当前位置:首页 » 硬盘大全 » ef分布式缓存
扩展阅读
webinf下怎么引入js 2023-08-31 21:54:13
堡垒机怎么打开web 2023-08-31 21:54:11

ef分布式缓存

发布时间: 2022-12-18 09:04:05

A. EF6 有查询缓存,怎么办

设置好查询缓存的大小就行了。比如设置个20MB.
SET GLOBAL QUERY_CACHE_SIZE=20000000;
mysql会将查询SQL和结果集存到缓存中,等下次遇到相同的SQL语句时,结果集从缓存中读取。

不设置就不用缓存了

B. Redis分布式缓存搭建

花了两天时间整理了之前记录的Redis单体与哨兵模式的搭建与使用,又补齐了集群模式的使用和搭建经验,并对集群的一些个原理做了理解。

笔者安装中遇到的一些问题:

如果make报错,可能是没装gcc或者gcc++编辑器,安装之 yum -y install gcc gcc-c++ kernel-devel ,有可能还是提示一些个c文件编译不过,gcc -v查看下版本,如果不到5.3那么升级一下gcc:

在 /etc/profile 追加一行 source /opt/rh/devtoolset-9/enable

scl enable devtoolset-9 bash

重新make clean, make

这回编译通过了,提示让你最好make test一下/

执行make test ,如果提示 You need tcl 8.5 or newer in order to run the Redis test

那就升级tcl, yum install tcl

重新make test,如果还有error就删了目录,重新tar包解压重新make , make test

o/ All tests passed without errors! ,表示编译成功。

然后make install即可。

直接运行命令: ./redis-server /usr/redis-6.0.3/redis.conf &

redis.conf 配置文件里 bind 0.0.0.0 设置外部访问, requirepass xxxx 设置密码

redis高可用方案有两种:

常用搭建方案为1主1从或1主2从+3哨兵监控主节点, 以及3主3从6节点集群。

(1)sentinel哨兵

/usr/redis-6.0.3/src/redis-sentinel /usr/redis-6.0.3/sentinel2.conf &

sentinel2.conf配置:

坑1:master节点也会在故障转移后成为从节点,也需要配置masterauth

当kill master进程之后,经过sentinel选举,slave成为了新的master,再次启动原master,提示如下错误:

原因是此时的master再次启动已经是slave了,需要向现在的新master输入密码,所以需要在master.conf
中配置:

坑2:哨兵配置文件要暴露客户端可以访问到的master地址

在 sentinel.conf 配置文件的 sentinel monitor mymaster 122.xx.xxx.xxx 6379 2 中,配置该哨兵对应的master名字、master地址和端口,以及达到多少个哨兵选举通过认为master挂掉。其中master地址要站在redis访问者(也就是客户端)的角度、配置访问者能访问的地址,例如sentinel与master在一台服务器(122.xx.xxx.xxx)上,那么相对sentinel其master在本机也就是127.0.0.1上,这样 sentinel monitor mymaster 127.0.0.1 6379 2 逻辑上没有问题,但是如果另外服务器上的springboot通过lettuce访问这个redis哨兵,则得到的master地址为127.0.0.1,也就是springboot所在服务器本机,这显然就有问题了。

附springboot2.1 redis哨兵配置:

坑3:要注意配置文件.conf会被哨兵修改

redis-cli -h localhost -p 26379 ,可以登到sentinel上用info命令查看一下哨兵的信息。

曾经遇到过这样一个问题,大致的信息如下

slaves莫名其妙多了一个,master的地址也明明改了真实对外的地址,这里又变成127.0.0.1 !
最后,把5个redis进程都停掉,逐个检查配置文件,发现redis的配置文件在主从哨兵模式会被修改,master的配置文件最后边莫名其妙多了一行replicaof 127.0.0.1 7001, 怀疑应该是之前配置错误的时候(见坑2)被哨兵动态加上去的! 总之,实践中一定要多注意配置文件的变化。

(2)集群

当数据量大到一定程度,比如几十上百G,哨兵模式不够用了需要做水平拆分,早些年是使用codis,twemproxy这些第三方中间件来做分片的,即 客户端 -> 中间件 -> Redis server 这样的模式,中间件使用一致性Hash算法来确定key在哪个分片上。后来Redis官方提供了方案,大家就都采用官方的Redis Cluster方案了。

Redis Cluster从逻辑上分16384个hash slot,分片算法是 CRC16(key) mod 16384 得到key应该对应哪个slot,据此判断这个slot属于哪个节点。

每个节点可以设置1或多个从节点,常用的是3主节点3从节点的方案。

reshard,重新分片,可以指定从哪几个节点移动一些hash槽到另一个节点去。重新分片的过程对客户端透明,不影响线上业务。

搭建Redis cluster

redis.conf文件关键的几个配置:

