① CPU的缓存有什么用为什么缓存大的运算速度快
缓存是CPU的一部分,它存在于CPU中 CPU存取数据的速度非常的快,一秒钟能够存取、处理十亿条指令和数据(术语:CPU主频1G),而内存就慢很多,快的内存能够达到几十兆就不错了,可见两者的速度差异是多么的大。 存是为了解决CPU速度和内存速度的速度差异问题 内存中被CPU访问最频繁的数据和指令被复制入CPU中的缓存,这样CPU就可以不经常到象“蜗牛”一样慢的内存中去取数据了,CPU只要到缓存中去取就行了,而缓存的速度要比内存快很多。 缓存大小也是CPU的重要指标之一,而且缓存的结构和大小对CPU速度的影响非常大,CPU内缓存的运行频率极高,一般是和处理器同频运作,工作效率远远大于系统内存和硬盘。实际工作时,CPU往往需要重复读取同样的数据块,而缓存容量的增大,可以大幅度提升CPU内部读取数据的命中率,而不用再到内存或者硬盘上寻找,以此提高系统性能。但是由于CPU芯片面积和成本的因素来考虑,缓存都很小。 L1 Cache(一级缓存)是CPU第一层高速缓存,分为数据缓存和指令缓存。内置的L1高速缓存的容量和结构对CPU的性能影响较大,不过高速缓冲存储器均由静态RAM组成,结构较复杂,在CPU管芯面积不能太大的情况下,L1级高速缓存的容量不可能做得太大。一般服务器CPU的L1缓存的容量通常在32—256KB。Pc235.com L2 Cache(二级缓存)是CPU的第二层高速缓存,分内部和外部两种芯片。内部的芯片二级缓存运行速度与主频相同,而外部的二级缓存则只有主频的一半。L2高速缓存容量也会影响CPU的性能,原则是越大越好,现在家庭用CPU容量最大的是512KB,而服务器和工作站上用CPU的L2高速缓存更高达256-1MB,有的高达2MB或者3MB。 L3 Cache(三级缓存),分为两种,早期的是外置,现在的都是内置的。而它的实际作用即是,L3缓存的应用可以进一步降低内存延迟,同时提升大数据量计算时处理器的性能。降低内存延迟和提升大数据量计算能力对游戏都很有帮助。而在服务器领域增加L3缓存在性能方面仍然有显着的提升。比方具有较大L3缓存的配置利用物理内存会更有效,故它比较慢的磁盘I/O子系统可以处理更多的数据请求。具有较大L3缓存的处理器提供更有效的文件系统缓存行为及较短消息和处理器队列长度。 其实最早的L3缓存被应用在AMD发布的K6-III处理器上,当时的L3缓存受限于制造工艺,并没有被集成进芯片内部,而是集成在主板上。在只能够和系统总线频率同步的L3缓存同主内存其实差不了多少。后来使用L3缓存的是英特尔为服务器市场所推出的Itanium处理器。接着就是P4EE和至强MP。Intel还打算推出一款9MB L3缓存的Itanium2处理器,和以后24MB L3缓存的双核心Itanium2处理器。 但基本上L3缓存对处理器的性能提高显得不是很重要,比方配备1MB L3缓存的Xeon MP处理器却仍然不是Opteron的对手,由此可见前端总线的增加,要比缓存增加带来更有效的性能提升。
② CPU的一二三级缓存有什么用处
首先我们要知道CPU缓存是什么,CPU缓存位于CPU与内存之间,起到临时存储器的作用。它的主要作用在于CPU的运行速度要远高于内存速度,这会导致正常的运算过程中,CPU往往会等到内存将数据传输过来或者通过内存传输至其他硬件。CPU缓存的出现就是为了应对这类情况的出现,通常而言,CPU缓存容量比内存小但交换速度比内存快,当CPU调用大量数据时,就可先在CPU缓存中调用,从而加快读取速度。
我们日常购买CPU的时候,会在参数表中看到有一级缓存、二级缓存、三级缓存指标,三种缓存的容量各不相同,他们之间的关系可以理解为每一级缓存中存储的全部数据为下一级缓存的一部分,这三种缓存的技术难度和制造成本是相对递减的,所以其容量也是相对递增。
CPU缓存
一级缓存
