当前位置:首页 » 硬盘大全 » 一级缓存大小影响性能吗
扩展阅读
webinf下怎么引入js 2023-08-31 21:54:13
堡垒机怎么打开web 2023-08-31 21:54:11

一级缓存大小影响性能吗

发布时间: 2022-02-09 22:24:37

Ⅰ CPU的 一级缓存二级缓存的大小影响CPU的速度吗

CPU缓存(Cache Memory)是位于CPU与内存之间的临时存储器,它的容量比内存小的多但是交换速度却比内存要快得多。缓存的出现主要是为了解决CPU运算速度与内存读写速度不匹配的矛盾,因为CPU运算速度要比内存读写速度快很多,这样会使CPU花费很长时间等待数据到来或把数据写入内存。在缓存中的数据是内存中的一小部分,但这一小部分是短时间内CPU即将访问的,当CPU调用大量数据时,就可避开内存直接从缓存中调用,从而加快读取速度。由此可见,在CPU中加入缓存是一种高效的解决方案,这样整个内存储器(缓存+内存)就变成了既有缓存的高速度,又有内存的大容量的存储系统了。缓存对CPU的性能影响很大,主要是因为CPU的数据交换顺序和CPU与缓存间的带宽引起的。

缓存的工作原理是当CPU要读取一个数据时,首先从缓存中查找,如果找到就立即读取并送给CPU处理;如果没有找到,就用相对慢的速度从内存中读取并送给CPU处理,同时把这个数据所在的数据块调入缓存中,可以使得以后对整块数据的读取都从缓存中进行,不必再调用内存。

正是这样的读取机制使CPU读取缓存的命中率非常高(大多数CPU可达90%左右),也就是说CPU下一次要读取的数据90%都在缓存中,只有大约10%需要从内存读取。这大大节省了CPU直接读取内存的时间,也使CPU读取数据时基本无需等待。总的来说,CPU读取数据的顺序是先缓存后内存。

目前缓存基本上都是采用SRAM存储器,SRAM是英文Static RAM的缩写,它是一种具有静志存取功能的存储器,不需要刷新电路即能保存它内部存储的数据。不像DRAM内存那样需要刷新电路,每隔一段时间,固定要对DRAM刷新充电一次,否则内部的数据即会消失,因此SRAM具有较高的性能,但是SRAM也有它的缺点,即它的集成度较低,相同容量的DRAM内存可以设计为较小的体积,但是SRAM却需要很大的体积,这也是目前不能将缓存容量做得太大的重要原因。它的特点归纳如下:优点是节能、速度快、不必配合内存刷新电路、可提高整体的工作效率,缺点是集成度低、相同的容量体积较大、而且价格较高,只能少量用于关键性系统以提高效率。

按照数据读取顺序和与CPU结合的紧密程度,CPU缓存可以分为一级缓存,二级缓存,部分高端CPU还具有三级缓存,每一级缓存中所储存的全部数据都是下一级缓存的一部分,这三种缓存的技术难度和制造成本是相对递减的,所以其容量也是相对递增的。当CPU要读取一个数据时,首先从一级缓存中查找,如果没有找到再从二级缓存中查找,如果还是没有就从三级缓存或内存中查找。一般来说,每级缓存的命中率大概都在80%左右,也就是说全部数据量的80%都可以在一级缓存中找到,只剩下20%的总数据量才需要从二级缓存、三级缓存或内存中读取,由此可见一级缓存是整个CPU缓存架构中最为重要的部分。

一级缓存(Level 1 Cache)简称L1 Cache,位于CPU内核的旁边,是与CPU结合最为紧密的CPU缓存,也是历史上最早出现的CPU缓存。由于一级缓存的技术难度和制造成本最高,提高容量所带来的技术难度增加和成本增加非常大,所带来的性能提升却不明显,性价比很低,而且现有的一级缓存的命中率已经很高,所以一级缓存是所有缓存中容量最小的,比二级缓存要小得多。

一般来说,一级缓存可以分为一级数据缓存(Data Cache,D-Cache)和一级指令缓存(Instruction Cache,I-Cache)。二者分别用来存放数据以及对执行这些数据的指令进行即时解码,而且两者可以同时被CPU访问,减少了争用Cache所造成的冲突,提高了处理器效能。目前大多数CPU的一级数据缓存和一级指令缓存具有相同的容量,例如AMD的Athlon XP就具有64KB的一级数据缓存和64KB的一级指令缓存,其一级缓存就以64KB+64KB来表示,其余的CPU的一级缓存表示方法以此类推。