启动6个集群节点

[root@VM_0_11_centos redis-6.0.3]# ps -ef|grep redis
root 5508 1 0 21:25 ? 00:00:00 /usr/redis-6.0.3/src/redis-server 0.0.0.0:7001 [cluster]
root 6903 1 0 21:32 ? 00:00:00 /usr/redis-6.0.3/src/redis-server 0.0.0.0:7002 [cluster]
root 6939 1 0 21:33 ? 00:00:00 /usr/redis-6.0.3/src/redis-server 0.0.0.0:7003 [cluster]
root 6966 1 0 21:33 ? 00:00:00 /usr/redis-6.0.3/src/redis-server 0.0.0.0:7004 [cluster]
root 6993 1 0 21:33 ? 00:00:00 /usr/redis-6.0.3/src/redis-server 0.0.0.0:7005 [cluster]
root 7015 1 0 21:33 ? 00:00:00 /usr/redis-6.0.3/src/redis-server 0.0.0.0:7006 [cluster]

这时候这6个节点还是独立的,要把他们配置成集群:

说明: -a xxxx 是因为笔者在redis.conf中配置了requirepass xxxx密码,然后 --cluster-replicas 1 中的1表示每个master节点有1个从节点。

上述命令执行完以后会有一个询问: Can I set the above configuration? yes同意自动做好的分片即可。

最后 All 16384 slots covered. 表示集群中16384个slot中的每一个都有至少有1个master节点在处理,集群启动成功。

查看集群状态:

坑1:暴露给客户端的节点地址不对

使用lettuce连接发现连不上,查看日志 Connection refused: no further information: /127.0.0.1:7002 ,跟之前哨兵配置文件sentinel.conf里边配置master地址犯的错误一样,集群启动的时候带的地址应该是提供给客户端访问的地址。

我们要重建集群:先把6个redis进程停掉,然后删除 nodes-7001.conf 这些节点配置文件,删除持久化文件 mp.rdb 、 appendonly.aof ,重新启动6个进程,在重新建立集群:

然后,还是连不上,这次报错 connection timed out: /172.xx.0.xx:7004 ,发现连到企鹅云服务器的内网地址上了!

解决办法,修改每个节点的redis.conf配置文件,找到如下说明:

所以增加配置:

然后再重新构建集群,停进程、改配置、删除节点文件和持久化文件、启动进程、配置集群。。。再来一套(累死了)

重新使用Lettuce测试,这次终于连上了!

坑2:Lettuce客户端在master节点故障时没有自动切换到从节点

name这个key在7002上,kill这个进程模拟master下线,然后Lettuce一直重连。我们期望的是应该能自动切换到其slave 7006上去,如下图:

重新启动7002进程,

7006已成为新master,7002成为它的slave,然后Lettuce也能连接上了。
解决办法,修改Lettuce的配置:

笔者用的是springboot 2.1 spring-boot-starter-data-redis 默认的Lettuce客户端,当使用Redis cluster集群模式时,需要配置一下 RedisConnectionFactory 开启自适应刷新来做故障转移时的自动切换从节点进行连接。

重新测试:停掉master 7006,这次Lettuce可以正常切换连到7002slave上去了。(仍然会不断的在日志里报连接错误,因为需要一直尝试重连7006,但因为有7002从节点顶上了、所以应用是可以正常使用的)

Redis不保证数据的强一致性

Redis并不保证数据的强一致性,也就是取CAP定理中的AP

关于一致性Hash算法,可以参考 一致性Hash算法 - (jianshu.com)

Redis cluster使用的是hash slot算法,跟一致性Hash算法不太一样,固定16384个hash槽,然后计算key落在哪个slot里边(计算key的CRC16值再对16384取模),key找的是slot而不是节点,而slot与节点的对应关系可以通过reshard改变并通过gossip协议扩散到集群中的每一个节点、进而可以为客户端获知,这样key的节点寻址就跟具体的节点个数没关系了。也同样解决了普通hash取模算法当节点个数发生变化时,大量key对应的寻址都发生改动导致缓存失效的问题。

比如集群增加了1个节点,这时候如果不做任何操作,那么新增加的这个节点上是没有slot的,所有slot都在原来的节点上且对应关系不变、所以没有因为节点个数变动而缓存失效,当reshard一部分slot到新节点后,客户端获取到新迁移的这部分slot与新节点的对应关系、寻址到新节点,而没迁移的slot仍然寻址到原来的节点。

关于热迁移,猜想,内部应该是先做复制迁移,等迁移完了,再切换slot与节点的对应关系,复制没有完成之前仍按照原来的slot与节点对应关系去原节点访问。复制结束之后,再删除原节点上已经迁移的slot所对应的key。

与哨兵模式比较类似,当1个节点发现某个master节点故障了、会对这个故障节点进行pfail主观宕机,然后会通过gossip协议通知到集群中的其他节点、其他节点也执行判断pfail并gossip扩散广播这一过程,当超过半数节点pfail时那么故障节点就是fail客观宕机。接下来所有的master节点会在故障节点的从节点中选出一个新的主节点,此时所有的master节点中超过半数的都投票选举了故障节点的某个从节点,那么这个从节点当选新的master节点。

