉。

redis-cluster投票:容错,投票过程是集群中所有master参与,如果半数以上master节点与master节点通信超过(cluster-node-timeout),认为当前master节点挂掉。

集群中至少应该有奇数个节点,所以至少有三个节点,每个节点至少有一个备份节点,所以下面使用6节点(主节点、备份节点由redis-cluster集群确定)。6个节点分布在一台机器上,采用三主三从的模式。实际应用中,最好用多台机器,比如说6个节点分布到3台机器上,redis在建立集群时为自动的将主从节点进行不同机器的分配。

二、单机redis模式

下载源码redis5.0并解压编译

wget http://download.redis.io/releases/redis-5.0.0.tar.gz

tar xzf redis-5.0.0.tar.gz

cd redis-5.0.0

make

redis前端启动需要改成后台启动.

修改redis.conf文件,将daemonize no -> daemonize yes

vim redis.conf

启动redis

/www/server/redis/src/redis-server /www/server/redis/redis.conf

查看redis是否在运行

ps aux|grep redis

现在是单机redis模式完成。

三、redis集群模式:

1.创建6个Redis配置文件

cd /usr/local/

mkdir redis_cluster //创建集群目录

cd redis_cluster

mkdir 7000 7001 7002 7003 7004 7005//分别代表6个节点

其对应端口 7000 7001 7002 70037004 7005

2.复制配置文件到各个目录

cp /www/server/redis/redis.conf /usr/local/redis_cluster/7000/

cp /www/server/redis/redis.conf /usr/local/redis_cluster/7001/

cp /www/server/redis/redis.conf /usr/local/redis_cluster/7002/

cp /www/server/redis/redis.conf /usr/local/redis_cluster/7003/

cp /www/server/redis/redis.conf /usr/local/redis_cluster/7004/

cp /www/server/redis/redis.conf /usr/local/redis_cluster/7005/

3.分别修改配置文件

vim /usr/local/redis_cluster/7000/redis.conf

vim /usr/local/redis_cluster/7001/redis.conf

vim /usr/local/redis_cluster/7002/redis.conf

vim /usr/local/redis_cluster/7003/redis.conf

vim /usr/local/redis_cluster/7004/redis.conf

vim /usr/local/redis_cluster/7005/redis.conf

如下

port 7000 #端口

cluster-enabled yes #启用集群模式

cluster-config-file nodes_7000.conf #集群的配置 配置文件首次启动自动生成

cluster-node-timeout 5000 #超时时间 5秒

appendonly yes #aof日志开启 它会每次写操作都记录一条日志

daemonize yes #后台运行

protected-mode no #非保护模式

pidfile /var/run/redis_7000.pid

//下面可以不写

#若设置密码,master和slave需同时配置下面两个参数:

masterauth "jijiji" #连接master的密码

requirepass "jijiji" #自己的密码

cluster-config-file,port,pidfile对应数字

4.启动节点

cd /www/server/redis/src/

./redis-server /usr/local/redis_cluster/7000/redis.conf

./redis-server /usr/local/redis_cluster/7001/redis.conf

./redis-server /usr/local/redis_cluster/7002/redis.conf

./redis-server /usr/local/redis_cluster/7003/redis.conf

./redis-server /usr/local/redis_cluster/7004/redis.conf

./redis-server /usr/local/redis_cluster/7005/redis.conf

查看redis运行

ps aux|grep redis

5.启动集群

/www/server/redis/src/redis-cli --cluster create 127.0.0.1:7000 127.0.0.1:7001 127.0.0.1:7002 127.0.0.1:7003 127.0.0.1:7004 127.0.0.1:7005 --cluster-replicas 1

这里使用的命令是create,因为我们要创建一个新的集群。 该选项--cluster-replicas 1意味着我们希望每个创建的主服务器都有一个从服。

输入yes

至此,Reids5 集群搭建完成。

6.检查Reids5集群状态

可以执行redis-cli --cluster check host:port检查集群状态slots详细分配。

redis-cli --cluster info 127.0.0.1:7000

7.停止Reids5集群

(1).因为Redis可以妥善处理SIGTERM信号,所以直接kill -9也是可以的,可以同时kill多个,然后再依次启动。

kill -9 PID PID PID

(2).redis5 提供了关闭集群的工具,修改文件: /www/server/redis/utils/create-cluster/create-cluster

端口PROT设置为6999,NODES为6,工具会生成 7000-7005 六个节点 用于操作。

修改后,执行如下命令关闭集群:

/www/server/redis/utils/create-cluster/create-cluster stop

重新启动集群:

/www/server/redis/utils/create-cluster/create-cluster start

8.帮助信息

执行redis-cli --cluster help,查看更多帮助信息

redis-cli --cluster help

吉海波

Ⅱ 现在有哪些技术能够提高.Net的并发和缓存

这些并发,可以通过增加应用服务器来达到,缓存可以使用 "System.Web.Caching.Cache"来增加,由于目前不知道增加这些并发和缓存的作用,所以下面只能列举常用的方法给你哦!

一、缓解数据库读取压力

这个缓存机制使用的是.Net本身提供的缓存功能,System.Web.Caching.Cache
这个方案可以解决一般访问量不是很大的站点的需求,更高一级的,可以通过增加Web园工作进程来达到提升性能的需求,而且这个方案里面,已经解决多进程下缓存同步的问题。

更高层次的缓存只用到内存数据库如:Redis Memcached ...

由于增加了缓存服务,可以解决大部分高并发访问需求。

二、缓解Web服务器压力

1 增加公用资源文件访问CDN (将 js pic 这些站点必须的文件采用公用CDN)

2 使用单独的文件服务器

3 增加web服务器进行负载均衡设计

三、缓解数据库压力

    数据库读写分离处理

    --------------------------

    请采纳!

Ⅲ 如何搭建亿级并发的系统架构

想设计亿万级高并发架构,你要先知道高并发是什么?

