当前位置:首页 » 硬盘大全 » 硬盘主板构造
扩展阅读
webinf下怎么引入js 2023-08-31 21:54:13
堡垒机怎么打开web 2023-08-31 21:54:11

硬盘主板构造

发布时间: 2023-03-08 20:49:38

A. 常用PC机主板的组成及各部分的功能主板的工作原理

电脑主板
大家都知道,主板是所有电脑配件的总平台,其重要性不言而喻。而下面我们就以图解的形式带你来全面了解主板。
一、主板图解 一块主板主要由线路板和它上面的各种元器件组成1.线路板 PCB印制电路板是所有电脑板卡所不可或缺的东东。它实际是由几层树脂材料粘合在一起的,内部采用铜箔走线。一般的PCB线路板分有四层,最上和最下的两层是信号层,中间两层是接地层和电源层,将接地和电源层放在中间,这样便可容易地对信号线作出修正。而一些要求较高的主板的线路板可达到6-8层或更多。主板(线路板)是如何制造出来的呢?PCB的制造过程由玻璃环氧树脂(Glass Epoxy)或类似材质制成的PCB“基板”开始。制作的第一步是光绘出零件间联机的布线,其方法是采用负片转印(Subtractive transfer)的方式将设计好的PCB线路板的线路底片“印刷”在金属导体上。这项技巧是将整个表面铺上一层薄薄的铜箔,并且把多余的部份给消除。而如果制作的是双面板,那么PCB的基板两面都会铺上铜箔。而要做多层板可将做好的两块双面板用特制的粘合剂“压合”起来就行了。接下来,便可在PCB板上进行接插元器件所需的钻孔与电镀了。在根据钻孔需求由机器设备钻孔之后,孔璧里头必须经过电镀(镀通孔技术,Plated- Through-Hole technology,PTH)。在孔璧内部作金属处理后,可以让内部的各层线路能够彼此连接。在开始电镀之前,必须先清掉孔内的杂物。这是因为树脂环氧物在加热后会产生一些化学变化,而它会覆盖住内部PCB层,所以要先清掉。清除与电镀动作都会在化学过程中完成。接下来,需要将阻焊漆(阻焊油墨)覆盖在最外层的布线上,这样一来布线就不会接触到电镀部份了。然后是将各种元器件标示网印在线路板上,以标示各零件的位置,它不能够覆盖在任何布线或是金手指上,不然可能会减低可焊性或是电流连接的稳定性。此外,如果有金属连接部位,这时“金手指”部份通常会镀上金,这样在插入扩充槽时,才能确保高品质的电流连接。最后,就是测试了。测试PCB是否有短路或是断路的状况,可以使用光学或电子方式测试。光学方式采用扫描以找出各层的缺陷,电子测试则通常用飞针探测仪 (Flying-Probe)来检查所有连接。电子测试在寻找短路或断路比较准确,不过光学测试可以更容易侦测到导体间不正确空隙的问题。线路板基板做好后,一块成品的主板就是在PCB基板上根据需要装备上大大小小的各种元器件—先用SMT自动贴片机将IC芯片和贴片元件“焊接上去,再手工接插一些机器干不了的活,通过波峰/回流焊接工艺将这些插接元器件牢牢固定在PCB上,于是一块主板就生产出来了。另外,线路板要想在电脑上做主板使用,还需制成不同的板型。其中AT板型是一种最基本板型,其特点是结构简单、价格低廉,其标准尺寸为 33.2cmX30.48cm,AT主板需与AT机箱电源等相搭配使用,现已被淘汰。而ATX板型则像一块横置的大AT板,这样便于ATX机箱的风扇对 CPU进行散热,而且板上的很多外部端口都被集成在主板上,并不像AT板上的许多COM口、打印口都要依靠连线才能输出。另外ATX还有一种Micro ATX小板型,它最多可支持4个扩充槽,减少了尺寸,降低了电耗与成本。2.