当前位置:首页 » 硬盘大全 » 冗余硬盘阵列
扩展阅读
webinf下怎么引入js 2023-08-31 21:54:13
堡垒机怎么打开web 2023-08-31 21:54:11

冗余硬盘阵列

发布时间: 2023-01-24 01:24:34

⑴ 磁盘冗余阵列是什么来的

独立磁盘冗余阵列(RAID,rendant array of independent disks,rendant array of inexpensive disks)是把相同的数据存储在多个硬盘的不同的地方的方法。

⑵ 什么是独立冗余磁盘阵列技术(RAID),简述RAID 0,RAID 1,RAID 0+1,RAID 5。

raid技术就是类似于把n快磁盘整合成一块或多块虚拟磁盘,raid0是n块盘容量合在一起,没有数据保护作用,但是会加快读写速度,增强并发io。raid1,类似于1对1的镜像模式,同时对偶数对的盘写入相同的数据,每一份都是完整数据,raid0+1就是先做raid0,再将两份虚拟磁盘二次做raid,兼顾速度和安全性。raid5是有奇偶校验的技术,校验数据决定这块盘里有哪部分数据,每块盘都是正常数据和校验数据组成,任意一块盘坏了,都不影响数据完整性。

⑶ 什么是独立冗余磁盘阵列技术(RAID),简述RAID 0,RAID 1,RAID 0+1,RAID 5。

RAID定义独立冗余磁盘阵列(Rendant Array of lndepen-dent Disk·简称(RAID)技术,是加州大学伯克利分校1987年提出,最初是为了组合小的廉价磁盘宋代替大的昂贵磁盘,同时希望磁盘失效时不会使对数据的访问受损失而开发出一定水平的数据保护技术。RAID就是一种由多块廉价磁盘构成的冗余阵列,在操作系统下是作为一个独立的大型存储设备出现。从而提供比单个硬盘更高的存储性能和提供数据备份技术,组成磁盘阵列的不同方式成为RAID级别,可以充分发挥出多块硬盘的优势,可以提升硬盘速度,增大容量,提供容错功能够确保数据安全性,易于管理的优点,在任何一块硬盘出现问题的情况下都可以继续工作,不会受损坏硬盘的影响。
RAID 0 并不是真正的RAID结构,没有数据冗余。RAID 0 连续地分割数据并并行地读/写于多个磁盘上. 因此具有很高的数据传输率, 但RAID 0在提高性能的同时,并没有提供数据可靠性,如果一个磁盘失效,将影响整个数据。因此RAID 0 不可应用于需要数据高可用性的关键应用。

RAID 1 镜像磁盘阵列.用户写入硬盘的数据百分之百地自动复制到另外一个硬盘上。由于对存储的数据进行百分之百的备份,在所有阵列级别中,RAID 1提供最高的数据安全保障。但由于数据的百分之百备份,备份数据占了总存储空间的一半,因而,Mirror的磁盘空间利用率低,存储成本高。

RAID 0+1 是RAID 0和RAID 1的组合形式,也称为RAID 10。RAID 0+1是存储性能和数据安全兼顾的方案。它在提供与RAID 1一样的数据安全保障的同时,也提供了与RAID 0近似的存储性能。由于RAID 0+1也通过数据的100%备份功能提供数据安全保障,因此RAID 0+1的磁盘空间利用率与RAID 1相同,存储成本高。

RAID 5 是一种存储性能、数据安全和存储成本兼顾的存储解决方案。 RAID 5可以理解为是RAID 0和RAID 1的折中方案。RAID 5可以为系统提供数据安全保障,但保障程度要比Mirror低而磁盘空间利用率要比Mirror高。RAID 5具有和RAID 0相近似的数据读取速度,只是多了一个奇偶校验信息,写入数据的速度比对单个磁盘进行写入操作稍慢。同时由于多个数据对应一个奇偶校验信息,RAID 5的磁盘空间利用率要比RAID 1高,存储成本相对较低。

⑷ 磁盘冗余阵列

楼上已经把RAID的几种形式给你说的很明白了..我在给你补充一下RAID控制芯片和RAID的做法吧.

