当前位置:首页 » 硬盘大全 » 一致性缓存图片
扩展阅读
webinf下怎么引入js 2023-08-31 21:54:13
堡垒机怎么打开web 2023-08-31 21:54:11

一致性缓存图片

发布时间: 2023-01-14 04:08:23

Ⅰ SpringCache优化、缓存一致性、多级缓存

先记录一些纲要

1、SpringCache是写库之后更新的策略,对缓存一致性的不太友好

2、继承RedisCacheManager重写createRedisCache,继承RedisCache重写put

3、缓存一致性有两个方案,一个是先写库再删除缓存、第二个是先删除缓存再写库。

先写库再删除缓存配合超时时间一般没啥问题,极端的情况遇到缓存失效,线程读库和加缓存之间,完成了一次写库和删缓存的操作,导致加的缓存是旧的。总结就是读中加入了一次写。A读库 B写库 B删缓存 A加缓存。

先删缓存再写库的话,是写中加入了一次读。A删缓存 B读库 B加缓存 A写库A。这个概率比上面的大。

这两种方案的问题的解决方式是一样的,就是延时双删策略。即:

删缓存 写库 延时再次删除缓存(需超过一次读库的时间,可以新启线程完成)

或者 写库 删缓存 延时再次删除缓存(需超过一次读库的时间,可以新启线程完成)

如果有主从读写分离,需要将延时再加上主从同步的时间。

还有个第二次删除失败的问题,这个问题可以通过消息中间件,反复尝试进行。或者通过订阅binlog,反复进行。

多级缓存可以参考阿里开源的JetCache的实现

后面会给出demo和源码解析。

Ⅱ 固态硬盘 (SSD) 有缓存和没有缓存有什么区别

1、运行速度不同:带缓存的比不带缓存的快很多。缓存越大对速度的改善越快。缓存的意思就是刚用过的数据,马上再用或短时间内再用,会非常快,基本上就是瞬间读取数据。

2、价格不同:一般来说硬盘是带缓存的更快些,带缓存的同容量硬盘价格也是不同,带有缓存的硬盘要贵上几十块钱,因此可以想象得到速度要快些。

固态硬盘使用注意事项

需要注意固态硬盘有写入寿命,平均起来约为3000次P/E,1P/E为硬盘存储上限,相当于只能写满3000次。

为了减少固态硬盘的写入数据量,不要将电脑的虚拟内存放到固态硬盘上。

不要将下载软件的存储目录设置为固态硬盘,尤其是下载电影这类大数据量的文件。

以上内容参考网络-固态硬盘

Ⅲ 缓存一致性协议

锁缓存行有一套协议叫做 缓存一致性协议 。缓存一致性协议有MSI、MESI、MOSI、Synapse、Firefly以及DragonProtocol等等。

MESI分别代表缓存行数据的4中状态,通过对这四种状态的切换,来达到对缓存数据进行管理的目的

假设有三个CPU-A、B、C,对应三个缓存分别是cache-a、b、c。在主内存中定义了x的引用值0

单核读取

MESI优化和引入的问题:各CPU缓存行的状态是通过消息传递来进行的。如果CPU0要对一个在缓存中共享的变量进行写入,首先需要发送一个失效的消息给到其他缓存了该数据的CPU,并且要等到他们的确认回执。CPU0在这段时间内都会一直处于阻塞状态,会导致各种各样的性能问题和稳定性问题。

为了避免阻塞带来的资源浪费,在CPU中引入了Store Buffer。

CPU在写入共享数据时,直接把数据写入到Store Buffer中,同时发送Invalidate消息,然后继续去处理其他指令。当收到其他所有CPU发送了Invalidate Acknowledge消息时,再将Store Buffer中的数据存储到Cache Line中,最后再从Cache Line同步到主内存。

Ⅳ 如何保证数据库缓存的最终一致性

对于互联网业务来说,传统的直接访问数据库方式,主要通过数据分片、一主多从等方式来扛住读写流量,但随着数据量的积累和流量的激增,仅依赖数据库来承接所有流量,不仅成本高、效率低、而且还伴随着稳定性降低的风险。