Intel的采用NetBurst架构的CPU(最典型的就是Pentium 4)的一级缓存有点特殊,使用了新增加的一种一级追踪缓存(Execution Trace Cache,T-Cache或ETC)来替代一级指令缓存,容量为12KμOps,表示能存储12K条即12000条解码后的微指令。一级追踪缓存与一级指令缓存的运行机制是不相同的,一级指令缓存只是对指令作即时的解码而并不会储存这些指令,而一级追踪缓存同样会将一些指令作解码,这些指令称为微指令(micro-ops),而这些微指令能储存在一级追踪缓存之内,无需每一次都作出解码的程序,因此一级追踪缓存能有效地增加在高工作频率下对指令的解码能力,而μOps就是micro-ops,也就是微型操作的意思。它以很高的速度将μops提供给处理器核心。Intel NetBurst微型架构使用执行跟踪缓存,将解码器从执行循环中分离出来。这个跟踪缓存以很高的带宽将uops提供给核心,从本质上适于充分利用软件中的指令级并行机制。Intel并没有公布一级追踪缓存的实际容量,只知道一级追踪缓存能储存12000条微指令(micro-ops)。所以,我们不能简单地用微指令的数目来比较指令缓存的大小。实际上,单核心的NetBurst架构CPU使用8Kμops的缓存已经基本上够用了,多出的4kμops可以大大提高缓存命中率。而如果要使用超线程技术的话,12KμOps就会有些不够用,这就是为什么有时候Intel处理器在使用超线程技术时会导致性能下降的重要原因。

例如Northwood核心的一级缓存为8KB+12KμOps,就表示其一级数据缓存为8KB,一级追踪缓存为12KμOps;而Prescott核心的一级缓存为16KB+12KμOps,就表示其一级数据缓存为16KB,一级追踪缓存为12KμOps。在这里12KμOps绝对不等于12KB,单位都不同,一个是μOps,一个是Byte(字节),而且二者的运行机制完全不同。所以那些把Intel的CPU一级缓存简单相加,例如把Northwood核心说成是20KB一级缓存,把Prescott核心说成是28KB一级缓存,并且据此认为Intel处理器的一级缓存容量远远低于AMD处理器128KB的一级缓存容量的看法是完全错误的,二者不具有可比性。在架构有一定区别的CPU对比中,很多缓存已经难以找到对应的东西,即使类似名称的缓存在设计思路和功能定义上也有区别了,此时不能用简单的算术加法来进行对比;而在架构极为近似的CPU对比中,分别对比各种功能缓存大小才有一定的意义。