北桥芯片芯片组(Chipset)是主板的核心组成部分,按照在主板上的排列位置的不同,通常分为北桥芯片和南桥芯片,如Intel的i845GE芯片组由 82845GE GMCH北桥芯片和ICH4(FW82801DB)南桥芯片组成;而VIA KT400芯片组则由KT400北桥芯片和VT8235等南桥芯片组成(也有单芯片的产品,如SIS630/730等),其中北桥芯片是主桥,其一般可以和不同的南桥芯片进行搭配使用以实现不同的功能与性能。北桥芯片一般提供对CPU的类型和主频、内存的类型和最大容量、ISA/PCI/AGP插槽、ECC纠错等支持,通常在主板上靠近CPU插槽的位置,由于此类芯片的发热量一般较高,所以在此芯片上装有散热片。3.南桥芯片南桥芯片主要用来与I/O设备及ISA设备相连,并负责管理中断及DMA通道,让设备工作得更顺畅,其提供对KBC(键盘控制器)、RTC(实时时钟控制器)、USB(通用串行总线)、Ultra DMA/33(66)EIDE数据传输方式和ACPI(高级能源管理)等的支持,在靠近PCI槽的位置。4.CPU插座 CPU插座就是主板上安装处理器的地方。主流的CPU插座主要有Socket370、Socket 478、Socket 423和Socket A几种。其中Socket370支持的是PIII及新赛扬,CYRIXIII等处理器;Socket 423用于早期Pentium4处理器,而Socket 478则用于目前主流Pentium4处理器。 而Socket A(Socket462)支持的则是AMD的毒龙及速龙等处理器。另外还有的CPU插座类型为支持奔腾/奔腾MMX及K6/K6-2等处理器的 Socket7插座;支持PII或PIII的SLOT1插座及AMD ATHLON使用过的SLOTA插座等等。5.内存插槽内存插槽是主板上用来安装内存的地方。目前常见的内存插槽为SDRAM内存、DDR内存插槽,其它的还有早期的EDO和非主流的RDRAM内存插槽。需要说明的是不同的内存插槽它们的引脚,电压,性能功能都是不尽相同的,不同的内存在不同的内存插槽上不能互换使用。对于168线的SDRAM内存和184线的DDR SDRAM内存,其主要外观区别在于SDRAM内存金手指上有两个缺口,而DDR SDRAM内存只有一个。6.PCI插槽 PCI(peripheral component interconnect)总线插槽它是由Intel公司推出的一种局部总线。它定义了32位数据总线,且可扩展为64位。它为显卡、声卡、网卡、电视卡、MODEM等设备提供了连接接口,它的基本工作频率为33MHz,最大传输速率可达132MB/s。7.AGP插槽 AGP图形加速端口(Accelerated Graphics Port)是专供3D加速卡(3D显卡)使用的接口。它直接与主板的北桥芯片相连,且该接口让视频处理器与系统主内存直接相连,避免经过窄带宽的PCI总线而形成系统瓶颈,增加3D图形数据传输速度,而且在显存不足的情况下还可以调用系统主内存,所以它拥有很高的传输速率,这是PCI等总线无法与其相比拟的。AGP接口主要可分为AGP1X/2X/PRO/4X/8X等类型。8.ATA接口 ATA接口是用来连接硬盘和光驱等设备而设的。主流的IDE接口有ATA33/66/100/133,ATA33又称Ultra DMA/33,它是一种由Intel公司制定的同步DMA协定,传统的IDE传输使用数据触发信号的单边来传输数据,而Ultra DMA在传输数据时使用数据触发信号的两边,因此它具备33MB/S的传输速度。 而ATA66/100/133则是在Ultra DMA/33的基础上发展起来的,它们的传输速度可反别达到66MB/S、100M和133MB/S,只不过要想达到66MB/S左右速度除了主板芯片组的支持外,还要使用一根ATA66/100专用40PIN的80线的专用EIDE排线。此外,现在很多新型主板如I865系列等都提供了一种Serial ATA即串行ATA插槽,它是一种完全不同于并行ATA的新型硬盘接口类型,它用来支持SATA接口的硬盘,其传输率可达150MB/S。