面对流量高峰,不同的企业是如何通过技术手段解决高并发难题的呢?

0、引言

软件系统有三个追求:高性能、高并发、高可用,俗称三高。三者既有区别也有联系,门门道道很多,全面讨论需要三天三夜,本篇讨论高并发。

高并发(High Concurrency)。并发是操作系统领域的一个概念,指的是一段时间内多任务流交替执行的现象,后来这个概念被泛化,高并发用来指大流量、高请求的业务情景,比如春运抢票,电商双十一,秒杀大促等场景。

很多程序员每天忙着搬砖,平时接触不到高并发,哪天受不了跑去面试,还常常会被面试官犀利的高并发问题直接KO,其实吧,高并发系统也不高深,我保证任何一个智商在线的看过这篇文章后,都能战胜恐惧,重拾生活的信心。

本文先介绍高并发系统的度量指标,然后讲述高并发系统的设计思路,再梳理高并发的关键技术,最后结合作者的经验做一些延伸探讨。

1、高并发的度量指标

既然是高并发系统,那并发一定要高,不然就名不副实。并发的指标一般有QPS、TPS、IOPS,这几个指标都是可归为系统吞吐率,QPS越高系统能hold住的请求数越多,但光关注这几个指标不够,我们还需要关注RT,即响应时间,也就是从发出request到收到response的时延,这个指标跟吞吐往往是此消彼长的,我们追求的是一定时延下的高吞吐。

比如有100万次请求,99万次请求都在10毫秒内响应,其他次数10秒才响应,平均时延不高,但时延高的用户受不了,所以,就有了TP90/TP99指标,这个指标不是求平均,而是把时延从小到大排序,取排名90%/99%的时延,这个指标越大,对慢请求越敏感。

除此之外,有时候,我们也会关注可用性指标,这可归到稳定性。

一般而言,用户感知友好的高并发系统,时延应该控制在250毫秒以内。

什么样的系统才能称为高并发?这个不好回答,因为它取决于系统或者业务的类型。不过我可以告诉你一些众所周知的指标,这样能帮助你下次在跟人扯淡的时候稍微靠点儿谱,不至于贻笑大方。

通常,数据库单机每秒也就能抗住几千这个量级,而做逻辑处理的服务单台每秒抗几万、甚至几十万都有可能,而消息队列等中间件单机每秒处理个几万没问题,所以我们经常听到每秒处理数百万、数千万的消息中间件集群,而像阿某的API网关,每日百亿请求也有可能。

2、高并发的设计思路

高并发的设计思路有两个方向:

  • 垂直方向扩展,也叫竖向扩展

  • 水平方向扩展,也叫横向扩展

  • 垂直方向:提升单机能力

    提升单机处理能力又可分为硬件和软件两个方面:

  • 硬件方向,很好理解,花钱升级机器,更多核更高主频更大存储空间更多带宽

  • 软件方向,包括用各快的数据结构,改进架构,应用多线程、协程,以及上性能优化各种手段,但这玩意儿天花板低,就像提升个人产出一样,996、007、最多24 X 7。

  • 水平方向:分布式集群

    为了解决分布式系统的复杂性问题,一般会用到架构分层和服务拆分,通过分层做隔离,通过微服务解耦。

    这个理论上没有上限,只要做好层次和服务划分,加机器扩容就能满足需求,但实际上并非如此,一方面分布式会增加系统复杂性,另一方面集群规模上去之后,也会引入一堆AIOps、服务发现、服务治理的新问题。

    因为垂直向的限制,所以,我们通常更关注水平扩展,高并发系统的实施也主要围绕水平方向展开。

    3、高并发的关键技术

    玩具式的网络服务程序,用户可以直连服务器,甚至不需要数据库,直接写磁盘文件。但春运购票系统显然不能这么做,它肯定扛不住这个压力,那一般的高并发系统是怎么做呢?比如某宝这样的正经系统是怎么处理高并发的呢?

    其实大的思路都差不多,层次划分 + 功能划分。可以把层次划分理解为水平方向的划分,而功能划分理解为垂直方向的划分。

    首先,用户不能直连服务器,要做分布式就要解决“分”的问题,有多个服务实例就需要做负载均衡,有不同服务类型就需要服务发现。

    集群化:负载均衡

    负载均衡就是把负载(request)均衡分配到不同的服务实例,利用集群的能力去对抗高并发,负载均衡是服务集群化的实施要素,它分3种:

  • DNS负载均衡,客户端通过URL发起网络服务请求的时候,会去DNS服务器做域名解释,DNS会按一定的策略(比如就近策略)把URL转换成IP地址,同一个URL会被解释成不同的IP地址,这便是DNS负载均衡,它是一种粗粒度的负载均衡,它只用URL前半部分,因为DNS负载均衡一般采用就近原则,所以通常能降低时延,但DNS有cache,所以也会更新不及时的问题。

  • 硬件负载均衡,通过布置特殊的负载均衡设备到机房做负载均衡,比如F5,这种设备贵,性能高,可以支撑每秒百万并发,还能做一些安全防护,比如防火墙。

  • 软件负载均衡,根据工作在ISO 7层网络模型的层次,可分为四层负载均衡(比如章文嵩博士的LVS)和七层负载均衡(NGINX),软件负载均衡配置灵活,扩展性强,阿某云的SLB作为服务对外售卖,Nginx可以对URL的后半部做解释承担API网关的职责。

  • 所以,完整的负载均衡链路是 client <-> DNS负载均衡 -> F5 -> LVS/SLB -> NGINX

    不管选择哪种LB策略,或者组合LB策略,逻辑上,我们都可以视为负载均衡层,通过添加负载均衡层,我们将负载均匀分散到了后面的服务集群,具备基础的高并发能力,但这只是万里长征第一步。