一级缓存就在CPU的内核边上,是与CPU连接最紧密的缓存,也是最早出现在CPU中缓解CPU与内存之间数据的缓存,
二级缓存
二级缓存是CPU的第二层高速缓存,L2高速缓存容量也会影响CPU的性能,原则是越大越好,现在家用CPU容量最大是4MB。
三级缓存
三级缓存是为读取二级缓存后未命中的数据设计的一种缓存,在拥有三级缓存的CPU中,只有约5%的数据需要从内存中调用,这进一步提高了CPU的效率。
CPU缓存作用
作用之一就是我们之前提到的减少延迟,减少CPU与内存之间数据传输过程中的延迟时间。
作用之二则是提高命中率,CPU在Cache中找到有用的数据被称为命中。未找到则访问内存,对于用户而言,当然更希望通过访问CPU缓存中的信息已得到速度上的优势。而CPU缓存的作用就是为了最大限度提升这一目标。
作用三是降低装机成本。缓存的工作原理是当CPU要读取一个数据时,首先从缓存中查找,同时把这个数据所在的数据块调入缓存中,可以使得以后对整块数据的读取都从缓存中进行,不必再调用内存,进而降低装机成本。
CPU缓存的作用其实就是提高命中率、降低延迟、降低内存开销,其作用是为了提升CPU的工作效率。CPU缓存越大越好,尤其是一些专业设计、视频渲染,由于CPU运算数据量大,对大缓存依赖较高。目前,随着游戏画质的越来越优化,对于CPU缓存的需求也越来越高。
③ 电脑高手帮个忙吧
高速缓存分为一级缓存(即L1 Cache)和二级缓存(即L2Cache)。CPU在运行时首先从一级缓存读取数据,然后从二级缓存读取数据,然后从内存和虚拟内存读取数据,因此高速缓存的容量和速度直接影响到CPU的工作性能。 一级缓存都内置在CPU内部并与CPU同速运行,可以有效的提高CPU的运行效率。一级缓存越大,CPU的运行效率越高,但受到CPU内部结构的限制,一级缓存的容量都很小。 二级缓存对CPU运行效率的影响也很大,现在的二级缓存一般都集成在中,但有分为芯片内部和外部两种,集成在芯片内部的二级缓存与CPU同频率二级缓存(即全速二级缓存),而集成在芯片外部的二级缓存的运行频率 是CPU的运行频率的一半(即半速二级缓存),因此运行效率较低。 但是一级缓存和二级缓存的大,它究竟有多少好处呢?你得告诉我们经销商,实际上你得用最普通的话跟他讲。所以我们给他们打个比方,说这个就好比你开汽车的时候,后备箱是整个的一级缓存,假如说扶手里面有一个小箱子,那是你的二级缓存。二级缓存大好在哪里呢?就是你随时开车的时候,随时在里面都可以取东西了。假如你二级缓存小的话,你还得把车停下来,到后备箱里取东西。
首先我们来简单了解一下一级缓存。目前所有主流处理器大都具有一级缓存和二级缓存,少数高端处理器还集成了三级缓存。其中,一级缓存可分为一级指令缓存和一级数据缓存。一级指令缓存用于暂时存储并向CPU递送各类运算指令;一级数据缓存用于暂时存储并向CPU递送运算所需数据,这就是一级缓存的作用(如果大家对上述文字理解困难的话,可参照下图所示)。
那么,二级缓存的作用又是什么呢?简单地说,二级缓存就是一级缓存的缓冲器:一级缓存制造成本很高因此它的容量有限,二级缓存的作用就是存储那些CPU处理时需要用到、一级缓存又无法存储的数据。同样道理,三级缓存和内存可以看作是二级缓存的缓冲器,它们的容量递增,但单位制造成本却递减。需要注意的是,无论是二级缓存、三级缓存还是内存都不能存储处理器操作的原始指令,这些指令只能存储在CPU的一级指令缓存中,而余下的二级缓存、三级缓存和内存仅用于存储CPU所需数据。
根据工作原理的不同,目前主流处理器所采用的一级数据缓存又可以分为实数据读写缓存和数据代码指令追踪缓存2种,它们分别被AMD和Intel所采用。不同的一级数据缓存设计对于二级缓存容量的需求也各不相同,下面让我们简单了解一下这两种一级数据缓存设计的不同之处。
一、AMD一级数据缓存设计