主板芯片组RAID控制芯片介绍

Intel南桥芯片ICH5R、ICH6R集成有SATA-RAID控制器,但仅支持SATA-RAID,不支持PATA-RAID。Intel采用的是桥接技术,就是把SATA-RAID控制器桥接到IDE控制器,因此可以通过BIOS检测SATA硬盘,并且通过BIOS设置SATA-RAID。当连接SATA硬盘而又不做RAID时,是把SATA硬盘当作PATA硬盘处理的,安装OS时也不需要驱动软盘,在OS的设备管理器内也看不到SATA-RAID控制器,看到的是IDE ATAPI控制器,而且多了两个IDE通道(由两个SATA通道桥接的)。只有连接两个SATA硬盘,且作SATA-RAID时才使用SATA-RAID控制器,安装OS时需要需要驱动软盘,在OS的设备管理器内可以看到SATA-RAID控制器。安装ICH5R、ICH6R的RAID IAA驱动后,可以通过IAA程序查看RAID盘的性能参数。

VIA南桥芯片VT8237、VT8237R的SATA-RAID设计与Intel不同,它是把一个SATA-RAID控制器集成到8237南桥内,与南桥里的IDE控制器没有关系。当然这个SATA-RAID控制器也不见得是原生的SATA模式,因为传输速度也没有达到理想的SATA性能指标。BIOS不负责检测SATA硬盘,所以在BIOS里看不到SATA硬盘。SATA硬盘的检测和RAID设置需要通过SATA-RAID控制器自己BootROM(也可以叫SATA-RAID控制器的BIOS)。所以BIOS自检后会启动一个BootROM检测SATA硬盘,检测到SATA硬盘后就显示出硬盘信息,此时按快捷键Tab就可以进入BootROM设置SATA-RAID。在VIA的VT8237南桥的主板上使用SATA硬盘,无论是否做RAID安装OS时都需要驱动软盘,在OS的设备管理器内可以看到SATA-RAID控制器。VIA的芯片也只是集成了SATA-RAID控制器。

NVIDIA的nForce2/ nForce3/ nForce4芯片组的SATA/IDE/RAID处理方式是集Intel和VIA的优点于一身。第一是把SATA/IDE/RAID控制器桥接在一起,在不做RAID时,安装XP/2000也不需要任何驱动。第二是在BIOS里的SATA硬盘不像Intel那样需要特别设置,接上SATA硬盘BIOS就可以检测到。第三是不仅SATA硬盘可以组成RAID,PATA硬盘也可以组成RAID,PATA硬盘与SATA硬盘也可以组成RAID。这给需要RAID的用户带来极大的方便,Intel的ICH5R、ICH6R,VIA的VT8237都不支持PATA的IDE RAID。

NVIDIA芯片组BIOS设置和RAID设置简单介绍
nForce系列芯片组的BIOS里有关SATA和RAID的设置选项有两处,都在Integrated Peripherals(整合周边)菜单内。

SATA的设置项:Serial-ATA,设定值有[Enabled], [Disabled]。这项的用途是开启或

关闭板载Serial-ATA控制器。使用SATA硬盘必须把此项设置为[Enabled]。如果不使用SATA硬盘可以将此项设置为[Disabled],可以减少占用的中断资源。

RAID的设置项在Integrated Peripherals/Onboard Device(板载设备)菜单内,光标移到Onboard Device,按进入如子菜单:RAID Config就是RAID配置选项,光标移到RAID Config,按就进入如RAID配置菜单:

第一项IDE RAID是确定是否设置RAID,设定值有[Enabled], [Disabled]。如果不做RAID,就保持缺省值[Disabled],此时下面的选项是不可设置的灰色。

如果做RAID就选择[Enabled],这时下面的选项才变成可以设置的黄色。IDE RAID下面是4个IDE(PATA)通道,再下面是SATA通道。nForce2芯片组是2个SATA通道,nForce3/4芯片组是4个SATA通道。可以根据你自己的意图设置,准备用哪个通道的硬盘做RAID,就把那个通道设置为[Enabled]。

设置完成就可退出保存BIOS设置,重新启动。这里要说明的是,当你设置RAID后,该通道就由RAID控制器管理,BIOS的Standard CMOS Features里看不到做RAID的硬盘了。

BIOS设置后,仅仅是指定那些通道的硬盘作RAID,并没有完成RAID的组建,前面说过做RAID的磁盘由RAID控制器管理,因此要由RAID控制器的RAID BIOS检测硬盘,以及设置RAID模式。BIOS启动自检后,RAID BIOS启动检测做RAID的硬盘,检测过程在显示器上显示,检测到硬盘后留给用户几秒钟时间,以便用户按F 1 0 进入RAID BIOS Setup。

nForce芯片组提供的RAID(冗余磁盘阵列)的模式共有下面四种:

RAID 0:硬盘串行方案,提高硬盘读写的速度。

RAID 1:镜像数据的技术。

RAID 0+1:由RAID 0和RAID 1阵列组成的技术。

Spanning (JBOD):不同容量的硬盘组成为一个大硬盘。

操作系统安装过程介绍

按F10进入RAID BIOS Setup,会出现NVIDIA RAID Utility -- Define a New Array(定义一个新阵列)。默认的设置是:RAID Mode(模式)--Mirroring(镜像),Striping Block(串行块)--Optimal(最佳)。

通过这个窗口可以定义一个新阵列,需要设置的项目有:选择RAID Mode(RAID模式):Mirroring(镜像)、Striping(串行)、Spanning(捆绑)、Stripe Mirroring(串行镜像)。

设置Striping Block(串行块):4 KB至128 KB/Optimal

指定RAID Array(RAID阵列)所使用的磁盘

用户可以根据自己的需要设置RAID模式,串行块大小和RAID阵列所使用的磁盘。其中串行块大小最好用默认的Optimal。RAID阵列所使用的磁盘通过光标键→添加。

做RAID的硬盘可以是同一通道的主/从盘,也可以是不同通道的主/从盘,建议使用不同通道的主/从盘,因为不同通道的带宽宽,速度快。Loc(位置)栏显示出每个硬盘的通道/控制器(0-1)/主副状态,其中通道0是PATA,1是SATA;控制器0是主,1是从;M是主盘,S是副盘。分配完RAID阵列磁盘后,按F7。出现清除磁盘数据的提示。按Y清除硬盘的数据,弹出Array List窗口:如果没有问题,可以按Ctrl-X保存退出,也可以重建已经设置的RAID阵列。至此RAID建立完成,系统重启,可以安装OS了。

安装Windows XP系统,安装系统需要驱动软盘,主板附带的是XP用的,2000的需要自己制作。从光驱启动Windows XP系统安装盘,在进入蓝色的提示屏幕时按F6键,告诉系统安装程序:需要另外的存储设备驱动。当安装程序拷贝一部分设备驱动后,停下来提示你敲S键,指定存储设备驱动:

系统提示把驱动软盘放入软驱,按提示放入软盘后,敲回车。系统读取软盘后,提示你选择驱动。nForce的RAID驱动与Intel和VIA的不同,有两个:NVIDIA RAID CLASS DRIVER和NVIDIA Nforce Storage Controller都要安装。

第一次选择NVIDIA RAID CLASS DRIVER,敲回车系统读入,再返回敲S键提示界面,此时再敲S键,然后选择NVIDIA Nforce Storage Controller,敲回车,系统继续拷贝文件,然后返回到下面界面。

在这个界面里显示出系统已经找到NVIDIA RAID CLASS DRIVER和NVIDIA Nforce Storage Controller,可以敲回车继续。

系统从软盘拷贝所需文件后重启,开始检测RAID盘,找到后提示设置硬盘。此时用户可以建立一个主分区,并格式化,然后系统向硬盘拷贝文件。在系统安装期间不要取出软盘,直到安装完成。

剩余的磁盘分区等安装完系统后,我们可以用XP的磁盘管理器分区格式化。用XP的磁盘管理器分区,等于/小于20GB的逻辑盘可以格式化为FAT32格式。大于20GB的格式化为NTF格式。

⑸ 磁盘冗余阵列

也称为系统容错技术(SFT, System Fault Tolerance),大体分为三个级别:

双份目录和双份文件分配表(FAT)