    数据库层面:分库分表+读写分离

    前面通过负载均衡解决了无状态服务的水平扩展问题,但我们的系统不全是无状态的,后面通常还有有状态的数据库,所以解决了前面的问题,存储有可能成为系统的瓶颈,我们需要对有状态存储做分片路由。

    数据库的单机QPS一般不高,也就几千,显然满足不了高并发的要求。

    所以,我们需要做分库分表 + 读写分离。

    就是把一个库分成多个库,部署在多个数据库服务上,主库承载写请求,从库承载读请求。从库可以挂载多个,因为很多场景写的请求远少于读的请求,这样就把对单个库的压力降下来了。

    如果写的请求上升就继续分库分表,如果读的请求上升就挂更多的从库,但数据库天生不是很适合高并发,而且数据库对机器配置的要求一般很高,导致单位服务成本高,所以,这样加机器抗压力成本太高,还得另外想招。

    读多写少:缓存

    缓存的理论依据是局部性原理。

    一般系统的写入请求远少于读请求,针对写少读多的场景,很适合引入缓存集群。

    在写数据库的时候同时写一份数据到缓存集群里,然后用缓存集群来承载大部分的读请求,因为缓存集群很容易做到高性能,所以,这样的话,通过缓存集群,就可以用更少的机器资源承载更高的并发。

    缓存的命中率一般能做到很高,而且速度很快,处理能力也强(单机很容易做到几万并发),是理想的解决方案。

    CDN本质上就是缓存,被用户大量访问的静态资源缓存在CDN中是目前的通用做法。

    缓存也有很多需要谨慎处理的问题:

  • 一致性问题:(a)更新db成功+更新cache失败 -> 不一致 (b)更新db失败+更新cache成功 -> 不一致 ©更新db成功+淘汰缓存失败 -> 不一致

  • 缓存穿透:查询一定不存在的数据,会穿透缓存直接压到数据库,从而导致缓存失去作用,如果有人利用这个漏洞,大量查询一定不存在的数据,会对数据库造成压力,甚至打挂数据库。解决方案:布隆过滤器 或者 简单的方案,查询不存在的key,也把空结果写入缓存(设置较短的过期淘汰时间),从而降低命失

  • 缓存雪崩:如果大量缓存在一个时刻同时失效,则请求会转到DB,则对DB形成压迫,导致雪崩。简单的解决方案是为缓存失效时间添加随机值,降低同一时间点失效淘汰缓存数,避免集体失效事件发生

  • 但缓存是针对读,如果写的压力很大,怎么办?

    高写入:消息中间件

    同理,通过跟主库加机器,耗费的机器资源是很大的,这个就是数据库系统的特点所决定的。

    相同的资源下,数据库系统太重太复杂,所以并发承载能力就在几千/s的量级,所以此时你需要引入别的一些技术。

    比如说消息中间件技术,也就是MQ集群,它是非常好的做写请求异步化处理,实现削峰填谷的效果。

    消息队列能做解耦,在只需要最终一致性的场景下,很适合用来配合做流控。

    假如说,每秒是1万次写请求,其中比如5千次请求是必须请求过来立马写入数据库中的,但是另外5千次写请求是可以允许异步化等待个几十秒,甚至几分钟后才落入数据库内的。

    那么此时完全可以引入消息中间件集群,把允许异步化的每秒5千次请求写入MQ,然后基于MQ做一个削峰填谷。比如就以平稳的1000/s的速度消费出来然后落入数据库中即可,此时就会大幅度降低数据库的写入压力。

    业界有很多着名的消息中间件,比如ZeroMQ,rabbitMQ,kafka等。

    消息队列本身也跟缓存系统一样,可以用很少的资源支撑很高的并发请求,用它来支撑部分允许异步化的高并发写入是很合适的,比使用数据库直接支撑那部分高并发请求要减少很多的机器使用量。

    避免挤兑:流控

    再强大的系统,也怕流量短事件内集中爆发,就像银行怕挤兑一样,所以,高并发另一个必不可少的模块就是流控。

    流控的关键是流控算法,有4种常见的流控算法。

  • 计数器算法(固定窗口):计数器算法是使用计数器在周期内累加访问次数,当达到设定的限流值时,触发限流策略,下一个周期开始时,进行清零,重新计数,实现简单。计数器算法方式限流对于周期比较长的限流,存在很大的弊端,有严重的临界问题。

  • 滑动窗口算法:将时间周期分为N个小周期,分别记录每个小周期内访问次数,并且根据时间滑动删除过期的小周期,当滑动窗口的格子划分的越多,那么滑动窗口的滚动就越平滑,限流的统计就会越精确。此算法可以很好的解决固定窗口算法的临界问题。

  • 漏桶算法:访问请求到达时直接放入漏桶,如当前容量已达到上限(限流值),则进行丢弃(触发限流策略)。漏桶以固定的速率进行释放访问请求(即请求通过),直到漏桶为空。分布式环境下实施难度高。

  • 令牌桶算法:程序以r(r=时间周期/限流值)的速度向令牌桶中增加令牌,直到令牌桶满,请求到达时向令牌桶请求令牌,如获取到令牌则通过请求,否则触发限流策略。分布式环境下实施难度高。

  • 4、高并发的实践经验

    接入-逻辑-存储是经典的互联网后端分层,但随着业务规模的提高,逻辑层的复杂度也上升了,所以,针对逻辑层的架构设计也出现很多新的技术和思路,常见的做法包括系统拆分,微服务。

    除此之外,也有很多业界的优秀实践,包括某信服务器通过协程(无侵入,已开源libco)改造,极大的提高了系统的并发度和稳定性,另外,缓存预热,预计算,批量读写(减少IO),池技术等也广泛应用在实践中,有效的提升了系统并发能力。

    为了提升并发能力,逻辑后端对请求的处理,一般会用到生产者-消费者多线程模型,即I/O线程负责网络IO,协议编解码,网络字节流被解码后产生的协议对象,会被包装成task投入到task queue,然后worker线程会从该队列取出task执行,有些系统会用多进程而非多线程,通过共享存储,维护2个方向的shm queue,一个input q,一个output q,为了提高并发度,有时候会引入协程,协程是用户线程态的多执行流,它的切换成本更低,通常有更好的调度效率。