9.软驱接口软驱接口共有34根针脚,顾名思义它是用来连接软盘驱动器的,它的外形比IDE接口要短一些。10.电源插口及主板供电部分电源插座主要有AT电源插座和ATX电源插座两种,有的主板上同时具备这两种插座。AT插座应用已久现已淘汰。而采用20口的ATX电源插座,采用了防插反设计,不会像AT电源一样因为插反而烧坏主板。除此而外,在电源插座附近一般还有主板的供电及稳压电路。主板的供电及稳压电路也是主板的重要组成部分,它一般由电容,稳压块或三极管场效应管,滤波线圈,稳压控制集成电路块等元器件组成。此外,P4主板上一般还有一个4口专用12V电源插座。11.BIOS及电池 BIOS(BASIC INPUT/OUTPUT SYSTEM)基本输入输出系统是一块装入了启动和自检程序的EPROM或EEPROM集成块。实际上它是被固化在计算机ROM(只读存储器)芯片上的一组程序,为计算机提供最低级的、最直接的硬件控制与支持。除此而外,在BIOS芯片附近一般还有一块电池组件,它为BIOS提供了启动时需要的电流。常见BIOS芯片的识别主板上的ROM BIOS芯片是主板上唯一贴有标签的芯片,一般为双排直插式封装(DIP),上面一般印有“BIOS”字样,另外还有许多PLCC32封装的BIOS。早期的BIOS多为可重写EPROM芯片,上面的标签起着保护BIOS内容的作用,因为紫外线照射会使EPROM内容丢失,所以不能随便撕下。现在的 ROM BIOS多采用Flash ROM( 可擦可编程只读存储器),通过刷新程序,可以对Flash ROM进行重写,方便地实现BIOS升级。目前市面上较流行的主板BIOS主要有Award BIOS、AMI BIOS、Phoenix BIOS三种类型。Award BIOS是由Award Software公司开发的BIOS产品,在目前的主板中使用最为广泛。Award BIOS功能较为齐全,支持许多新硬件,目前市面上主机板都采用了这种BIOS。 AMI BIOS是AMI公司出品的BIOS系统软件,开发于80年代中期,它对各种软、硬件的适应性好,能保证系统性能的稳定,在90年代后AMI BIOS应用较少;Phoenix BIOS是Phoenix公司产品,Phoenix BIOS多用于高档的原装品牌机和笔记本电脑上,其画面简洁,便于操作,现在Phoenix已和Award公司合并,共同推出具备两者标示的BIOS产品。12.机箱前置面板接头机箱前置面板接头是主板用来连接机箱上的电源开关、系统复位、硬盘电源指示灯等排线的地方。一般来说,ATX结构的机箱上有一个总电源的开关接线 (Power SW),其是个两芯的插头,它和Reset的接头一样,按下时短路,松开时开路,按一下,电脑的总电源就被接通了,再按一下就关闭。而硬盘指示灯的两芯接头,一线为红色。在主板上,这样的插针通常标着IDE LED或HD LED的字样,连接时要红线对一。这条线接好后,当电脑在读写硬盘时,机箱上的硬盘的灯会亮。电源指示灯一般为两或三芯插头,使用1、3位,1线通常为绿色。 在主板上,插针通常标记为Power LED,连接时注意绿色线对应于第一针(+)。当它连接好后,电脑一打开,电源灯就一直亮着,指示电源已经打开了。而复位接头(Reset)要接到主板上 Reset插针上。主板上Reset针的作用是这样的:当它们短路时,电脑就重新启动。而PC喇叭通常为四芯插头,但实际上只用1、4两根线,一线通常为红色,它是接在主板Speaker插针上。在连接时,注意红线对应1的位置。13.外部接口 ATX主板的外部接口都是统一集成在主板后半部的。现在的主板一般都符合PC''99规范,也就是用不同的颜色表示不同的接口,以免搞错。一般键盘和鼠标都是采用PS/2圆口,只是键盘接口一般为蓝色,鼠标接口一般为绿色,便于区别。