鉴于大部分业务通常是读多写少(读取频率远远高于更新频率),甚至存在读操作数量高出写操作多个数量级的情况。因此, 在架构设计中,常采用增加缓存层来提高系统的响应能力 ,提升数据读写性能、减少数据库访问压力,从而提升业务的稳定性和访问体验。

根据 CAP 原理,分布式系统在可用性、一致性和分区容错性上无法兼得,通常由于分区容错无法避免,所以一致性和可用性难以同时成立。对于缓存系统来说, 如何保证其数据一致性是一个在应用缓存的同时不得不解决的问题 。

需要明确的是,缓存系统的数据一致性通常包括持久化层和缓存层的一致性、以及多级缓存之间的一致性,这里我们仅讨论前者。持久化层和缓存层的一致性问题也通常被称为双写一致性问题,“双写”意为数据既在数据库中保存一份,也在缓存中保存一份。

对于一致性来说,包含强一致性和弱一致性 ,强一致性保证写入后立即可以读取,弱一致性则不保证立即可以读取写入后的值,而是尽可能的保证在经过一定时间后可以读取到,在弱一致性中应用最为广泛的模型则是最终一致性模型,即保证在一定时间之后写入和读取达到一致的状态。对于应用缓存的大部分场景来说,追求的则是最终一致性,少部分对数据一致性要求极高的场景则会追求强一致性。

为了达到最终一致性,针对不同的场景,业界逐步形成了下面这几种应用缓存的策略。


1

Cache-Aside


Cache-Aside 意为旁路缓存模式,是应用最为广泛的一种缓存策略。下面的图示展示了它的读写流程,来看看它是如何保证最终一致性的。在读请求中,首先请求缓存,若缓存命中(cache hit),则直接返回缓存中的数据;若缓存未命中(cache miss),则查询数据库并将查询结果更新至缓存,然后返回查询出的数据(demand-filled look-aside )。在写请求中,先更新数据库,再删除缓存(write-invalidate)。


1、为什么删除缓存,而不是更新缓存?

在 Cache-Aside 中,对于读请求的处理比较容易理解,但在写请求中,可能会有读者提出疑问,为什么要删除缓存,而不是更新缓存?站在符合直觉的角度来看,更新缓存是一个容易被理解的方案,但站在性能和安全的角度,更新缓存则可能会导致一些不好的后果。

首先是性能 ,当该缓存对应的结果需要消耗大量的计算过程才能得到时,比如需要访问多张数据库表并联合计算,那么在写操作中更新缓存的动作将会是一笔不小的开销。同时,当写操作较多时,可能也会存在刚更新的缓存还没有被读取到,又再次被更新的情况(这常被称为缓存扰动),显然,这样的更新是白白消耗机器性能的,会导致缓存利用率不高。

而等到读请求未命中缓存时再去更新,也符合懒加载的思路,需要时再进行计算。删除缓存的操作不仅是幂等的,可以在发生异常时重试,而且写-删除和读-更新在语义上更加对称。

其次是安全 ,在并发场景下,在写请求中更新缓存可能会引发数据的不一致问题。参考下面的图示,若存在两个来自不同线程的写请求,首先来自线程 1 的写请求更新了数据库(step 1),接着来自线程 2 的写请求再次更新了数据库(step 3),但由于网络延迟等原因,线程 1 可能会晚于线程 2 更新缓存(step 4 晚于 step 3),那么这样便会导致最终写入数据库的结果是来自线程 2 的新值,写入缓存的结果是来自线程 1 的旧值,即缓存落后于数据库,此时再有读请求命中缓存(step 5),读取到的便是旧值。


2、为什么先更新数据库,而不是先删除缓存?

另外,有读者也会对更新数据库和删除缓存的时序产生疑问,那么为什么不先删除缓存,再更新数据库呢?在单线程下,这种方案看似具有一定合理性,这种合理性体现在删除缓存成功。

但更新数据库失败的场景下,尽管缓存被删除了,下次读操作时,仍能将正确的数据写回缓存,相对于 Cache-Aside 中更新数据库成功,删除缓存失败的场景来说,先删除缓存的方案似乎更合理一些。那么,先删除缓存有什么问题呢?