    另外,构建漏斗型业务或者系统,从客户端请求到接入层,到逻辑层,到DB层,层层递减,过滤掉请求,Fail Fast(尽早发现尽早过滤),嘴大屁眼小,哈哈。

    漏斗型系统不仅仅是一个技术模型,它也可以是一个产品思维,配合产品的用户分流,逻辑分离,可以构建全方位的立体模型。

    5、小结

    莫让浮云遮望眼,除去繁华识真颜。我们不能掌握了大方案,吹完了牛皮,而忽视了编程最本质的东西,掌握最基本最核心的编程能力,比如数据架构和算法,设计,惯用法,培养技术的审美,也是很重要的,既要致高远,又要尽精微。

Ⅳ (二)微信红包高并发系统设计方案(1)

2017年1月28日,正月初一,微信公布了用户在除夕当天收发微信红包的数量——142亿个,而其收发峰值也已达到76万每秒。百亿级别的红包,如何保障并发性能与资金安全?这给微信带来了超级挑战。面对挑战,微信红包在分析了业界“秒杀”系统解决方案的基础上,采用了 SET化、请求排队串行化、双维度分库表 等设计,形成了独特的高并发、资金安全系统解决方案。实践证明,该方案表现稳定,且实现了除夕夜系统零故障运行。概要:

一、业务 特点 :海量的并发要求;严格的安全级别

二、技术 难点 :并发请求抢锁;事务级操作量级大;事务性要求严格

三、解决高并发问题 通常 使用的 方案 :

1.使用内存操作替代实时的DB事务操作(优点:内存操作替代磁盘操作,提高了并发性能。)

2使用乐观锁替代悲观锁。应用于微信红包系统,则会存在下面三个问题:滚并返回失败;并发大失败,小成功。DB压力大。

四、微信 红包 系统的高并发解决 方案 :

1.系统垂直SET化,分而治之。

2.逻辑Server层将请求排队,解决DB并发问题。

3.双维度库表设计,保障系统性能稳定

类似“秒杀”活动,群里发一个红包=“秒杀”商品上架;抢红包的动作=“秒杀”的查询库存;拆红包=“秒杀”

同一时间有10万个群里的用户同时在发红包,那就相当于同一时间有10万个“秒杀”活动发布出去。10万个微信群里的用户同时抢红包,将产生海量的并发请求。

微信红包是微信支付的一个商户,提供资金流转服务。

用户发红包=购买一笔“钱”(在微信红包这个商户上),并且收货地址是微信群。当用户支付成功后,红包“发货”到微信群里,群里的用户拆开红包后,微信红包提供了将“钱”转入折红包用户微信零钱的服务。

资金交易业务比普通商品“秒杀”活动有更高的安全级别要求。普通的商品“秒杀”商品由商户提供,库存是商户预设的,“秒杀”时可以允许存在“超卖”、“少卖”的情况。但是对于微信红包,100元不可以被拆出101元;领取99元时,剩下的1元在24小时过期后要精确地退还给发红包用户,不能多也不能少。

在介绍微信红包系统的技术难点之前,先介绍下简单的、典型的商品“秒杀”系统的架构设计,如下图所示。

该系统由接入层、逻辑服务层、存储层与缓存构成。Proxy处理请求接入,Server承载主要的业务逻辑,Cache用于缓存库存数量、DB则用于数据持久化。

一个“秒杀”活动,对应DB中的一条库存记录。当用户进行商品“秒杀”时,系统的主要逻辑在于DB中库存的操作上。一般来说,对DB的操作流程有以下三步:

a. 锁库存

b. 插入“秒杀”记录

c. 更新库存

a.锁库存是为了 避免 并发请求时出现“ 超卖 ”情况。同时要求这 三步操作 需要在 一个事务 中完成(难点:并发请求抢锁)。

第一个事务完成提交之前这个锁一直被第一个请求占用,后面的所有请求需要 排队等待 。同时参与“秒杀”的用户越多,并发进DB的请求越多,请求 排队越严重 。

红包系统的设计上, 除了并发请求抢锁之外,还有以下两个突出难点 :

首先,事务级操作量级大 。上文介绍微信红包业务特点时提到,普遍情况下同时会有数以万计的微信群在发红包。这个业务特点映射到微信红包系统设计上,就是有数以万计的“并发请求抢锁”同时在进行。这使 得DB的压力 比普通单个商品“库存”被锁要大很多倍。

其次,事务性要求严格 。微信红包系统本质上是一个资金交易系统,相比普通商品“秒杀”系统有更高的事务级别要求。

普通商品“秒杀”活动系统,解决高并发问题的方案,大体有以下几种:

如图2所示,将“实时扣库存”的行为上移到 内存Cache中操作 ,内存Cache操作成功直接给Server返回成功,然后 异步落DB持久化 。

优点:提高了并发性能。

缺点: 在内存操作 成功 但 DB持久化失败 ,或者内存 Cache故障 的情况下,DB持久化会 丢数据 ,不适合微信红包这种资金交易系统。

商品“秒杀”系统中,乐观锁的具体应用方法,是在DB的“库存”记录中维护一个版本号。在更新“库存”的操作进行前,先去DB获取当前版本号。在更新库存的事务提交时,检查该版本号是否已被其他事务修改。如果版本没被修改,则提交事务,且版本号加1;如果版本号已经被其他事务修改,则回滚事务,并给上层报错。

这个方案解决了“并发请求抢锁”的问题,可以提高DB的并发处理能力。

应用于微信红包系统,则会存在下面三个问题 :