AMD采用的一级缓存设计属于传统的“实数据读写缓存”设计。基于该架构的一级数据缓存主要用于存储CPU最先读取的数据;而更多的读取数据则分别存储在二级缓存和系统内存当中。做个简单的假设,假如处理器需要读取“AMD ATHLON 64 3000+ IS GOOD”这一串数据(不记空格),那么首先要被读取的“AMDATHL”将被存储在一级数据缓存中,而余下的“ON643000+ISGOOD”则被分别存储在二级缓存和系统内存当中(如下图所示)。
需要注意的是,以上假设只是对AMD处理器一级数据缓存的一个抽象描述,一级数据缓存和二级缓存所能存储的数据长度完全由缓存容量的大小决定,而绝非以上假设中的几个字节。“实数据读写缓存”的优点是数据读取直接快速,但这也需要一级数据缓存具有一定的容量,增加了处理器的制造难度(一级数据缓存的单位制造成本较二级缓存高)。
二、Intel一级数据缓存设计
自P4时代开始,Intel开始采用全新的“数据代码指令追踪缓存”设计。基于这种架构的一级数据缓存不再存储实际的数据,而是存储这些数据在二级缓存中的指令代码(即数据在二级缓存中存储的起始地址)。假设处理器需要读取“INTEL P4 IS GOOD”这一串数据(不记空格),那么所有数据将被存储在二级缓存中,而一级数据代码指令追踪缓存需要存储的仅仅是上述数据的起始地址(如下图所示)。
由于一级数据缓存不再存储实际数据,因此“数据代码指令追踪缓存”设计能够极大地降CPU对一级数据缓存容量的要求,降低处理器的生产难度。但这种设计的弊端在于数据读取效率较“实数据读写缓存设计”低,而且对二级缓存容量的依赖性非常大。
在了解了一级缓存、二级缓存的大致作用及其分类以后,下面我们来回答以下硬件一菜鸟网友提出的问题。
从理论上讲,二级缓存越大处理器的性能越好,但这并不是说二级缓存容量加倍就能够处理器带来成倍的性能增长。目前CPU处理的绝大部分数据的大小都在0-256KB之间,小部分数据的大小在256KB-512KB之间,只有极少数数据的大小超过512KB。所以只要处理器可用的一级、二级缓存容量达到256KB以上,那就能够应付正常的应用;512KB容量的二级缓存已经足够满足绝大多数应用的需求。
这其中,对于采用“实数据读写缓存”设计的AMD Athlon 64、Sempron处理器而言,由于它们已经具备了64KB一级指令缓存和64KB一级数据缓存,只要处理器的二级缓存容量大于等于128KB就能够存储足够的数据和指令,因此它们对二级缓存的依赖性并不大。这就是为什么主频同为1.8GHz的Socket 754 Sempron 3000+(128KB二级缓存)、Sempron 3100+(256KB二级缓存)以及Athlon 64 2800+(512KB二级缓存)在大多数评测中性能非常接近的主要原因。所以对于普通用户而言754 Sempron 2600+是值得考虑的。
反观Intel目前主推的P4、赛扬系列处理器,它们都采用了“数据代码指令追踪缓存”架构,其中Prescott内核的一级缓存中只包含了12KB一级指令缓存和16KB一级数据缓存,而Northwood内核更是只有12KB一级指令缓存和8KB一级数据缓存。所以P4、赛扬系列处理器对二级缓存的依赖性是非常大的,赛扬D 320(256KB二级缓存)与赛扬 2.4GHz(128KB二级缓存)性能上的巨大差距就很好地证明了这一点;而赛扬D和P4 E处理器之间的性能差距同样十分明显。
最后,如果您是狂热的游戏发烧友或者从事多媒体制作的专业用户,那么具有1MB二级缓存的P4处理器和具有512KB/1MB二级缓存的Athlon 64处理器才是您理想的选择。因为在高负荷的运算下,CPU的一级缓存和二级缓存近乎“爆满”,在这个时候大容量的二级缓存能够为处理器带来5%-10%左右的性能提升,这对于那些要求苛刻的用户来说是完全有必要的。