问题仍然出现在并发场景下,首先来自线程 1 的写请求删除了缓存(step 1),接着来自线程 2 的读请求由于缓存的删除导致缓存未命中,根据 Cache-Aside 模式,线程 2 继而查询数据库(step 2),但由于写请求通常慢于读请求,线程 1 更新数据库的操作可能会晚于线程 2 查询数据库后更新缓存的操作(step 4 晚于 step 3),那么这样便会导致最终写入缓存的结果是来自线程 2 中查询到的旧值,而写入数据库的结果是来自线程 1 的新值,即缓存落后于数据库,此时再有读请求命中缓存( step 5 ),读取到的便是旧值。


另外,先删除缓存,由于缓存中数据缺失,加剧数据库的请求压力,可能会增大缓存穿透出现的概率。

3、如果选择先删除缓存,再更新数据库,那如何解决一致性问题呢?

为了避免“先删除缓存,再更新数据库”这一方案在读写并发时可能带来的缓存脏数据,业界又提出了延时双删的策略,即在更新数据库之后,延迟一段时间再次删除缓存,为了保证第二次删除缓存的时间点在读请求更新缓存之后,这个延迟时间的经验值通常应稍大于业务中读请求的耗时。

延迟的实现可以在代码中 sleep 或采用延迟队列。显而易见的是,无论这个值如何预估,都很难和读请求的完成时间点准确衔接,这也是延时双删被诟病的主要原因。


4、那么 Cache-Aside 存在数据不一致的可能吗?

在 Cache-Aside 中,也存在数据不一致的可能性。在下面的读写并发场景下,首先来自线程 1 的读请求在未命中缓存的情况下查询数据库(step 1),接着来自线程 2 的写请求更新数据库(step 2),但由于一些极端原因,线程 1 中读请求的更新缓存操作晚于线程 2 中写请求的删除缓存的操作(step 4 晚于 step 3),那么这样便会导致最终写入缓存中的是来自线程 1 的旧值,而写入数据库中的是来自线程 2 的新值,即缓存落后于数据库,此时再有读请求命中缓存(step 5),读取到的便是旧值。

这种场景的出现,不仅需要缓存失效且读写并发执行,而且还需要读请求查询数据库的执行早于写请求更新数据库,同时读请求的执行完成晚于写请求。足以见得,这种 不一致场景产生的条件非常严格,在实际的生产中出现的可能性较小 。


除此之外,在并发环境下,Cache-Aside 中也存在读请求命中缓存的时间点在写请求更新数据库之后,删除缓存之前,这样也会导致读请求查询到的缓存落后于数据库的情况。


虽然在下一次读请求中,缓存会被更新,但如果业务层面对这种情况的容忍度较低,那么可以采用加锁在写请求中保证“更新数据库&删除缓存”的串行执行为原子性操作(同理也可对读请求中缓存的更新加锁)。 加锁势必会导致吞吐量的下降,故采取加锁的方案应该对性能的损耗有所预期。


2

补偿机制


我们在上面提到了,在 Cache-Aside 中可能存在更新数据库成功,但删除缓存失败的场景,如果发生这种情况,那么便会导致缓存中的数据落后于数据库,产生数据的不一致的问题。

其实,不仅 Cache-Aside 存在这样的问题,在延时双删等策略中也存在这样的问题。针对可能出现的删除失败问题,目前业界主要有以下几种补偿机制。

1、删除重试机制

由于同步重试删除在性能上会影响吞吐量,所以常通过引入消息队列,将删除失败的缓存对应的 key 放入消息队列中,在对应的消费者中获取删除失败的 key ,异步重试删除。这种方法在实现上相对简单,但由于删除失败后的逻辑需要基于业务代码的 trigger 来触发 ,对业务代码具有一定入侵性。


鉴于上述方案对业务代码具有一定入侵性,所以需要一种更加优雅的解决方案,让缓存删除失败的补偿机制运行在背后,尽量少的耦合于业务代码。一个简单的思路是通过后台任务使用更新时间戳或者版本作为对比获取数据库的增量数据更新至缓存中,这种方式在小规模数据的场景可以起到一定作用,但其扩展性、稳定性都有所欠缺。