Ⅱ 一级缓存和二级缓存对CU性能的影响哪个较大

二级缓存影响更大。像现在的高端CPU,都是说二级缓存有多大多大的。因为CPU在处理数据的时候,二级缓存用得最多,所以现在越高端的CPU,那二级缓存就越大。

Ⅲ 没有一级缓存、一级指令缓存的CPU会有什么影响或不足吗大神们帮帮忙

有影响,没有这个,数据加载,指令传递要慢点,但是我们很难感觉的到,所以没有一级缓存影响不大首先我们来简单了解一下一级缓存。目前所有主流处理器大都具有一级缓存和二级缓存,少数高端处理器还集成了三级缓存。其中,一级缓存可分为一级指令缓存和一级数据缓存。一级指令缓存用于暂时存储并向CPU递送各类运算指令;一级数据缓存用于暂时存储并向CPU递送运算所需数据,这就是一级缓存的作用(如果大家对上述文字理解困难的话,可参照下图所示)。 那么,二级缓存的作用又是什么呢?简单地说,二级缓存就是一级缓存的缓冲器:一级缓存制造成本很高因此它的容量有限,二级缓存的作用就是存储那些CPU处理时需要用到、一级缓存又无法存储的数据。同样道理,三级缓存和内存可以看作是二级缓存的缓冲器,它们的容量递增,但单位制造成本却递减。需要注意的是,无论是二级缓存、三级缓存还是内存都不能存储处理器操作的原始指令,这些指令只能存储在CPU的一级指令缓存中,而余下的二级缓存、三级缓存和内存仅用于存储CPU所需数据。 根据工作原理的不同,目前主流处理器所采用的一级数据缓存又可以分为实数据读写缓存和数据代码指令追踪缓存2种,它们分别被AMD和Intel所采用。不同的一级数据缓存设计对于二级缓存容量的需求也各不相同,下面让我们简单了解一下这两种一级数据缓存设计的不同之处。 一、AMD一级数据缓存设计 AMD采用的一级缓存设计属于传统的“实数据读写缓存”设计。基于该架构的一级数据缓存主要用于存储CPU最先读取的数据;而更多的读取数据则分别存储在二级缓存和系统内存当中。做个简单的假设,假如处理器需要读取“AMD ATHLON 64 3000+ IS GOOD”这一串数据(不记空格),那么首先要被读取的“AMDATHL”将被存储在一级数据缓存中,而余下的“ON643000+ISGOOD”则被分别存储在二级缓存和系统内存当中(如下图所示)。 需要注意的是,以上假设只是对AMD处理器一级数据缓存的一个抽象描述,一级数据缓存和二级缓存所能存储的数据长度完全由缓存容量的大小决定,而绝非以上假设中的几个字节。“实数据读写缓存”的优点是数据读取直接快速,但这也需要一级数据缓存具有一定的容量,增加了处理器的制造难度(一级数据缓存的单位制造成本较二级缓存高)。 二、Intel一级数据缓存设计 自P4时代开始,Intel开始采用全新的“数据代码指令追踪缓存”设计。基于这种架构的一级数据缓存不再存储实际的数据,而是存储这些数据在二级缓存中的指令代码(即数据在二级缓存中存储的起始地址)。假设处理器需要读取“INTEL P4 IS GOOD”这一串数据(不记空格),那么所有数据将被存储在二级缓存中,而一级数据代码指令追踪缓存需要存储的仅仅是上述数据的起始地址(如下图所示)。 由于一级数据缓存不再存储实际数据,因此“数据代码指令追踪缓存”设计能够极大地降CPU对一级数据缓存容量的要求,降低处理器的生产难度。但这种设计的弊端在于数据读取效率较“实数据读写缓存设计”低,而且对二级缓存容量的依赖性非常大。 在了解了一级缓存、二级缓存的大致作用及其分类以后,下面我们来回答以下硬件一菜鸟网友提出的问题。 从理论上讲,二级缓存越大处理器的性能越好,但这并不是说二级缓存容量加倍就能够处理器带来成倍的性能增长。目前CPU处理的绝大部分数据的大小都在0-256KB之间,小部分数据的大小在256KB-512KB之间,只有极少数数据的大小超过512KB。所以只要处理器可用的一级、二级缓存容量达到256KB以上,那就能够应付正常的应用;512KB容量的二级缓存已经足够满足绝大多数应用的需求。 这其中,对于采用“实数据读写缓存”设计的AMD Athlon 64、Sempron处理器而言,由于它们已经具备了64KB一级指令缓存和64KB一级数据缓存,只要处理器的二级缓存容量大于等于128KB就能够存储足够的数据和指令,因此它们对二级缓存的依赖性并不大。这就是为什么主频同为1.8GHz的Socket 754 Sempron 3000+(128KB二级缓存)、Sempron 3100+(256KB二级缓存)以及Athlon 64 2800+(512KB二级缓存)在大多数评测中性能非常接近的主要原因。所以对于普通用户而言754 Sempron 2600+是值得考虑的。 反观Intel目前主推的P4、赛扬系列处理器,它们都采用了“数据代码指令追踪缓存”架构,其中Prescott内核的一级缓存中只包含了12KB一级指令缓存和16KB一级数据缓存,而Northwood内核更是只有12KB一级指令缓存和8KB一级数据缓存。所以P4、赛扬系列处理器对二级缓存的依赖性是非常大的,赛扬D 320(256KB二级缓存)与赛扬 2.4GHz(128KB二级缓存)性能上的巨大差距就很好地证明了这一点;而赛扬D和P4 E处理器之间的性能差距同样十分明显。 最后,如果您是狂热的游戏发烧友或者从事多媒体制作的专业用户,那么具有1MB二级缓存的P4处理器和具有512KB/1MB二级缓存的Athlon 64处理器才是您理想的选择。因为在高负荷的运算下,CPU的一级缓存和二级缓存近乎“爆满”,在这个时候大容量的二级缓存能够为处理器带来5%-10%左右的性能提升,这对于那些要求苛刻的用户来说是完全有必要的。