二级缓存又叫L2 CACHE,它是处理器内部的一些缓冲存储器,其作用跟内存一样。 它是怎么出现的呢? 要上溯到上个世纪80年代,由于处理器的运行速度越来越快,慢慢地,处理器需要从内存中读取数据的速度需求就越来越高了。然而内存的速度提升速度却很缓慢,而能高速读写数据的内存价格又非常高昂,不能大量采用。从性能价格比的角度出发,英特尔等处理器设计生产公司想到一个办法,就是用少量的高速内存和大量的低速内存结合使用,共同为处理器提供数据。这样就兼顾了性能和使用成本的最优。而那些高速的内存因为是处于CPU和内存之间的位置,又是临时存放数据的地方,所以就叫做缓冲存储器了,简称“缓存”。它的作用就像仓库中临时堆放货物的地方一样,货物从运输车辆上放下时临时堆放在缓存区中,然后再搬到内部存储区中长时间存放。货物在这段区域中存放的时间很短,就是一个临时货场。 最初缓存只有一级,后来处理器速度又提升了,一级缓存不够用了,于是就添加了二级缓存。二级缓存是比一级缓存速度更慢,容量更大的内存,主要就是做一级缓存和内存之间数据临时交换的地方用。现在,为了适应速度更快的处理器P4EE,已经出现了三级缓存了,它的容量更大,速度相对二级缓存也要慢一些,但是比内存可快多了。 缓存的出现使得CPU处理器的运行效率得到了大幅度的提升,这个区域中存放的都是CPU频繁要使用的数据,所以缓存越大处理器效率就越高,同时由于缓存的物理结构比内存复杂很多,所以其成本也很高。
大量使用二级缓存带来的结果是处理器运行效率的提升和成本价格的大幅度不等比提升。举个例子,服务器上用的至强处理器和普通的P4处理器其内核基本上是一样的,就是二级缓存不同。至强的二级缓存是2MB~16MB,P4的二级缓存是512KB,于是最便宜的至强也比最贵的P4贵,原因就在二级缓存不同。
即L2 Cache。由于L1级高速缓存容量的限制,为了再次提高CPU的运算速度,在CPU外部放置一高速存储器,即二级缓存。工作主频比较灵活,可与CPU同频,也可不同。CPU在读取数据时,先在L1中寻找,再从L2寻找,然后是内存,在后是外存储器。所以L2对系统的影响也不容忽视。
CPU缓存(Cache Memory)位于CPU与内存之间的临时存储器,它的容量比内存小但交换速度快。在缓存中的数据是内存中的一小部分,但这一小部分是短时间内CPU即将访问的,当CPU调用大量数据时,就可避开内存直接从缓存中调用,从而加快读取速度。由此可见,在CPU中加入缓存是一种高效的解决方案,这样整个内存储器(缓存+内存)就变成了既有缓存的高速度,又有内存的大容量的存储系统了。缓存对CPU的性能影响很大,主要是因为CPU的数据交换顺序和CPU与缓存间的带宽引起的。
缓存的工作原理是当CPU要读取一个数据时,首先从缓存中查找,如果找到就立即读取并送给CPU处理;如果没有找到,就用相对慢的速度从内存中读取并送给CPU处理,同时把这个数据所在的数据块调入缓存中,可以使得以后对整块数据的读取都从缓存中进行,不必再调用内存。
正是这样的读取机制使CPU读取缓存的命中率非常高(大多数CPU可达90%左右),也就是说CPU下一次要读取的数据90%都在缓存中,只有大约10%需要从内存读取。这大大节省了CPU直接读取内存的时间,也使CPU读取数据时基本无需等待。总的来说,CPU读取数据的顺序是先缓存后内存。
最早先的CPU缓存是个整体的,而且容量很低,英特尔公司从Pentium时代开始把缓存进行了分类。当时集成在CPU内核中的缓存已不足以满足CPU的需求,而制造工艺上的限制又不能大幅度提高缓存的容量。因此出现了集成在与CPU同一块电路板上或主板上的缓存,此时就把 CPU内核集成的缓存称为一级缓存,而外部的称为二级缓存。一级缓存中还分数据缓存(Data Cache,D-Cache)和指令缓存(Instruction Cache,I-Cache)。二者分别用来存放数据和执行这些数据的指令,而且两者可以同时被CPU访问,减少了争用Cache所造成的冲突,提高了处理器效能。英特尔公司在推出Pentium 4处理器时,用新增的一种一级追踪缓存替代指令缓存,容量为12KμOps,表示能存储12K条微指令。