一个相对成熟的方案是基于 MySQL 数据库增量日志进行解析和消费,这里较为流行的是阿里巴巴开源的作为 MySQL binlog 增量获取和解析的组件 canal(类似的开源组件还有 Maxwell、Databus 等)。

canal sever 模拟 MySQL slave 的交互协议,伪装为 MySQL slave,向 MySQL master 发送 mp 协议,MySQL master 收到 mp 请求,开始推送 binary log 给 slave (即 canal sever ),canal sever 解析 binary log 对象(原始为 byte 流),可由 canal client 拉取进行消费,同时 canal server 也默认支持将变更记录投递到 MQ 系统中,主动推送给其他系统进行消费。

在 ack 机制的加持下,不管是推送还是拉取,都可以有效的保证数据按照预期被消费。当前版本的 canal 支持的 MQ 有 Kafka 或者 RocketMQ。另外, canal 依赖 ZooKeeper 作为分布式协调组件来实现 HA ,canal 的 HA 分为两个部分:


那么,针对缓存的删除操作便可以在 canal client 或 consumer 中编写相关业务代码来完成。这样,结合数据库日志增量解析消费的方案以及 Cache-Aside 模型,在读请求中未命中缓存时更新缓存(通常这里会涉及到复杂的业务逻辑),在写请求更新数据库后删除缓存,并基于日志增量解析来补偿数据库更新时可能的缓存删除失败问题,在绝大多数场景下,可以有效的保证缓存的最终一致性。

另外需要注意的是,还应该隔离事务与缓存,确保数据库入库后再进行缓存的删除操作。 比如考虑到数据库的主从架构,主从同步及读从写主的场景下,可能会造成读取到从库的旧数据后便更新了缓存,导致缓存落后于数据库的问题,这就要求对缓存的删除应该确保在数据库操作完成之后。所以,基于 binlog 增量日志进行数据同步的方案,可以通过选择解析从节点的 binlog,来避免主从同步下删除缓存过早的问题。

3、数据传输服务 DTS


3

Read-Through


Read-Through 意为读穿透模式,它的流程和 Cache-Aside 类似,不同点在于 Read-Through 中多了一个访问控制层,读请求只和该访问控制层进行交互,而背后缓存命中与否的逻辑则由访问控制层与数据源进行交互,业务层的实现会更加简洁,并且对于缓存层及持久化层交互的封装程度更高,更易于移植。


4

Write-Through


Write-Through 意为直写模式,对于 Write-Through 直写模式来说,它也增加了访问控制层来提供更高程度的封装。不同于 Cache-Aside 的是,Write-Through 直写模式在写请求更新数据库之后,并不会删除缓存,而是更新缓存。


这种方式的 优势在于读请求过程简单 ,不需要查询数据库更新缓存等操作。但其劣势也非常明显,除了上面我们提到的更新数据库再更新缓存的弊端之外,这种方案还会造成更新效率低,并且两个写操作任何一次写失败都会造成数据不一致。

如果要使用这种方案, 最好可以将这两个操作作为事务处理,可以同时失败或者同时成功,支持回滚,并且防止并发环境下的不一致 。另外,为了防止缓存扰动的频发,也可以给缓存增加 TTL 来缓解。

站在可行性的角度,不管是 Write-Through 模式还是 Cache-Aside 模式,理想状况下都可以通过分布式事务保证缓存层数据与持久化层数据的一致性,但在实际项目中,大多都对一致性的要求存在一些宽容度,所以在方案上往往有所折衷。

Write-Through 直写模式适合写操作较多,并且对一致性要求较高的场景,在应用 Write-Through 模式时,也需要通过一定的补偿机制来解决它的问题。首先,在并发环境下,我们前面提到了先更新数据库,再更新缓存会导致缓存和数据库的不一致,那么先更新缓存,再更新数据库呢?