热修复重定向和写后读校验

用于防止磁盘驱动器或磁盘控制器发生故障。包括:
1.磁盘镜像
2.磁盘双工

磁盘镜像:
在同一磁盘控制器上,连接两个完全相同的磁盘驱动器。同一数据被先后写到两个驱动器上。

RAID 0

RAID 1

RAID 2

RAID 3

RAID 4

RAID 5

⑹ 独立磁盘冗余阵列的简介

独立磁盘冗余阵列(Rendant Array of Independent Disks,RAID;在台湾一般俗称:磁盘阵列)的基本思想就是把多个相对便宜的小磁盘组合起来,成为一个磁盘组, 使性能达到甚至超过一个价格昂贵、容量巨大的磁盘。根据选择的版本不同,RAID比单盘有以下一个或多个方面的益处:增强数据整合度,增强容错功能,增加吞吐量或容量。另外,磁盘组对于计算机来说, 看起来就像一个单独的磁盘或逻辑存储单元。分为RAID-1,RAID-10,RAID-3,RAID-30,RAID-5,RAID-50。
围绕RAID的基本想法就是把多个便宜的小磁盘组合到一起,成为一个磁盘组式的逻辑硬盘,因此,操作系统仅把它们看作一个单一的逻辑存储单元或磁盘。通过这种手段使逻辑硬盘的性能达到或超过一个容量巨大、价格昂贵的磁盘。RAID常被用在服务器计算机上,并且常使用完全相同的硬盘作为组合。由于硬盘价格的不断下降与和RAID功能更加有效地与主板整合,它也成为了高级最终用户的一个选择,特别是需要大量存储的工作,如:视频与音频制作。
利用如磁盘条纹化 (RAID 0) 和 磁盘镜像 (RAID 1) 的技巧,把数据分布到各个磁盘上,来达到冗余性、低延迟、读写的高带宽、硬盘毁坏后的最大可恢复性。
加上非冗余阵列(RAID-0)至少有九种类型的RAID: RAID-0:这一技术有条带但是没有数据冗余。它提供了最好的性能但是不能容错。 RAID-1:这一个类型也称为磁盘镜像,至少由二个复制数据存储的驱动器组成。没有条带。因为任一驱动器能同时被读,读取性能被改良。输写性能和单一磁盘存储相同。在多用户系统中,RAID-1 提供最好的性能和最好的容错。 RAID-2:这一个类型使用条带,一些磁盘储存错误检查和纠正(ECC)信息。与RAID-3相比没有优势。 RAID-3:这一个类型使用条带而且用一个驱动器专门储存奇偶信息。内含的错误检查(ECC)用来探测错误。通过计算存储在另一个驱动器上信息的异或逻辑运算(XOR)来完成数据恢复。因为一个输入输出操作同时访问所有驱动器,所以RAID-3 不能交叠输入输出。由于这个原因,RAID-3 对有长纪录应用软件的单一用户系统来说是最好的。 RAID-4:这一个类型使用大的条带,意味着你能读取单一驱动器的记录。它允许你利用交叠输入输出。因为所有输写操作必须更新奇偶驱动器,不可能有输入输出交叠处理。相对于RAID-5,RAID-4没有提供优势。 RAID-5:这一个类型包括一个旋转奇偶阵列,因此解决了RAID-4 的输写限制。因此,所有读和写操作能被交叠。RAID-5存储奇偶信息但是没有冗余数据(但是奇偶信息能用来重建数据)。RAID-5的阵列需要至少三个通常是五个磁盘。对于性能不是关键或者很少进行写操作的多用户系统,RAID-5是最好的选择。 RAID-6:这一个类型与RAID-5 类似但是包括另一个驱动器奇偶配置,这个配置分布于不同的驱动器,因此提供了极高容错能力。 RAID-7:这一个类型包括一个实时内含操作系统作为控制器,经由一个高速总线和计算机的其他特性来隐藏。有一个厂商提供这个系统。 RAID-10:这一个类型结合了RAID-0和RAID-1,称为RAID-10,它提供比RAID-1更高的性能,但成本比较高。它有两个子类型:在RAID-0 +1中,数据在条带穿过多个磁盘的时候被组织,然后被条带化的磁盘集被镜像。在RAID-1 +0中,数据被镜像,镜像被条带化。 RAID-50(或RAID-5+0):这种类型包括一个RAID-5系列组,并在RAID-0中条带化来改善RAID-5的性能(在没有降低数据保护的情况下)。 RAID-53(或RAID-5+3):这一个类型提供一个条带阵列,其中每条条带是一个驱动器的RAID-3阵列。它提供比RAID-3更高的性能,但是费用比较高。 RAID-S(也称为奇偶RAID):这是EMC Symmetrix的条带化奇偶RAID阵列专有和备用的方法,不再在现有设备中使用。它类似于RAID-5。具有一些增强性能,以及在磁盘阵列上高速磁盘缓存的增强性能。