随着CPU制造工艺的发展,二级缓存也能轻易的集成在CPU内核中,容量也在逐年提升。现在再用集成在CPU内部与否来定义一、二级缓存,已不确切。而且随着二级缓存被集成入CPU内核中,以往二级缓存与CPU大差距分频的情况也被改变,此时其以相同于主频的速度工作,可以为CPU提供更高的传输速度。
二级缓存是CPU性能表现的关键之一,在CPU核心不变化的情况下,增加二级缓存容量能使性能大幅度提高。而同一核心的CPU高低端之分往往也是在二级缓存上有差异,由此可见二级缓存对于CPU的重要性。
CPU在缓存中找到有用的数据被称为命中,当缓存中没有CPU所需的数据时(这时称为未命中),CPU才访问内存。从理论上讲,在一颗拥有二级缓存的CPU中,读取一级缓存的命中率为80%。也就是说CPU一级缓存中找到的有用数据占数据总量的80%,剩下的20%从二级缓存中读取。由于不能准确预测将要执行的数据,读取二级缓存的命中率也在80%左右(从二级缓存读到有用的数据占总数据的16%)。那么还有的数据就不得不从内存调用,但这已经是一个相当小的比例了。目前的较高端的CPU中,还会带有三级缓存,它是为读取二级缓存后未命中的数据设计的—种缓存,在拥有三级缓存的CPU中,只有约5%的数据需要从内存中调用,这进一步提高了CPU的效率。
为了保证CPU访问时有较高的命中率,缓存中的内容应该按一定的算法替换。一种较常用的算法是“最近最少使用算法”(LRU算法),它是将最近一段时间内最少被访问过的行淘汰出局。因此需要为每行设置一个计数器,LRU算法是把命中行的计数器清零,其他各行计数器加1。当需要替换时淘汰行计数器计数值最大的数据行出局。这是一种高效、科学的算法,其计数器清零过程可以把一些频繁调用后再不需要的数据淘汰出缓存,提高缓存的利用率。
CPU产品中,一级缓存的容量基本在4KB到64KB之间,二级缓存的容量则分为128KB、256KB、512KB、1MB、2MB等。一级缓存容量各产品之间相差不大,而二级缓存容量则是提高CPU性能的关键。二级缓存容量的提升是由CPU制造工艺所决定的,容量增大必然导致CPU内部晶体管数的增加,要在有限的CPU面积上集成更大的缓存,对制造工艺的要求也就越高
缓存(Cache)大小是CPU的重要指标之一,其结构与大小对CPU速度的影响非常大。简单地讲,缓存就是用来存储一些常用或即将用到的数据或指令,当需要这些数据或指令的时候直接从缓存中读取,这样比到内存甚至硬盘中读取要快得多,能够大幅度提升CPU的处理速度。
所谓处理器缓存,通常指的是二级高速缓存,或外部高速缓存。即高速缓冲存储器,是位于CPU和主存储器DRAM(Dynamic RAM)之间的规模较小的但速度很高的存储器,通常由SRAM(静态随机存储器)组成。用来存放那些被CPU频繁使用的数据,以便使CPU不必依赖于速度较慢的DRAM(动态随机存储器)。L2高速缓存一直都属于速度极快而价格也相当昂贵的一类内存,称为SRAM(静态RAM),SRAM(Static RAM)是静态存储器的英文缩写。由于SRAM采用了与制作CPU相同的半导体工艺,因此与动态存储器DRAM比较,SRAM的存取速度快,但体积较大,价格很高。