1.在并发抢到相同版本号的拆红包请求中, 只有一个能拆红包成功 , 其他的请求 将事务回滚并返回失败,给用户 报错 ,用户体验完全不可接受。

2.将会导致 第一时间 同时拆红包的用户有一部分直接 返回失败 ,反而那些“ 手慢 ”的用户,有可能因为 并发减小 后拆红包 成功 ,这会带来用户体验上的负面影响。

3.会带来 大数量 的 无效 更新 请求 、事务 回滚 ,给 DB 造成不必要的额外 压力 。

微信红包用户发一个红包时,微信红包系统生成一个ID作为这个红包的唯一标识。接下来这个红包的所有发红包、抢红包、拆红包、查询红包详情等操作,都根据这个ID关联。

红包系统根据这个红包ID,按一定的规则(如按ID尾号取模等),垂直上下切分。切分后,一个垂直链条上的逻辑Server服务器、DB统称为一个SET。

各个SET之间相互独立,互相解耦。并且同一个红包ID的所有请求,包括发红包、抢红包、拆红包、查详情详情等,垂直stick到同一个SET内处理,高度内聚。通过这样的方式,系统将所有红包请求这个巨大的洪流分散为多股小流,互不影响,分而治之,如下图所示。

这个方案解决了同时存在海量事务级操作的问题,将海量化为小量。

红包系统是资金交易系统,DB操作的事务性无法避免,所以会存在“并发抢锁”问题。但是如果到达DB的事务操作(也即拆红包行为)不是并发的,而是串行的,就不会存在“并发抢锁”的问题了。

按这个思路,为了使拆红包的事务操作串行地进入DB,只需要将请求在 Server层以FIFO ( 先进先出 )的方式排队,就可以达到这个效果。从而问题就集中到Server的FIFO队列设计上。

微信红包系统设计了分布式的、轻巧的、灵活的FIFO队列方案。其具体实现如下:

首先,将同一个红包ID的所有请求stick到同一台Server。

上面SET化方案已经介绍,同个红包ID的所有请求,按红包ID stick到同个SET中。不过在同个SET中,会存在多台Server服务器同时连接同一台DB(基于容灾、性能考虑,需要多台Server互备、均衡压力)。

为了使同一个红包ID的所有请求,stick到同一台Server服务器上,在SET化的设计之外,微信红包系统添加了一层基于红包ID hash值的分流,如下图所示。

其次,设计单机请求排队方案。

将stick到同一台Server上的所有请求在被接收进程接收后,按红包ID进行排队。然后 串行地进入worker进程 (执行业务逻辑)进行处理,从而达到 排队 的效果,如下图所示。

最后,增加memcached控制并发。

为了 防止 Server中的请求队列过载导致队列被降级,从而所有请求 拥进DB ,系统增加了与Server服务器同机部署的 memcached ,用于控制拆同一个红包的 请求并发数 。

具体来说,利用memcached的 CAS原子累增操作 ,控制同时进入 DB执行拆红包事务的请求数 ,超过预先设定数值则 直接拒绝服务 。用于 DB负载升高时的降级 体验。

通过以上三个措施,系统有效地 控制了DB的“并发抢锁” 情况。

红包系统的分库表规则,初期是根据 红包ID的hash值 分为多库多表。随着红包数据量逐渐增大,单表数据量也逐渐增加。而DB的性能与单表数据量有一定相关性。当单表数据量达到一定程度时,DB性能会有大幅度下降,影响系统性能稳定性。采用 冷热分离 ,将历史冷数据与当前热数据分开存储,可以解决这个问题。

系统在以 红包ID维度 分库表的基础上,增加了以 循环天分表的维度 ,形成了 双维度分库表 的特色。

具体来说,就是分库表规则像db_xx.t_y_dd设计,其中,xx/y是红包ID的 hash值后三位 ,dd的取值范围在01~31,代表一个月天数最多 31 天。

通过这种双维度分库表方式,解决了DB单表数据量膨胀导致性能下降的问题,保障了系统性能的稳定性。同时,在热冷分离的问题上,又使得数据搬迁变得简单而优雅。

综上所述,微信红包系统在解决高并发问题上的设计,主要采用了SET化分治、请求排队、双维度分库表等方案,使得单组DB的并发性能 提升了8倍 左右,取得了很好的效果。

http://www.infoq.com/cn/articles/2017hongbao-weixin

Ⅳ java高并发,如何解决,什么方式解决,高并发

首先,为防止高并发带来的系统压力,或者高并发带来的系统处理异常,数据紊乱,可以以下几方面考虑:1、加锁,这里的加锁不是指加java的多线程的锁,是指加应用所和数据库锁,应用锁这边通常是使用redis的setnx来做,其次加数据库锁,因为代码中加了应用所,所以数据库不建议加悲观锁(排他锁),一般加乐观锁(通过设置一个seq_no来解决),这两个锁一般能解决了,最后做合理的流控,丢弃一部分请求也是必不可少的

Ⅵ 如何解决高并发问题

使用高性能的服务器、高性能的数据库、高效率的编程语言、还有高性能的Web容器,(对架构分层+负载均衡+集群)这几个解决思路在一定程度上意味着更大的投入。

1、高并发:在同一个时间点,有大量的客户来访问我们的网站,如果访问量过大,就可能造成网站瘫痪。

2、高流量:当网站大后,有大量的图片,视频,这样就会对流量要求高,需要更多更大的带宽。

3、大存储:可能对数据保存和查询出现问题。

解决方案:

1、提高硬件能力、增加系统服务器。(当服务器增加到某个程度的时候系统所能提供的并发访问量几乎不变,所以不能根本解决问题)

2、本地缓存:本地可以使用JDK自带的Map、Guava Cache.分布式缓存:Redis、Memcache.本地缓存不适用于提高系统并发量,一般是用处用在程序中。