⑺ 磁盘冗余阵列是什么

什么是独立磁盘冗余阵列(RAID)技术独立磁盘冗余阵列(RAID)是在服务器等级用于高容量数据存储的公用系统。RAID系统使用许多小容量磁盘驱动器来存储大量数据,并且使可靠性和冗余度得到增强。对计算机来说,这样一种阵列就如同由多个磁盘驱动器构成的一个逻辑单元。
RAID存储的方式多种多样。某些类型的RAID强调性能,某些则强调可靠性、容错或纠错能力。因此,可根据要完成的任务来选择类型。不过,所有的RAID系统共同的特点——也是其真正的优点则是"热交换"能力:用户可以取出一个存在缺陷的驱动器,并插入一个新的予以更换。对大多数类型的RAID来说,不必中断服务器或系统,就可以自动重建某个出现故障的磁盘上的数据。

RAID并非保护大量数据的唯一途径,但是,常规的备份和镜像软件速度较慢,而且,如果一个驱动器出现故障,则往往需要中断系统。即使磁盘不导致服务器中断,IT工作人员仍需要断掉服务器来更换驱动器。相反,RAID利用镜像或奇偶信息来从剩余的驱动器重建数据,不必中断系统。

Level0、3和5是三种最常见的RAID实施方式:

RAIDLevel0即数据分割,是最基本的方式。在一个普通硬盘驱动器上,数据被存储在同一张盘的连续扇区上。RAID0至少使用两个磁盘驱动器,并将数据分成从512字节到数兆字节的若干块,这些数据块被交替写到磁盘中。第1段被写到磁盘1中,第2段被写到磁盘2中,如此等等。当系统到达阵列中的最后一个磁盘时,就写到磁盘1的下一分段,以下如此。分割数据将I/O负载平均分配到所有的驱动器。由于驱动器可以同时写或读,性能得以显着提高。但是,它却没有数据保护能力。如果一个磁盘出故障,数据就会丢失。RAID 0不适用于关键任务环境,但是,它却非常适合于视频生产和编辑或图像编辑。

RAIDLevel3包括数据分割,另外,它还指定一个驱动器来存储奇偶信息。这就提供了某种容错功能,在数据密集型环境或单一用户环境中尤其有益于访问较长的连续记录。RAID 3需要同步主轴驱动器来预防较短记录的性能下降。

RAIDLevel5类似于Level0,但是它不是将数据分成块,而是将每个字节的位拆分到多个磁盘。这样会增加管理费用,但是,如果一个磁盘出现故障,则它可以更换,数据可以从奇偶和纠错码中重建。RAID 5包括所有的读/写运行。它需要三到五个磁盘来组成阵列,最适合于不需要关键特性或几乎不进行写操作的多用户系统。

其它不常见的RAID类型:

RAIDLevel1是磁盘镜像——写到磁盘1中的一切也写到磁盘2中,从任何一个磁盘都可以读取。这样就提供了即时备份,但需要的磁盘驱动器数量最多,不能提高性能。RAID 1在多用户系统中提供最佳性能和容错能力,是最容易实施的配置,这最适用于财务处理、工资单、金融和高可用数据环境。

RAIDLevel2是为大型机和超级计算机开发的。它可在工作不中断的情况下纠正数据,但是,RAID2倾向于较高的数据校验和纠错率。

RAIDLevel4包括较大的数据条,这样,就可以从任何驱动器读取记录。由于这种类型缺乏对多种同时写操作的支持,因而,几乎不使用。

RAIDLevel6几乎没有进行商用。它使用一种分配在不同的驱动器上的第二种奇偶方案,扩展了RAID5。它能承受多个驱动器同时出现故障,但是,性能——尤其是写操作却很差,而且,系统需要一个极为复杂的控制器。

RAIDLevel7有一个实时嵌入操作系统用作控制器,一个高速总线用于缓存。它提供快速的I/O,但是价格昂贵。

RAIDLevel10由数据条阵列组成,其中,每个条都是驱动器的一个RAID1阵列。它与RAID1的容错能力相同,面向需要高性能和冗余,但不需要高容量的数据库服务器。

RAIDLevel53是最新的一种类型,实施情况同Level0数据条阵列,其中,每一段都是一个RAID3阵列。它的冗余与容错能力同RAID3。这对需要具有高数据传输率的RAID 3配置的IT系统有益,但是它价格昂贵、效率偏低.