处理器缓存的基本思想是用少量的SRAM作为CPU与DRAM存储系统之间的缓冲区,即Cache系统。80486以及更高档微处理器的一个显着特点是处理器芯片内集成了SRAM作为Cache,由于这些Cache装在芯片内,因此称为片内Cache。486芯片内Cache的容量通常为8K。高档芯片如Pentium为16KB,Power PC可达32KB。Pentium微处理器进一步改进片内Cache,采用数据和双通道Cache技术,相对而言,片内Cache的容量不大,但是非常灵活、方便,极大地提高了微处理器的性能。片内Cache也称为一级Cache。由于486,586等高档处理器的时钟频率很高,一旦出现一级Cache未命中的情况,性能将明显恶化。在这种情况下采用的办法是在处理器芯片之外再加Cache,称为二级Cache。二级Cache实际上是CPU和主存之间的真正缓冲。由于系统板上的响应时间远低于CPU的速度,如果没有二级Cache就不可能达到486,586等高档处理器的理想速度。二级Cache的容量通常应比一级Cache大一个数量级以上。在系统设置中,常要求用户确定二级Cache是否安装及尺寸大小等。二级Cache的大小一般为128KB、256KB或512KB。在486以上档次的微机中,普遍采用256KB或512KB同步Cache。所谓同步是指Cache和CPU采用了相同的时钟周期,以相同的速度同步工作。相对于异步Cache,性能可提高30%以上。
目前,PC及其服务器系统的发展趋势之一是CPU主频越做越高,系统架构越做越先进,而主存DRAM的结构和存取时间改进较慢。因此,缓存(Cache)技术愈显重要,在PC系统中Cache越做越大。广大用户已把Cache做为评价和选购PC系统的一个重要指标。
④ cpu缓存越大越好吗
理论上越大越好。但实际上缓存的命中率对容量的提升不是线性的,也就是在缓存较大时,再提升缓存换来的性能提升是非常小的,所以再买CPU时不用刻意追求缓存大小。
⑤ 玩游戏,三级缓存很重要吗
三级缓存的作用是读取二级缓存里未完成的数据,它的存在完全是为了应付大型视频格式的采集和转换。比如制作高清游戏CG,同步解析高清视频传输,和对MKV视频转。但是对于运行已经制作好的游戏来说,三缓和四核毫无用处。玩游戏,CPU保证3个关键点,1:强大的双核主频,主频越高越好,核心数量大于2个纯粹浪费。2:强悍的2级缓存,4M就非常流畅了,如果有实力可以搞8M以上的,当然这些都是服务器CPU了,价格非常昂贵,功耗也很高,比如AMD的浩龙。二级缓存是临时储存内存常用数据的地方,而内存代码都是二进制的0101这样的东西,这样省去了CPU频繁通过主板通道和内存控制器从内存调用数据的过程,从而有效提升了运算速度。3:22纳尼科技,配合超频版内存!记住,这点非常重要。大部分人装机子都只注重CPU,而往往忽略了内存的作用。CPU的作用是处理,内存则是用来调用和运算,用一台机车来形容的话,CPU就好比发动机,内存则是化油器,内存提供数据的速度直接影响到CPU的处理速度。说到这里,很多人应该明白,内存频率和时序,而不是单单注重内存容量。主流的内存4G已经完全够用,没有哪个游戏能瞬间把内存吃爆。比如游戏只需要800M内存空间,这时候你用4G和8H内存,就丝毫感觉不出来差别。但是调用这800M内存所用的时间,普通内存和高端内存就截然不同,而这个时间是不受CPU主频和缓存控制的,但是22纳米技术的CPU支持1600频率内存,而32纳米或更大纳米都不支持。很多人买了1600内存,而CPU却用32纳米,造成了白白浪费,而速度却丝毫得不到改观。选择22纳米CPU,才能为选择高端内存打好硬件基础。选择了1600频率,我们再来选择时序,也叫内存时钟,由于里面每个时序代表的意义和名词太过专业和复杂,我们就不在这里详细探讨。总之要买带散热器的套条,最好是超频版或是服务器版。比如威刚的游戏威龙,极速飞龙,宇詹的黑豹系列,和海盗船的服务器骨灰版。强烈建议不要选择金士顿的产品!我曾用DD2的4G游戏威龙顽爆了大多数DDR3 1333的4G内存,靠的就是强大的时序。多少人花近2000的价格购买二缓和三缓强大的CPU,为了提升速度,却往往忽略了数据的来源内存本身的速度。或觉得同样容量的内存,选个便宜的就好。省了百十元钱,在CPU上花了大价钱,造成了严重的浪费。好了,总结下三点,主频,二级缓存,22纳米配合优秀的内存,是赢得游戏的关键,当然优秀的独立显卡,和出色的电竞外设同样必不可少。我叫酷酷宇峰,欢迎一起交流探讨