Ⅳ 一级缓存 、二级缓存差距越大越好吗

一级缓存一般不会太大。一级缓存成本很高。
简单地说,二级缓存就是一级缓存的缓冲器:一级缓存制造成本很高因此它的容量有限,二级缓存的作用就是存储那些CPU处理时需要用到、一级缓存又无法存储的数据。同样道理,三级缓存和内存可以看作是二级缓存的缓冲器,它们的容量递增,但单位制造成本却递减。需要注意的是,无论是二级缓存、三级缓存还是内存都不能存储处理器操作的原始指令,这些指令只能存储在CPU的一级指令缓存中,而余下的二级缓存、三级缓存和内存仅用于存储CPU所需数据。
AMD采用的一级缓存设计属于传统的“实数据读写缓存”设计。基于该架构的一级数据缓存主要用于存储CPU最先读取的数据;而更多的读取数据则分别存储在二级缓存和系统内存当中。对二级缓存的依赖性并不大
P4时代开始,Intel开始采用全新的“数据代码指令追踪缓存”设计。基于这种架构的一级数据缓存不再存储实际的数据,而是存储这些数据在二级缓存中的指令代码(即数据在二级缓存中存储的起始地址)。
由于一级数据缓存不再存储实际数据,因此“数据代码指令追踪缓存”设计能够极大地降CPU对一级数据缓存容量的要求,降低处理器的生产难度。但这种设计的弊端在于数据读取效率较“实数据读写缓存设计”低,而且对二级缓存容量的依赖性非常大。
从理论上讲,二级缓存越大处理器的性能越好,但这并不是说二级缓存容量加倍就能够处理器带来成倍的性能增长。

Ⅳ CUP的一级缓存和2级缓存读处理速度有影响么

过程是这样的,如果CPU缓存里有数据,CPU从中读取,并且速度快,如果没有,从内存中取,速度当然就比从缓存中慢,所以缓存越大,存的越多,越容易找到,机器速度月快

Ⅵ 一级缓存影响速度不啊

不要小看一级缓存,CPU要访问一个地址的时候先看一级缓存有没有,有就直接读取,没有就看二级缓存,有就读取,还没有就直接访问内存。由于缓存比内存速度快,所以整体性能提高很多。

Ⅶ L2缓存对cpu性能的影响有多大

当然很大。二级缓存越大,CPU访问缓存中的重要数据的命中率越高,就会减少去低速的内存中调取数据的次数,自然运算就会更快。
当然,也不是说越大越好。以早期的775 CPU为例:
赛扬E1500、奔腾E2180、酷睿2 E6300、酷睿2 E6320这几款CPU的内核几乎相同,差别主要体现在二级缓存上。E1500为512K,E2180为1M,E6300为2M,E6320为4M。如果它们的主频调到相同的值,则E2180的性能明显优于E1500,E6300又明显优于E2180。但是E6320相对于E6300的提升就不那么明显了。
这说明L2初期增大很有效,但大到一定程度,再增加其容量,对性能的提升的贡献就不那么大了。因为此时L2的容量已经不再是瓶颈,反而核心的计算能力变成了瓶颈。打个比方,L2好比仓库,当一个工厂原来的仓库很小,此时改造加大仓库有利于提高产能,但仓库大到一定程度,再增大已经没用了,因为生产线没增加,仓库已经闲置了。
还有,太大的L2会增加CPU的复杂程度,增加晶体管数量增大功耗、降低良品率。