Spiring把已经初始过的变量放在一个Map中,下次再要使用这个变量的时候,先判断Map中有没有,这也就是系统中常见的单例模式的实现。

Ⅶ 华为技术架构师分享:高并发场景下缓存处理的一些思路

在实际的开发当中,我们经常需要进行磁盘数据的读取和搜索,因此经常会有出现从数据库读取数据的场景出现。但是当数据访问量次数增大的时候,过多的磁盘读取可能会最终成为整个系统的性能瓶颈,甚至是压垮整个数据库,导致系统卡死等严重问题。

常规的应用系统中,我们通常会在需要的时候对数据库进行查找,因此系统的大致结构如下所示:

1.缓存和数据库之间数据一致性问题

常用于缓存处理的机制我总结为了以下几种:

首先来简单说说Cache aside的这种方式:

Cache Aside模式

这种模式处理缓存通常都是先从数据库缓存查询,如果缓存没有命中则从数据库中进行查找。

这里面会发生的三种情况如下:

缓存命中:

当查询的时候发现缓存存在,那么直接从缓存中提取。

缓存失效:

当缓存没有数据的时候,则从database里面读取源数据,再加入到cache里面去。

缓存更新:

当有新的写操作去修改database里面的数据时,需要在写操作完成之后,让cache里面对应的数据失效。

关于这种模式下依然会存在缺陷。比如,一个是读操作,但是没有命中缓存,然后就到数据库中取数据,此时来了一个写操作,写完数据库后,让缓存失效,然后,之前的那个读操作再把老的数据放进去,所以,会造成脏数据。

Facebook的大牛们也曾经就缓存处理这个问题发表过相关的论文,链接如下:

分布式环境中要想完全的保证数据一致性是一件极为困难的事情,我们只能够尽可能的减低这种数据不一致性问题产生的情况。

Read Through模式

Read Through模式是指应用程序始终从缓存中请求数据。 如果缓存没有数据,则它负责使用底层提供程序插件从数据库中检索数据。 检索数据后,缓存会自行更新并将数据返回给调用应用程序。使用Read Through 有一个好处。

我们总是使用key从缓存中检索数据, 调用的应用程序不知道数据库, 由存储方来负责自己的缓存处理,这使代码更具可读性, 代码更清晰。但是这也有相应的缺陷,开发人员需要给编写相关的程序插件,增加了开发的难度性。

Write Through模式

Write Through模式和Read Through模式类似,当数据发生更新的时候,先去Cache里面进行更新,如果命中了,则先更新缓存再由Cache方来更新database。如果没有命中的话,就直接更新Cache里面的数据。

2.缓存穿透问题

在高并发的场景中,缓存穿透是一个经常都会遇到的问题。

什么是缓存穿透?

大量的请求在缓存中没有查询到指定的数据,因此需要从数据库中进行查询,造成缓存穿透。

会造成什么后果?

大量的请求短时间内涌入到database中进行查询会增加database的压力,最终导致database无法承载客户单请求的压力,出现宕机卡死等现象。

常用的解决方案通常有以下几类:

1.空值缓存

在某些特定的业务场景中,对于数据的查询可能会是空的,没有实际的存在,并且这类数据信息在短时间进行多次的反复查询也不会有变化,那么整个过程中,多次的请求数据库操作会显得有些多余。

不妨可以将这些空值(没有查询结果的数据)对应的key存储在缓存中,那么第二次查找的时候就不需要再次请求到database那么麻烦,只需要通过内存查询即可。这样的做法能够大大减少对于database的访问压力。

2.布隆过滤器

通常对于database里面的数据的key值可以预先存储在布隆过滤器里面去,然后先在布隆过滤器里面进行过滤,如果发现布隆过滤器中没有的话,就再去redis里面进行查询,如果redis中也没有数据的话,再去database查询。这样可以避免不存在的数据信息也去往存储库中进行查询情况。

什么是缓存雪崩?

当缓存服务器重启或者大量缓存集中在某一个时间段失效,这样在失效的时候,也会给后端系统(比如DB)带来很大压力。

如何避免缓存雪崩问题?

1.使用加锁队列来应付这种问题。当有多个请求涌入的时候,当缓存失效的时候加入一把分布式锁,只允许抢锁成功的请求去库里面读取数据然后将其存入缓存中,再释放锁,让后续的读请求从缓存中取数据。但是这种做法有一定的弊端,过多的读请求线程堵塞,将机器内存占满,依然没有能够从根本上解决问题。

2.在并发场景发生前,先手动触发请求,将缓存都存储起来,以减少后期请求对database的第一次查询的压力。数据过期时间设置尽量分散开来,不要让数据出现同一时间段出现缓存过期的情况。

3.从缓存可用性的角度来思考,避免缓存出现单点故障的问题,可以结合使用 主从+哨兵的模式来搭建缓存架构,但是这种模式搭建的缓存架构有个弊端,就是无法进行缓存分片,存储缓存的数据量有限制,因此可以升级为Redis Cluster架构来进行优化处理。(需要结合企业实际的经济实力,毕竟Redis Cluster的搭建需要更多的机器)

4.Ehcache本地缓存 + Hystrix限流&降级,避免MySQL被打死。

使用 Ehcache本地缓存的目的也是考虑在 Redis Cluster 完全不可用的时候,Ehcache本地缓存还能够支撑一阵。

使用 Hystrix进行限流 & 降级 ,比如一秒来了5000个请求,我们可以设置假设只能有一秒 2000个请求能通过这个组件,那么其他剩余的 3000 请求就会走限流逻辑。

然后去调用我们自己开发的降级组件(降级),比如设置的一些默认值呀之类的。以此来保护最后的 MySQL 不会被大量的请求给打死。

Ⅷ 面试题系列:并发编程之线程池及队列

用newCachedThreadPool()方法创建该线程池对象,创建之初里面一个线程都没有,当execute方法或submit方法向线程池提交任务时,会自动新建线程;如果线程池中有空余线程,则不会新建;这种线程池一般最多情况可以容纳几万个线程,里面的线程空余60s会被回收。