这样的操作时序仍然会导致下面这样线程 1 先更新缓存,最后更新数据库的情况,即由于线程 1 和 线程 2 的执行不确定性导致数据库和缓存的不一致。这种由于线程竞争导致的缓存不一致,可以通过分布式锁解决,保证对缓存和数据库的操作仅能由同一个线程完成。对于没有拿到锁的线程,一是通过锁的 timeout 时间进行控制,二是将请求暂存在消息队列中顺序消费。


在下面这种并发执行场景下,来自线程 1 的写请求更新了数据库,接着来自线程 2 的读请求命中缓存,接着线程 1 才更新缓存,这样便会导致线程 2 读取到的缓存落后于数据库。同理,先更新缓存后更新数据库在写请求和读请求并发时,也会出现类似的问题。面对这种场景,我们也可以加锁解决。


另在,在 Write-Through 模式下,不管是先更新缓存还是先更新数据库,都存在更新缓存或者更新数据库失败的情况,上面提到的重试机制和补偿机制在这里也是奏效的。


5

Write-Behind


Write behind 意为异步回写模式,它也具有类似 Read-Through/Write-Through 的访问控制层,不同的是,Write behind 在处理写请求时,只更新缓存而不更新数据库,对于数据库的更新,则是通过批量异步更新的方式进行的,批量写入的时间点可以选在数据库负载较低的时间进行。

在 Write-Behind 模式下,写请求延迟较低,减轻了数据库的压力,具有较好的吞吐性。但数据库和缓存的一致性较弱,比如当更新的数据还未被写入数据库时,直接从数据库中查询数据是落后于缓存的。同时,缓存的负载较大,如果缓存宕机会导致数据丢失,所以需要做好缓存的高可用。显然,Write behind 模式下适合大量写操作的场景,常用于电商秒杀场景中库存的扣减。


6

Write-Around


如果一些非核心业务,对一致性的要求较弱,可以选择在 cache aside 读模式下增加一个缓存过期时间,在写请求中仅仅更新数据库,不做任何删除或更新缓存的操作,这样,缓存仅能通过过期时间失效。这种方案实现简单,但缓存中的数据和数据库数据一致性较差,往往会造成用户的体验较差,应慎重选择。


7

总结


在解决缓存一致性的过程中,有多种途径可以保证缓存的最终一致性,应该根据场景来设计合适的方案,读多写少的场景下,可以选择采用“Cache-Aside 结合消费数据库日志做补偿”的方案,写多的场景下,可以选择采用“Write-Through 结合分布式锁”的方案 ,写多的极端场景下,可以选择采用“Write-Behind”的方案。

Ⅳ 缓存一致性指的是什么

首先明白什么是缓存,缓存是介于物理存储与CPU处理之间的一段内存空间,主要用于存储从物理存储读出、或者要写入的数据,这需要硬件或者软件支持。如果读取或写入物理存储中的一个字节或一段数据,如果没有缓存,那么每次的读写请求都会直接访问物理存储,而物理存储的速度一般都比较慢,而且物理定位也比较慢,缓存使用后,可以一次性读出需要的数据相邻的数据,暂时存储在缓存中,下面如果还要读取,而这部分数据已经在缓存了,就不需要再去读取物理存储,同样,如果是写操作,可以先将需要写入的数据暂时保存在缓存中,等到缓存过期或者强行清空时,再一次写入物理存储。这样可以把多次的物理存储访问,变成一次物理存储的访问,提高访问效率。具体的操作算法这里不多作阐述。

缓存的一致性就是指缓存中的数据是否和目标存储中的数据是一样的,也就是说缓存中已经修改得数据是否已经保存到了物理存储中,物理存储中已经被修改得内容,是否与缓存的内容是一样的。这就是一致性的概念。

Ⅵ chcahe 如何保证分布式缓存数据一致性

VPLEX的技术核心是“分布式缓存一致性”,下图则是“分布式缓存一致性”技术的工作机制示意:正是因为这项核心技术优势,使得VPLEX方案和目前所有厂商的虚拟化方案截然不同,并能够实现异地的数据中心整合。对跨数据中心的所有负载实现跨引擎的平摊或者实时迁移,来自任何一个主机的I/O请求可以通过任何一个引擎得到响应。
缓存一致性的记录目录使用少量的元数据,记录下哪个数据块属于哪个引擎更新的,以及在何时更新过,并通过4K大小的数据块告诉在集群中的所有其他的引擎。在整个过程中实际发生的沟通过程,远远比实际上正在更新数据块少很多。