Ⅷ 处理器的L1,L2,L3缓存大小影响什么

硬盘的缓存主要起三种作用:
1、预读取
当硬盘受到CPU指令控制开始读取数据时,硬盘上的控制芯片会控制磁头把正在读取的簇的下一个或者几个簇中的数据读到缓存中(由于硬上数据存储时是比较连续的,所以读取命中率较高),当需要读取下一个或者几个簇中的数据的时候,硬盘则不需要再次读取数据,直接把缓存中的数据传输到内存中就可以了,由于缓存的速率远远高于磁头读写的速率,所以能够达到明显改善性能的目的。
2、写入
当硬盘接到写入数据的指令之后,并不会马上将数据写入到盘片上,而是先暂时存储在缓存里,然后发送一个“数据已写入”的信号给系统,这时系统就会认为数据已经写入,并继续执行下面的工作,而硬盘则在空闲(不进行读取或写入的时候)时再将缓存中的数据写入到盘片上。虽然对于写入数据的性能有一定提升,但也不可避免地带来了安全隐患——数据还在缓存里的时候突然掉电,那么这些数据就会丢失。对于这个问题,硬盘厂商们自然也有解决办法:掉电时,磁头会借助惯性将缓存中的数据写入零磁道以外的暂存区域,等到下次启动时再将这些数据写入目的地。
3、临时存储
有时候,某些数据是会经常需要访问的,像硬盘内部的缓存(暂存器的一种)会将读取比较频繁的一些数据存储在缓存中,再次读取时就可以直接从缓存中直接传输。缓存就像是一台计算机的内存一样,在硬盘读写数据时,负责数据的存储、寄放等功能。这样一来,不仅可以大大减少数据读写的时间以提高硬盘的使用效率。同时利用缓存还可以让硬盘减少频繁的读写,让硬盘更加安静,更加省电。更大的硬盘缓存,你将读取游戏时更快,拷贝文件时候更快,在系统启动中更为领先。

Ⅸ cpuL2缓存对cpu性能有什么影响

肯定有影响!
cpu二级缓存现代桌面级PC的CPU二级缓存容量大多数在64KB到2MB之间。因为CPU二级缓存容量对CPU性能有不小的影响,所以低端CPU和中高端CPU在物理结构上的差异主要就是二级缓存容量的大小。那么二级缓存容量为什么如此重要?它对CPU性能有什么样的影响呢?
CPU二级缓存作为一级缓存的“后备仓库”,用于为一级缓存存储更多的数据,减少CPU直接访问内存 的次数。理论上,CPU访问并调用缓存的数据所占的比重越大,则CPU访问并调用内存的数据所占的比重就越小,那么因访问内存而耽误的时间 就越少。所以缓存的容量越大,CPU的实际效率也就越高,性能就越强。
实际上,现在Intel和AMD处理器在一级缓存的逻辑结构设计上有所不同,所以二级缓存对CPU性能的影响也不尽相同。因为CPU读取的 数据(包括指令)中有80%的数据来自一级缓存,所以一级缓存的逻辑结构决定了CPU二级缓存容量对CPU性能的影响。Intel的Pentium 4及Celeron系列处理器的一级数据缓存被称为“数据代码指令追踪(读写)缓存”;AMD的Athlon 64/Athlon XP/Sempron/Duron系列处理器 的一级数据缓存叫作“实数据读写缓存”。
这两类CPU一级缓存不同的逻辑结构有什么不同?下面,用一个例子来描述。
假设有一个运算任务,要从“1”一直递加到“999999”。在传统的“实数据读写缓存”架构下,这一系列数据中最先用到的数据(如 “1、2……449、450”)将存储在CPU一级数据缓存中,更多的数据(如“451、452……899999、900000”)存储在CPU二级缓存中,其余的数 据(如“900001、999002……999998、999999”)暂存在内存中,CPU将按照一级数据缓存、二级缓存和内存的顺序读取这些数据。

传统的一级数据缓存的存储方式
但是在“数据代码指令追踪缓存”架构的CPU中,一级数据缓存并不存储这些最先用到的数据(“1、2……449、450”),而是将这些 数据存储到二级缓存中,一级数据缓存仅仅存储这些数据在二级缓存中的起止地址(又称为:指令代码)。例如,数据“1、2……449、450” 顺序存储在二级缓存中,数据“1”所在地址为“00001F”,数据“450” 所在地址为“00451F”,实际上一级数据缓存只需要存储“00001F”和“00451F”这两个地址就可以了,而不需要存储大量的数据。