适用场景:执行很多短期异步的小程序。

固定线程数的池子,每个线程的存活时间是无限的,当池子满了就不再添加线程;若池中线程均在繁忙状态,新任务会进入阻塞队列中(无界的阻塞队列)。

适用场景:执行长期的任务,性能较好。

只有一个线程的线程池,且线程的存活时间是无限的;当线程繁忙时,对于新任务会进入阻塞队列中(无界的阻塞队列)。

适用:一个任务一个任务执行的场景。

创建一个固定大小的线程池,池内的线程存活时间无限,线程池支持定时及周期性的任务执行。如果所有线程均处于繁忙状态,对于新任务会进入 DelayedWorkQueue 队列。

适用场景:周期性执行任务的场景。

线程池任务执行流程:

ThreadPoolExecutor类实现了ExecutorService接口和Executor接口。

ThreadPoolExecutor 参数:

线程池中的数量大于corePoolSize,缓冲队列workQueue满,并且线程池中的数量等于maximumPoolSize,那么通过 handler所指定的策略来处理此任务。

抛出java.util.concurrent.RejectedExecutionException异常。

用于被拒绝任务的处理程序,它直接在 execute 方法的调用线程中运行被拒绝的任务;如果执行程序已关闭,则会丢弃该任务。

丢弃任务队列中最旧任务。

丢弃当前将要加入队列的任务。

DelayQueue 是一个支持延时获取元素的无界阻塞队列。队列使用 PriorityQueue 来实现。队列中的元素必须实现Delayed接口,在创建元素时可以指定多久才能从队列中获取当前元素。只有在延迟期满时才能从队列中提取元素。

缓存系统的设计:使用DelayQueue保存缓存元素的有效期,使用一个线程循环查询DelayQueue,一旦能从DelayQueue中获取元素时,就表示有缓存到期了。

定时任务调度:使用DelayQueue保存当天要执行的任务和执行时间,一旦从DelayQueue中获取到任务就开始执行,比如Timer就是使用DelayQueue实现的。

以支持优先级的PriorityQueue无界队列作为一个容器,因为元素都必须实现Delayed接口,可以根据元素的过期时间来对元素进行排列,因此,先过期的元素会在队首,每次从队列里取出来都是最先要过期的元素。如果延迟队列中的消息到了延迟时间则可以从中取出消息否则无法取出消息也就无法消费。

CyclicBarrier就是一个栅栏,等待所有线程到达后再执行相关的操作。barrier 在释放等待线程后可以重用。

CountDownLatch 是计数器, 线程完成一个就记一个, 就像 报数一样, 只不过是递减的。

而CyclicBarrier更像一个水闸, 线程执行就像水流, 在水闸处都会堵住, 等到水满(线程到齐)了, 才开始泄流。

Ⅸ 架构高可用高并发系统的设计原则

通过学习《亿级流量网站架构核心技术》及《linux就该这么学》学习笔记及自己的感悟:架构设计之高可用高并发系统设计原则,架构设计包括墨菲定律、康威定律和二八定律三大定律,而系统设计包括高并发原则、高可用和业务设计原则等。
架构设计三大定律
墨菲定律 – 任何事没有表面看起来那么简单 – 所有的事都会比预计的时间长 – 可能出错的事情总会出错 – 担心某种事情发生,那么它就更有可能发生
康威定律 – 系统架构师公司组织架构的反映 – 按照业务闭环进行系统拆分/组织架构划分,实现闭环、高内聚、低耦合,减少沟通成本 – 如果沟通出现问题,应该考虑进行系统和组织架构的调整 – 适合时机进行系统拆分,不要一开始就吧系统、服务拆分拆的非常细,虽然闭环,但是每个人维护的系统多,维护成本高 – 微服务架构的理论基础 – 康威定律https://yq.aliyun.com/articles/8611– 每个架构师都应该研究下康威定律http://36kr.com/p/5042735.html
二八定律 – 80%的结果取决于20%的原因
系统设计遵循的原则
1.高并发原则
无状态
无状态应用,便于水平扩展
有状态配置可通过配置中心实现无状态
实践: Disconf、Yaconf、Zookpeer、Consul、Confd、Diamond、Xdiamond等
拆分
系统维度:按照系统功能、业务拆分,如购物车,结算,订单等
功能维度:对系统功能在做细粒度拆分
读写维度:根据读写比例特征拆分;读多,可考虑多级缓存;写多,可考虑分库分表
AOP维度: 根据访问特征,按照AOP进行拆分,比如商品详情页可分为CDN、页面渲染系统,CDN就是一个AOP系统
模块维度:对整体代码结构划分Web、Service、DAO
服务化
服务化演进: 进程内服务-单机远程服务-集群手动注册服务-自动注册和发现服务-服务的分组、隔离、路由-服务治理
考虑服务分组、隔离、限流、黑白名单、超时、重试机制、路由、故障补偿等
实践:利用Nginx、HaProxy、LVS等实现负载均衡,ZooKeeper、Consul等实现自动注册和发现服
消息队列
目的: 服务解耦(一对多消费)、异步处理、流量削峰缓冲等
大流量缓冲: 牺牲强一致性,保证最终一致性(案例:库存扣减,现在Redis中做扣减,记录扣减日志,通过后台进程将扣减日志应用到DB)
数据校对: 解决异步消息机制下消息丢失问题
数据异构
数据异构: 通过消息队列机制接收数据变更,原子化存储
数据闭环: 屏蔽多从数据来源,将数据异构存储,形成闭环
缓存银弹
用户层:
DNS缓存
浏览器DNS缓存
操作系统DNS缓存
本地DNS服务商缓存
DNS服务器缓存
客户端缓存
浏览器缓存(Expires、Cache-Control、Last-Modified、Etag)
App客户缓存(js/css/image…)
代理层:
CDN缓存(一般基于ATS、Varnish、Nginx、Squid等构建,边缘节点-二级节点-中心节点-源站)
接入层:
Opcache: 缓存PHP的Opcodes
Proxy_cache: 代理缓存,可以存储到/dev/shm或者SSD
FastCGI Cache
Nginx+Lua+Redis: 业务数据缓存
Nginx为例:
PHP为例:
应用层:
页面静态化
业务数据缓存(Redis/Memcached/本地文件等)
消息队列
数据层:
NoSQL: Redis、Memcache、SSDB等
MySQL: Innodb/MyISAM等Query Cache、Key Cache、Innodb Buffer Size等
系统层:
CPU : L1/L2/L3 Cache/NUMA
内存
磁盘:磁盘本身缓存、dirtyratio/dirtybackground_ratio、阵列卡本身缓存
并发化
2.高可用原则
降级
降级开关集中化管理:将开关配置信息推送到各个应用
可降级的多级读服务:如服务调用降级为只读本地缓存
开关前置化:如Nginx+lua(OpenResty)配置降级策略,引流流量;可基于此做灰度策略
业务降级:高并发下,保证核心功能,次要功能可由同步改为异步策略或屏蔽功能
限流
目的: 防止恶意请求攻击或超出系统峰值
实践:
恶意请求流量只访问到Cache
穿透后端应用的流量使用Nginx的limit处理
恶意IP使用Nginx Deny策略或者iptables拒绝
切流量
目的:屏蔽故障机器
实践:
DNS: 更改域名解析入口,如DNSPOD可以添加备用IP,正常IP故障时,会自主切换到备用地址;生效实践较慢
HttpDNS: 为了绕过运营商LocalDNS实现的精准流量调度
LVS/HaProxy/Nginx: 摘除故障节点
可回滚
发布版本失败时可随时快速回退到上一个稳定版本
3.业务设计原则
防重设计
幂等设计
流程定义
状态与状态机
后台系统操作可反馈
后台系统审批化
文档注释
备份
4.总结
先行规划和设计时有必要的,要对现有问题有方案,对未来有预案;欠下的技术债,迟早都是要还的。
本文作者为网易高级运维工程师