而USB接口为扁平状,可接MODEM,光驱,扫描仪等USB接口的外设。而串口可连接MODEM和方口鼠标等,并口一般连接打印机。14.主板上的其它主要芯片 除此而外主板上还有很多重要芯片:AC97声卡芯片 AC''97的全称是Audio CODEC’97,这是一个由Intel、Yamaha等多家厂商联合研发并制定的一个音频电路系统标准。主板上集成的AC97声卡芯片主要可分为软声卡和硬声卡芯片两种。所谓的AC''97软声卡,只是在主板上集成了数字模拟信号转换芯片(如ALC201、ALC650、AD1885等),而真正的声卡被集成到北桥中,这样会加重CPU少许的工作负担。所谓的AC''97硬声卡,是在主板上集成了一个声卡芯片(如创新CT5880和支持6声道的CMI8738等),这个声卡芯片提供了独立的声音处理,最终输出模拟的声音信号。这种硬件声卡芯片相对比软声卡在成本上贵了一些,但对CPU的占用很小。网卡芯片现在很多主板都集成了网卡。在主板上常见的整合网卡所选择的芯片主要有10/100M的RealTek公司的8100(8139C/8139D芯片)系列芯片以及威盛网卡芯片等。除此而外,一些中高端主板还另外板载有Intel、3COM、Alten和Broadcom的千兆网卡芯片等,如Intel的 i82547EI、3COM 3C940等等。(见图18-3COM 3C940千兆网卡芯片)IDE阵列芯片一些主板采用了额外的IDE阵列芯片提供对磁盘阵列的支持,其采用IDE RAID芯片主要有HighPoint、Promise等公司的产品的功能简化版本。例如Promise公司的PDC20276/20376系列芯片能提供支持0,1的RAID配置,具自动数据恢复功能。美国高端HighPoint公司的RAID芯片如HighPoint HPT370/372/374系列芯片,SILICON SIL312ACT114芯片等等。I/O控制芯片 I/O控制芯片(输入/输出控制芯片)提供了对并串口、PS2口、USB口,以及CPU风扇等的管理与支持。常见的I/O控制芯片有华邦电子 (WINBOND)的W83627HF、W83627THF系列等,例如其最新的W83627THF芯片为I865/I875芯片组提供了良好的支持,除可支持键盘、鼠标、软盘、并列端口、摇杆控制等传统功能外,更创新地加入了多样新功能,例如,针对英特尔下一代的Prescott内核微处理器,提供符合 VRD10.0规格的微处理器过电压保护,如此可避免微处理器因为工作电压过高而造成烧毁的危险。此外,W83627THF内部硬件监控的功能也同时大幅提升,除可监控PC系统及其微处理器的温度、电压和风扇外,在风扇转速的控制上,更提供了线性转速控制以及智能型自动控转系统,相较于一般的控制方式,此系统能使主板完全线性地控制风扇转速,以及选择让风扇是以恒温或是定速的状态运转。这两项新加入的功能,不仅能让使用者更简易地控制风扇,并延长风扇的使用寿命,更重要的是还能将风扇运转所造成的噪音减至最低。频率发生器芯片频率也可以称为时钟信号,频率在主板的工作中起着决定性的作用。我们目前所说的CPU速度,其实也就是CPU的频率,如P4 1.7GHz,这就是CPU的频率。电脑要进行正确的数据传送以及正常的运行,没有时钟信号是不行的,时钟信号在电路中的主要作用就是同步;因为在数据传送过程中,对时序都有着严格的要求,只有这样才能保证数据在传输过程不出差错。时钟信号首先设定了一个基准,我们可以用它来确定其它信号的宽度,另外时钟信号能够保证收发数据双方的同步。对于CPU而言,时钟信号作为基准,CPU内部的所有信号处理都要以它作为标尺,这样它就确定CPU指令的执行速度。时钟信号频率的担任,会使所有数据传送的速度加快,并且提高了CPU处理数据的速度,这就是我们为什么超频可以提高机器速度的原因。