“数据代码指令追踪缓存”架构的一级数据缓存的存储方式
但是由于其一级数据缓存不存储数据,数据存储在二级缓存中,因此对二级缓存容量的依赖非常大,所以CPU需要更大的二级缓存容量 才能发挥出应有的性能。在实际应用中,CPU处理的数据中大多数都是0KB~128KB大小的数据,128KB~256KB的数据约有10%,256KB~512KB的 数据有5%,512KB~1MB的数据仅有3%左右。所以对于这种CPU来说,二级缓存容量从0KB增加到256KB对CPU性能的提高几乎是直线性的;增加 到512KB对CPU性能的提高稍微小一些;从512KB增加到1MB,普通用户就很难体会到CPU性能有提高了。正因为如此,大家能感受到Pentium 4 C(512KB二级缓存)与Celeron(128KB二级缓存)的性能差异,却很难感受到Pentium 4 C(512KB二级缓存)与Pentium 4 E(1MB二级缓存)的性能差异了。

CPU处理数据大小的概率分布图
例如,同为2.8GHz主频的Celeron D(256KB二级缓存)和Pentium 4 E(1MB二级缓存)运算super π 104万位的耗时分别为56秒和48秒 ,除去外频(前者为133MHz,后者为200MHz)的差异和超线程技术的影响,两者的性能差距只有10%左右,对于普通用户而言这样的性能差距 是微不足道的;只有对CPU运算性能要求“苛刻”的玩家来说更大的二级缓存容量才是必须的。

Celeron D

Pentium 4 E
相对的,由于AMD的Athlon 64/Athlon XP/Sempron/Duron系列产品的一级数据缓存直接存储数据,而且128KB的容量在大多数情况下就 可以承担CPU所急需的数据,所以其二级缓存对CPU性能的影响并没有那么大。这也就解释了为什么主频和外频相同的Athlon XP(256KB或512KB二级缓存)和Duron(64KB二级缓存)虽然二级缓存容量差异巨大,但实际性能差距不大的原因。而且Athlon 64/Sempron 系列CPU在内存控制器、流水线长度、频率、总线架构和扩展指令集等诸多方面与以前的产品都有差异,因此在性能上受二级缓存容量的影响就 更小了。

Sempron

Athlon 64
综上所述,在CPU性能方面,并非只从二级缓存容量上作对比就可以得到准确的答案,实际上还要考虑到缓存的总体设计结构、一级数 据缓存容量等因素。虽然从总体上来讲,二级缓存容量越大越好,但是并不是二级缓存容量提高一倍就能使CPU性能提升一倍。因此对于一般家 庭用户来说,电脑主要是用来上网、欣赏音乐和电影以及文字处理,二级缓存为256KB的Celeron D或Sempron已经足够了。只有对3D游戏、办公软件和多媒体编辑性能要求较高的用户才需要更大二级缓存的CPU。
不知道是不是能够明白

Ⅹ 缓存的大小关系到电脑的运行速度吗比如1级和2级缓存

CPU缓存(Cache Memory)位于CPU与内存之间的临时存储器,它的容量比内存小但交换速度快。在缓存中的数据是内存中的一小部分,但这一小部分是短时间内CPU即将访问的,当CPU调用大量数据时,就可避开内存直接从缓存中调用,从而加快读取速度。由此可见,在CPU中加入缓存是一种高效的解决方案,这样整个内存储器(缓存+内存)就变成了既有缓存的高速度,又有内存的大容量的存储系统了。缓存对CPU的性能影响很大,主要是因为CPU的数据交换顺序和CPU与缓存间的带宽引起的。 缓存的工作原理是当CPU要读取一个数据时,首先从缓存中查找,如果找到就立即读取并送给CPU处理;如果没有找到,就用相对慢的速度从内存中读取并送给CPU处理,同时把这个数据所在的数据块调入缓存中,可以使得以后对整块数据的读取都从缓存中进行,不必再调用内存。 正是这样的读取机制使CPU读取缓存的命中率非常高(大多数CPU可达90%左右),也就是说CPU下一次要读取的数据90%都在缓存中,只有大约10%需要从内存读取。这大大节省了CPU直接读取内存的时间,也使CPU读取数据时基本无需等待。总的来说,CPU读取数据的顺序是先缓存后内存。 增加二级缓存容量能使性能大幅度提高。而同一核心的CPU高低端之分往往也是在二级缓存上有差异,二级缓存容量越大CPU性能越好!

满意请采纳