⑥ 处理器的L1,L2,L3缓存大小影响什么
首先解答什么是缓存
缓存大小是CPU的重要指标之一,而且缓存的结构和大小对CPU速度的影响非常大,CPU内缓存的运行频率极高,一般是和处理器同频运作,工作效率远远大于系统内存和硬盘。实际工作时,CPU往往需要重复读取同样的数据块,而缓存容量的增大,可以大幅度提升CPU内部读取数据的命中率,而不用再到内存或者硬盘上寻找,以此提高系统性能。但是由于CPU芯片面积和成本的因素来考虑,缓存都很小。
L1 Cache(一级缓存)是CPU第一层高速缓存,分为数据缓存和指令缓存。内置的L1高速缓存的容量和结构对CPU的性能影响较大,不过高速缓冲存储器均由静态RAM组成,结构较复杂,在CPU管芯面积不能太大的情况下,L1级高速缓存的容量不可能做得太大。一般服务器CPU的L1缓存的容量通常在32—256KB。
L2 Cache(二级缓存)是CPU的第二层高速缓存,分内部和外部两种芯片。内部的芯片二级缓存运行速度与主频相同,而外部的二级缓存则只有主频的一半。L2高速缓存容量也会影响CPU的性能,原则是越大越好,现在家庭用CPU容量最大的是512KB,而服务器和工作站上用CPU的L2高速缓存更高达256-1MB,有的高达2MB或者3MB。
L3 Cache(三级缓存),分为两种,早期的是外置,现在的都是内置的。而它的实际作用即是,L3缓存的应用可以进一步降低内存延迟,同时提升大数据量计算时处理器的性能。降低内存延迟和提升大数据量计算能力对游戏都很有帮助。而在服务器领域增加L3缓存在性能方面仍然有显着的提升。比方具有较大L3缓存的配置利用物理内存会更有效,故它比较慢的磁盘I/O子系统可以处理更多的数据请求。具有较大L3缓存的处理器提供更有效的文件系统缓存行为及较短消息和处理器队列长度。 www.jz5u.com
其实最早的L3缓存被应用在AMD发布的K6-III处理器上,当时的L3缓存受限于制造工艺,并没有被集成进芯片内部,而是集成在主板上。在只能够和系统总线频率同步的L3缓存同主内存其实差不了多少。后来使用L3缓存的是英特尔为服务器市场所推出的Itanium处理器。接着就是P4EE和至强MP。Intel还打算推出一款9MB L3缓存的Itanium2处理器,和以后24MB L3缓存的双核心Itanium2处理器。
但基本上L3缓存对处理器的性能提高显得不是很重要,比方配备1MB L3缓存的Xeon MP处理器却仍然不是Opteron的对手,由此可见前端总线的增加,要比缓存增加带来更有效的性能提升。
另外,关于原理
高速缓冲存储器Cache是位于CPU与内存之间的临时存储器,它的容量比内存小但交换速度快。在Cache中的数据是内存中的一小部分,但这一小部分是短时间内CPU即将访问的,当CPU调用大量数据时,就可避开内存直接从Cache中调用,从而加快读取速度。由此可见,在CPU中加入Cache是一种高效的解决方案,这样整个内存储器(Cache+内存)就变成了既有Cache的高速度,又有内存的大容量的存储系统了。Cache对CPU的性能影响很大,主要是因为CPU的数据交换顺序和CPU与Cache间的带宽引起的。
高速缓存的工作原理
1. 读取顺序
CPU要读取一个数据时,首先从Cache中查找,如果找到就立即读取并送给CPU处理;如果没有找到,就用相对慢的速度从内存中读取并送给CPU处理,同时把这个数据所在的数据块调入Cache中,可以使得以后对整块数据的读取都从Cache中进行,不必再调用内存。