Ⅹ 高并发网站架构的设计方案是怎样的

技术这玩意儿,你不深入使用它,你就不知道它有多牛,更不知道会有多难!

并发:指定时间段内的请求数!

高并发:指定时间段内的超多请求数!

比如tomcat,单机最大支持并发数为8000左右,redis理论值可达到几万!

那么怎么设计一套可支持高并发的系统呢?使用技术如下:

1,分布式系统,微服务:使用springcloud家族包括eureka,zuul,feign,hysrix等或者bbo搭建一套微服务框架!

2,前后端分离:使用node.js搭建前端服务系统!

3,静态化处理:将页面,后台枚举,数据库定义表等使用静态处理方式做处理!

4,文件服务器剥离:采用单独的文件服务器,防止页面加载的阻塞!

5,缓存:使用redis,memcache等将运行时数据缓存,代替频繁的操作数据库!

6,数据库:读写分离或者分库分表,采用druid等有性能监控系统的数据库连接框架!

7,消息中间件:使用xxxmq,kafka等消息中间件,解耦服务,而且异步处理效率更高!

8,反向代理:使用nginx等负载均衡服务!

9,代码层:避免大量创建对象,避免阻塞IO,避免多层for循环,避免线程死锁,避免大量同步!

10,各种优化:包括jvm优化,表结构优化,sql优化,关键字段加索引(注意避免索引失效),连接池优化等等!

11,搜索引擎:sql有大量的like语句,有必要切换成solr等搜索引擎!

12,cdn:使用CDN技术将请求分发到最合适的主机上,避免网络传输的延迟!

13,使用batch:增删改能一次做的别分为两次,但要注意batch合理设计,防止数据丢失!

14,限流,削峰!

大型网站遇到的挑战,主要是大量的用户,高并发的访问,就算一个简单的增删查改的功能,如果面对的是百万、千万甚至亿级的用户,都是一件难度很大的事情。

数据从数据库到浏览器的过程:数据库->应用数据集->内存对象->动态页面->HTTP服务器->用户浏览器。 那么我们可以把高并发的设计分成几个层次:

前端是指,用户的请求还没有到服务前的环节。

系统架构大了,部署的服务器多了,很多事情不可能通过人工完成了,比如一个接口调用发生了错误,不可能人工登录到服务器上去查日志吧,所以这些东西也是必不可少的。

都是说个大概,后面有机会的话,会把每一项都展开详细说明。

希望我的回答能够帮助到你!

我们通过这些架构要素来衡量我们整体系统架构设计的优劣,来判断是否达到了我们的要求。

性能是大型网站架构设计的一个重要方面,任何软件架构设计方案都必须考虑可能带来的性能问题,也正因为性能问题几乎无处不在,在请求链路的任何一个环节,都是我们去做极致性能优化方案中的切入点。

衡量一个系统架构设计是否满足高可用的目标,就是假设系统中任何一台或者多台服务器宕机时,以及出现各种不可预期的问题时,系统整体是否依然可用。

网站的伸缩性是指不需要改变服务器的硬件设计,仅仅靠改变应用服务器的部署数量,就可以扩大或缩小服务器的处理能力。

网站快速发展,功能不断扩展,如何设计网站的架构使其能够快速响应需求变化,是网站可扩展架构的主要目标。

互联网跟传统软件不同,它是开放的,任何人在任何地方都可以访问网站。网站的安全架构就是保护网站不受恶意访问和攻击,保护网站的重要数据不被窃取。

安全性架构,具体来说说就是保证数据的保密性、完整性、真实性、占有性。

要完全掌握大型网站的架构设计方案,或许你可以点击我头像,进入我的专栏"深入大型网站核心架构实战"。

这期专栏是笔者总结了当下这些互联网行业中相对成熟且经过大型网站检验的技术和方案,内容涵盖构建大型互联网系统服务所需的关键技术。