分布式缓存一致性数据流示意图:上方是一个目录,记录下左侧的主机读取缓存A的操作,并分发给所有引擎,右侧主机需要读取该数据块时,会先通过目录查询,确定该数据块所属的引擎位置,读取请求会直接发送给引擎,并直接从数据块所在的缓存上读取。
当一个读请求进入时,VPLEX会自动检查目录,查找该数据块所属的引擎,一旦确定该数据块所属的引擎位置,读的请求会直接发送给该引擎。一旦一个写入动作完成,并且目录表被修改,这时另一个读请求从另一个引擎过来,VPLEX会检查目录,并且直接从该引擎的缓存上读取。如果该数据仍然在缓存上,则完全没必要去磁盘上读取。
如上图,来自图中左侧主机的操作,由Cache A服务,会记录一个更新状态,并分发给所有所有引擎知道。如果读取的需求来自最右侧的服务器,首先通过目录查询。通过这种技术可以实现所有引擎一致性工作,而且这个技术不仅可以跨引擎还可以跨VPLEX集群,而VPLEX集群可以跨区域,因此缓存一致性也可以跨区域部署。

分布式缓存一致性技术使VPLEX相比传统的虚拟化方案拥有更高的性能和可靠性,并实现异地数据中心的虚拟化整合
对传统的虚拟化架构来说,如果虚拟化的I/O集群中有一个节点坏了,那么性能就会降低一半,而且实际情况降低不止一半。因为坏了一个节点,这个节点缓存一般会被写进去。因为没有缓存,操作会直接写到硬盘里。如果图中中心这个节点坏掉,那主机所有的可用性都没有了。而VPLEX如果有一个引擎或者一个控制器坏掉了,那这个引擎的负载会均摊到其他活动引擎上。这样总体来讲用户可以维持可预知性能,性能降低也不那么明显。

Ⅶ 分布式缓存中,哈希取余分区和一致性哈希分区有什么区别

环割法(一致性 hash)环割法的原理如下:

1. 初始化的时候生成分片数量 X × 环割数量 N 的固定方式编号的字符串,例如 SHARD-1-NODE-1,并计算所有 X×N 个字符串的所有 hash 值。

2. 将所有计算出来的 hash 值放到一个排序的 Map 中,并将其中的所有元素进行排序。

3. 输入字符串的时候计算输入字符串的 hash 值,查看 hash 值介于哪两个元素之间,取小于 hash 值的那个元素对应的分片为数据的分片。

数据比较

下面将通过测试对环割法和跳跃法的性能及均衡性进行对比,说明 DBLE 为何使用跳跃法代替了环割法。

  • 数据源:现场数据 350595 条

  • 测试经过:

    1. 通过各自的测试方法执行对于测试数据的分片任务。

    2. 测试方法:记录分片结果的方差;记录从开始分片至分片结束的时间;记录分片结果与平均数的最大差值。

    3. 由于在求模法 PartitionByString 的方法中要求分片的数量是 1024 的因数,所以测试过程只能使用 2 的指数形式进行测试,并在 PartitionByString 方法进行测试的时候不对于 MAC 地址进行截断,取全量长度进行测试。

Ⅷ 缓存一致性

在现代的 CPU(大多数)上,所有的内存访问都需要通过层层的缓存来进行。CPU 的读 / 写(以及取指令)单元正常情况下甚至都不能直接访问内存——这是物理结构决定的;CPU 都没有管脚直接连到内存。相反,CPU 和一级缓存(L1 Cache)通讯,而一级缓存才能和内存通讯。大约二十年前,一级缓存可以直接和内存传输数据。如今,更多级别的缓存加入到设计中,一级缓存已经不能直接和内存通讯了,它和二级缓存通讯——而二级缓存才能和内存通讯。或者还可能有三级缓存。