要产生主板上的时钟信号,那就需要专门的信号发生器,也称为频率发生器。但是主板电路由多个部分组成,每个部分完成不同的功能,而各个部分由于存在自己的独立的传输协议、规范、标准,因此它们正常工作的时钟频率也有所不同,如 CPU的FSB可达上百兆,I/O口的时钟频率为24MHz,USB的时钟频率为48MHz,因此这么多组的频率输出,不可能单独设计,所以主板上都采用专用的频率发生器芯片来控制。 频率发生器芯片的型号非常繁多,其性能也各有差异,但是基本原理是相似的。例如ICS 950224AF时钟频率发生器,是在I845PE/GE的主板上得到普遍采用时钟频率发生器,通过BIOS内建的“AGP/PCI频率锁定”功能,能够保证在任何时钟频率之下提供正确的PCI/AGP分频,有了起提供的这“AGP/PCI频率锁定”功能,使用多高的系统时钟都不用担心硬盘里面精贵的数据了,也不用担心显卡、声卡等的安全了,超频,只取决于CPU和内存的品质而已了。二、总结 最后再让我们通过一张详细的大图来对主板来个彻底注释。 1是整合音效芯片,2是I/O控制芯片,3是光驱音源插座,4是外接音源辅助插座,5是SPDIF插座,6是USB插头,7是机箱被开启接头,8是PCI 插槽,9是AGP4X插槽,10是机箱前端通用USB接口,11是BIOS,12是机箱面板接头,13是南桥芯片,14是IDE1插口,15是IDE2插口,16是电源指示灯接头,17是清除CMOS记忆跳线,18是风扇电源插座,19是电池,20是软驱插座,21是ATX电源插座,22是内存插槽,23 是风扇电源插座,24是北桥芯片,25是CPU风扇支架,26是CPU插座,27是12VATX电源插座,28是第二组音源插座,29是PS/2键盘及鼠标插座,30是USB插座,31是并串口,32是游戏控制器及音源插座,33是SUP_CEN插座。主板是整个计算机的中枢,所有部件及外设都是通过它与处理器连接在一起,并进行通信,然后由处理器发出相应的操作指令,执行相应的操作,所以了解的主板结构对每一位学电脑,特别是学电脑维修的人员来说是非常重要的。很难想象一个连主板基本上分几个部分、每部分什么作用都分不清的人可以顺利地维修电脑。本文笔者就以一款华硕最新800MHz FSB P4主板带各位来具体洞察主板的五脏六腑

B. 移动硬盘的内部构造是怎样的

以下是我为你找到的资料希望对你有帮助!!!
移动硬盘主要由外壳、电路板(控制芯片、数据和电源接口)和硬盘三大部分组成。

一、电路板(控制芯片、数据和电源接口)

1、数据接口:目前移动硬盘常见的数据接口是USB和IEEE1394两种。USB是目前移动硬盘盒的主流接口方式,也是目前几乎所电脑都有的接口。目前都是USB2.0标准并兼容USB1.1。

USB是目前移动硬盘盒的主流接口方式,它有两种标准:一种是USB1.1接口,其理论传输速度最高只有12Mbps,一种是USB2.0接口,其理论传输速度最高达480Mbps(60MB/s),兼容USB1.1。目前USB1.1接口移动硬盘盒已经退出历史舞台了,USB2.0接口一统天下。
IEEE1394接口又称Firewire接口(俗称“火线”)。1394标准又分1394a和1394b。一般所说的1394通常指1394a标准接口,数据传输速率理论上可达到400Mbps(50MB/s);1394b接口的传输速率理论上最少可达到800Mbps(100MB/s)。目前IEEE1394接口移动硬盘盒基本上是IEEE1394a标准的,在中国大陆市场多数以苹果机上使用。
选择USB2.0接口的而更具优势,理由很简单首先,USB2.0接口是主流,非常普及,倘若购置1394接口的,如果碰到和没有1394接口的电脑进行数据对拷时就非常尴尬了;其次价格有优势,便宜的只要几十元,最好的二百多元,而1394接口的便宜的也要 两百以上;再次,USB2.0接口的挑选余地大,品牌众多。