正是这样的读取机制使CPU读取Cache的命中率非常高(大多数CPU可达90%左右),也就是说CPU下一次要读取的数据90%都在Cache中,只有大约10%需要从内存读取。这大大节省了CPU直接读取内存的时间,也使CPU读取数据时基本无需等待。总的来说,CPU读取数据的顺序是先Cache后内存。
2. 缓存分类
前面是把Cache作为一个整体来考虑的,现在要分类分析了。Intel从Pentium开始将Cache分开,通常分为一级高速缓存L1和二级高速缓存L2。
在以往的观念中,L1 Cache是集成在CPU中的,被称为片内Cache。在L1中还分数据Cache(I-Cache)和指令Cache(D-Cache)。它们分别用来存放数据和执行这些数据的指令,而且两个Cache可以同时被CPU访问,减少了争用Cache所造成的冲突,提高了处理器效能。
在P4处理器中使用了一种先进的一级指令Cache——动态跟踪缓存。它直接和执行单元及动态跟踪引擎相连,通过动态跟踪引擎可以很快地找到所执行的指令,并且将指令的顺序存储在追踪缓存里,这样就减少了主执行循环的解码周期,提高了处理器的运算效率。
以前的L2 Cache没集成在CPU中,而在主板上或与CPU集成在同一块电路板上,因此也被称为片外Cache。但从PⅢ开始,由于工艺的提高L2 Cache被集成在CPU内核中,以相同于主频的速度工作,结束了L2 Cache与CPU大差距分频的历史,使L2 Cache与L1 Cache在性能上平等,得到更高的传输速度。L2Cache只存储数据,因此不分数据Cache和指令Cache。在CPU核心不变化的情况下,增加L2 Cache的容量能使性能提升,同一核心的CPU高低端之分往往也是在L2 Cache上做手脚,可见L2 Cache的重要性。现在CPU的L1 Cache与L2 Cache惟一区别在于读取顺序。
3. 读取命中率
CPU在Cache中找到有用的数据被称为命中,当Cache中没有CPU所需的数据时(这时称为未命中),CPU才访问内存。从理论上讲,在一颗拥有2级Cache的CPU中,读取L1 Cache的命中率为80%。也就是说CPU从L1 Cache中找到的有用数据占数据总量的80%,剩下的20%从L2 Cache读取。由于不能准确预测将要执行的数据,读取L2的命中率也在80%左右(从L2读到有用的数据占总数据的16%)。那么还有的数据就不得不从内存调用,但这已经是一个相当小的比例了。在一些高端领域的CPU(像Intel的Itanium)中,我们常听到L3 Cache,它是为读取L2 Cache后未命中的数据设计的—种Cache,在拥有L3 Cache的CPU中,只有约5%的数据需要从内存中调用,这进一步提高了CPU的效率。
为了保证CPU访问时有较高的命中率,Cache中的内容应该按一定的算法替换。一种较常用的算法是“最近最少使用算法”(LRU算法),它是将最近一段时间内最少被访问过的行淘汰出局。因此需要为每行设置一个计数器,LRU算法是把命中行的计数器清零,其他各行计数器加1。当需要替换时淘汰行计数器计数值最大的数据行出局。这是一种高效、科学的算法,其计数器清零过程可以把一些频繁调用后再不需要的数据淘汰出Cache,提高Cache的利用率。
缓存技术的发展
总之,在传输速度有较大差异的设备间都可以利用Cache作为匹配来调节差距,或者说是这些设备的传输通道。在显示系统、硬盘和光驱,以及网络通讯中,都需要使用Cache技术。但Cache均由静态RAM组成,结构复杂,成本不菲,使用现有工艺在有限的面积内不可能做得很大,不过,这也正是技术前进的源动力,有需要才有进步!
借鉴了网上经典答案整理而成,望有帮助
⑦ 求助:有一台电脑只要缓存视频等其他电脑就很大延迟
你的实际网速太低!用电脑看在线高清[480p]视频需要2M网速,看在线超清[720p]视频需3M网速,也就是你家宽带实际网速也就4M至8M,这么多设备同时用宽带肯定卡。