缓存是分“段”(line)的,一个段对应一块存储空间,大小是 32、64或128字节,每个缓存段知道自己对应什么范围的物理内存地址。

当 CPU 看到一条读内存的指令时,它会把内存地址传递给一级数据缓存。一级数据缓存会检查它是否有这个内存地址对应的缓存段。如果没有,它会把整个缓存段从内存(或者从更高一级的缓存,如果有的话)中加载进来。是的,一次加载整个缓存段,这是基于这样一个假设:内存访问倾向于本地化(localized),如果我们当前需要某个地址的数据,那么很可能我们马上要访问它的邻近地址。一旦缓存段被加载到缓存中,读指令就可以正常进行读取。

如果我们只处理读操作,那么事情会很简单,因为所有级别的缓存都遵守以下规律—— 在任意时刻,任意级别缓存中的缓存段的内容,等同于它对应的内存中的内容。

一旦我们允许写操作,事情就变得复杂一点了。这里有两种基本的写模式:直写(write-through)和回写(write-back)。直写更简单一点:我们透过本级缓存,直接把数据写到下一级缓存(或直接到内存)中,如果对应的段被缓存了,我们同时更新缓存中的内容(甚至直接丢弃),就这么简单。这也遵守前面的定律: 缓存中的段永远和它对应的内存内容匹配。

回写模式就有点复杂了。缓存不会立即把写操作传递到下一级,而是仅修改本级缓存中的数据,并且把对应的缓存段标记为“脏”段。脏段会触发回写,也就是把里面的内容写到对应的内存或下一级缓存中。回写后,脏段又变“干净”了。当一个脏段被丢弃的时候,总是先要进行一次回写。回写所遵循的规律有点不同。 当所有的脏段被回写后,任意级别缓存中的缓存段的内容,等同于它对应的内存中的内容。

换句话说,回写模式的定律中,我们去掉了“在任意时刻”这个修饰语,代之以弱化一点的条件:要么缓存段的内容和内存一致(如果缓存段是干净的话),要么缓存段中的内容最终要回写到内存中(对于脏缓存段来说)。

只要系统只有一个 CPU 核在工作,一切都没问题。如果有多个核,每个核又都有自己的缓存,那么我们就遇到问题了,因为如果一个 CPU 缓存了某块内存,那么在其他 CPU 修改这块内存的时候,我们希望得到通知。系统的内存在各个 CPU 之间无法做到与生俱来的同步,我们需要一个大家都能遵守的方法来达到同步的目的。

缓存一致性协议有多种,但是日常处理的大多数计算机设备使用的都属于“窥探(snooping)”协议。

窥探”背后的基本思想是,所有内存传输都发生在一条共享的总线上,而所有的处理器都能看到这条总线:缓存本身是独立的,但是内存是共享资源,所有的内存访问都要经过仲裁(arbitrate):同一个指令周期中,只有一个缓存可以读写内存。窥探协议的思想是,缓存不仅仅在做内存传输的时候才和总线打交道,而是不停地在窥探总线上发生的数据交换,跟踪其他缓存在做什么。所以当一个缓存代表它所属的处理器去读写内存时,其他处理器都会得到通知,它们以此来使自己的缓存保持同步。只要某个处理器一写内存,其他处理器马上就知道这块内存在它们自己的缓存中对应的段已经失效。

在直写模式下,这是很直接的,因为写操作一旦发生,它的效果马上会被“公布”出去。但是如果混着回写模式,就有问题了。因为有可能在写指令执行过后很久,数据才会被真正回写到物理内存中——在这段时间内,其他处理器的缓存也可能会傻乎乎地去写同一块内存地址,导致冲突。在回写模型中,简单把内存写操作的信息广播给其他处理器是不够的,我们需要做的是,在修改本地缓存之前,就要告知其他处理器。

MESI 是四种缓存段状态的首字母缩写,任何多核系统中的缓存段都处于这四种状态之一。

从CPU读写角度来说:

上图的切换解释:

缓存的一致性消息传递是要时间的,这就使其切换时会产生延迟。当一个缓存被切换状态时其他缓存收到消息完成各自的切换并且发出回应消息这么一长串的时间中CPU都会等待所有缓存响应完成。可能出现的阻塞都会导致各种各样的性能问题和稳定性问题。

比如你需要修改本地缓存中的一条信息,那么你必须将I(无效)状态通知到其他拥有该缓存数据的CPU缓存中,并且等待确认。等待确认的过程会阻塞处理器,这会降低处理器的性能。因为这个等待远远比一个指令的执行时间长的多。

为了避免这种CPU运算能力的浪费,Store Bufferes被引入使用。处理器把它想要写入到主存的值写到缓存,然后继续去处理其他事情。当所有失效确认(Invalidate Acknowledge)都接收到时,数据才会最终被提交。

执行失效也不是一个简单的操作,它需要处理器去处理。另外,存储缓存(Store Buffers)并不是无穷大的,所以处理器有时需要等待失效确认的返回。这两个操作都会使得性能大幅降低。为了应付这种情况,引入了失效队列——对于所有的收到的Invalidate请求,Invalidate Acknowlege消息必须立刻发送,Invalidate并不真正执行,而是被放在一个特殊的队列中,在方便的时候才会去执行,处理器不会发送任何消息给所处理的缓存条目,直到它处理Invalidate。

Ⅸ 固态硬盘有缓存和没有缓存有什么区别

有外部缓存优势是性能一致性更好,也就是空盘和满盘性能差距不会太大,缺点是掉电容易丢数据,需要额外的掉电保护电路和在固件中加入掉电保护逻辑。


无缓存优势是掉电相对不容易丢失数据,以及更好的成本控制,缺点就是4k性能会比较难看,而且性能一致性不够好,不适合高负载的场合,比如数据库服务器等。


不过总之日常家用没有任何区别就是了,东芝Q系列无缓存设计只是东芝对自家颗粒性能的自信以及节约成本的表现而已,家用不用纠结这些。

SSD的缓存分为两种,一种是DRAM缓存,另一种是SLC缓存。

DRAM缓存是使用DRAM芯片(也就是内存颗粒)作为缓存,固态硬盘上的DRAM芯片一般不会用来直接缓存数据,DRAM主要是用来储存FTL缓存映射表,这个映射表表达了闪存单元物理地址同文件系统逻辑地址之间的关系。

所有固态硬盘都有FTL映射表,不同之处在于无DRAM的SSD通常把表的主体放在闪存中,随用随取,效率较低。

高端固态硬盘会把FTL映射表完整地放入DRAM缓存中,通常需要按照1GB:1MB的比例配置DRAM缓存。

有些固态硬盘为了在节省成本的同时可以把DRAM缓存作为宣传筹码,选择了不管何种容量都只配备256MB缓存的方式,这种情况下只能直接管理256GB的闪存空间,依然存在一些不足。

所以除了观察固态硬盘是否搭载DRAM缓存芯片之外,大家还应通过芯片表面的编号查询它的具体容量,确保买到的是按照1GB:1MB完整配备DRAM缓存的高性能产品。

目前SLC缓存基本所有TLC固态硬盘都有。目前大部分固态硬盘的SLC缓存,并不是真的使用了SLC颗粒作为缓存,而是使用TLC模拟SLC来提升连续读写速度。

TLC的读写速度较慢,为了提升连续写入时固态硬盘的表现,主控会先将数据写入SLC缓存中,当缓存写满后,才会像TLC闪存中写入,这样就会造成写入速度的断崖式下跌,此时的速度被称为缓外速度,缓外速度的高低也是衡量SSD性能的重要指标。

假设一块SSD配备10GB的SLC缓存,我向固态硬盘中写入20GB的文件时,前10GB的数据先被写入到缓存中,后10GB的数据则会直接写入到TLC中。速度会呈现出下图这种形式:

虽然日常不会经常向SSD中反复写入大文件,但是缓存外写入性能直接反映了NAND颗粒的品质以及GC策略的优劣。缓外速度高的SSD比速度低的盘质量要好。