所有节点都持有元数据,节点之间通过gossip这种二进制协议进行通信、发送自己的元数据信息给其他节点、故障检测、集群配置更新、故障转移授权等等。

这种去中心化的分布式节点之间内部协调,包括故障识别、故障转移、选主等等,核心在于gossip扩散协议,能够支撑这样的广播协议在于所有的节点都持有一份完整的集群元数据,即所有的节点都知悉当前集群全局的情况。

Redis高可用方案 - (jianshu.com)

面试题:Redis 集群模式的工作原理能说一下么 - 云+社区 - 腾讯云 (tencent.com)

深度图解Redis Cluster原理 - detectiveHLH - 博客园 (cnblogs.com)

Redis学习笔记之集群重启和遇到的坑-阿里云开发者社区 (aliyun.com)

云服务器Redis集群部署及客户端通过公网IP连接问题

C. Web Api及MVC性能提升的几个小技巧

一、缓存
为了避免每次请求都去访问后台的资源,我们一般会考虑将一些更新不是很频繁的,可以重用的数据,通过一定的方式临时地保存起来,后续的请求根据情况可以直接访问这些保存起来的数据,这种机制就是所谓的缓存机制。缓存分为页面输出缓存,内存数据缓存和缓存依赖等。从设计原则来说,易变性、敏感性的信息不适合进行缓存,同时缓存的内容也是易丢失的,在代码中不能完全依赖于缓存的数据,需要保证在缓存的数据丢失后也能进行正确的处理。
1、页面输出缓存
通过对输出的页面进行缓存,每次新的用户请求调用相同的 Action 时,相同的内容不需要重新创建一次而直接输出。页面输出缓存的使用非常简单,在 Action 上使用 [OutputCache] 特性标记即可生效。页面输出缓存可控制缓存的内容所存储的位置,例如是在服务器端存储缓存的页面内容还是在客户端存储缓存的页面内容;也可使用 Duration 参数控制缓存的失效绝对时间和间隔时间,甚至能使用 VaryByParam 参数对不同的请求参数分别进行缓存。页面输出缓存非常适合于内容比较固定的前端页面的缓存。
2、内存数据缓存
通常情况下,数据是保存在数据库、磁盘文件等存储介质中的,而应用程序访问这些资源是一项很费时的操作。如果先将这些资源中的数据缓存到内存缓存区中,当应用程序需要这些数据时,直接从缓存区中提取,就可以减少系统开销,显着提高可使用的用户并发数等。内存数据缓存需考虑缓存的内容更改失效后如何清空其他已经被缓存的相关联的数据问题。
3、EFCache
众所周知,NHiberate 提供了二级缓存功能。现在,如果你使用的是 Entity Framework 6 或更高版本的 Entity Framework ,你也可考虑使用 EFCache 组件来为 Entity Framework 提供二级缓存支持,其实质上也是属于内存数据缓存。EFCache 的特点是使用上非常方便,仅需定义如下的代码无需其他复杂的额外的配置即可实现二级缓存。如需定义特定的缓存策略,如缓存的过期时间,控制数据缓存的范围,也仅需继承 CachingPolicy 类并 override 其部分方法即可。你甚至可以通过实现 ICache 接口来实现自定义的缓存模型以替换默认的 InMemoryCache 。
二、Stream压缩
对响应流进行压缩,其作用是减少网络开销,提高系统的响应速度。目前的浏览器通常都支持 gzip 和 deflate 压缩解压功能,因此你通常无效考虑浏览器的兼容性问题。启用 gzip 和 deflate ,既可通过 IIS 配置实现,在 MVC 中也可通过编写自定义的 ActionFilter 实现。在压缩之前和压缩之后 Stream 的大小差异通常都是惊人的,其压缩率通常都在5-10倍以上。
三、js和css文件的压缩和打包
1、js 和 css 文件的压缩
其实质就是生成较小的文件,减小下载这些文件的网络开销,提供系统的响应速度。压缩 js 和 css 文件还有个好处是通常还可以起到代码混淆的作用。在 YbSoftwareFactory 的 MVC 解决方案中,使用的是 Microsoft Ajax Minifier 组件,可在代码编译的过程中自动对所配置的 js 和 css 进行压缩,基本上文件的大小都可减少一半以上
2、js、css文件的打包
其目的是进行 js 文件和 css 文件的合并,当前主流浏览器的并发连接数默认情况下通常都是 6 个,如果前端页面同时请求的服务器资源(如 img 文件、js 文件、css 文件以及各类 url 请求等)超过6个,通常就需要进行排队下载。进行 js 文件、css 文件的打包合并,通常可以在一次请求中就完成未打包之前需多次请求才能完成的工作,通过减少前端浏览器的连接请求,在某种意义上也是可提高系统的响应速度的。