2、控制芯片:对于移动硬盘而言,主控制芯片在很大程度决定最终传输稳定性与速度。目前控制芯片主要分高、中、低三个档次。

高端控制芯片:美国赛普拉斯公司出品的Cypress ISD300A1(原为ISD公司后被C ypress公司收购)、日本NEC公司出品的NECμPD720133。特点:产量小,价格贵,很少买得到。中端控制芯片:台湾旺玖科技(Prolific)公司出品的PL2507(性能非常不错,合理的价格,高端的速度)、美国赛普拉斯公司出品的CY7C68300B(低功耗高速度,可以算是由原ISD公司的经典产品ISD300A控制芯片二次开发得来)、扬智科技 ALi M5621(台湾)、世纪民生 Myson CS8818G(台湾)、创惟科技 GL811E(台湾)。特点:性能稳定,价格适中。低端控制芯片:扬智科技 ALi M5642(台湾)、创惟科技 GL811(台湾)、特点:稳定性和数据传输性能相对比较差,但价格低廉,低端组装的硬盘盒一般都选择这类控制芯片,(可惜的是现在扬智科技已经倒闭,所以市面上的ALi芯片组再难有品质的保证)。在nForce芯片组和VIA芯片组的主板上会有不兼容问题;二是在大数据流写入的情况下,经常会报“写入延缓出错”,硬盘在写入过程中和主机断开,主机找不到原来的盘符;三是性能低下,速度逊于其他芯片。而Ali 5642芯片据说用在某些高速盘上会不兼容。市场上中低端移动硬盘盒基本都采用ALi M5621芯片,产品性能不错,兼容性较好。而廉价的移动硬盘盒则采用价格相对较低的GL811芯片,性能上的缺陷加上粗劣的做工,此类产品问题较多。
目前主流2.5英寸品牌移动硬盘的读取速度约为15-25MB/s,写入速度约为8-15MB/s。如果我们以10MB/s的写入速度拷贝一部4GB的DVD电影到移动硬盘的话,需耗费时间约为6分40秒;如果以20MB/s的读取速度从移动硬盘中拷贝一部4GB的DVD电影到电脑主机硬盘的话,需要时间约为3分20秒。常见的2.5英寸笔记本硬盘品牌有日立、希捷、西部数据、三星等,他们之间的速度差异相对来说不是太明显,但有款城市骆驼的移动硬盘的读写速度达到了惊人的31MB/S,说明采用高端的芯片组。
3、供电:有不少劣质台式电脑主板的机箱前置USB端口容易出现供电不足情况,这样就会造成移动硬盘无法被Windows系统正常发现的故障。在供电不足的情况下就需要给移动硬盘进行独立供电。一般情况下,一个usb接口供电已经足够。但是有可能会遇到需要同时接两个接口的情况,因此大部分移动硬盘都设计了DC-IN直流电插口以解决这个问题。
二、硬盘
现在的移动主要采用笔记本硬盘做为存储介质。我们来看看衡量硬盘的几个标准:
厚度:但是笔记本电脑硬盘有个台式机硬盘没有的参数,就是厚度,标准的笔记本电脑硬盘有9.5,12.5,17.5mm三种厚度。9.5mm的硬盘是为超轻超薄机型设计的,12.5mm的硬盘主要用于厚度较大光软互换和全内置机型,至于17.5mm的硬盘是以前单碟容量较小时的产物,现在已经基本没有机型采用了。
转数:笔记本电脑硬盘现在最快的是5400转2M Cache,支持DMA100(主流型号只有4200转512K Cache,支持DMA66),但其速度和现在台式机最慢的5400转512K Cache硬盘比较起来也相差甚远,由于笔记本电脑硬盘采用的是2.5英寸盘片,即使转速相同时,外圈的线速度也无法和3.5英寸盘片的台式机硬盘相比,笔记本电脑硬盘现在已经是笔记本电脑性能提高最大的瓶颈。
接口类型:笔记本电脑硬盘一般采用3种形式和主板相连:用硬盘针脚直接和主板上的插座连接,用特殊的硬盘线和主板相连,或者采用转接口和主板上的插座连接。不管采用哪种方式,效果都是一样的,只是取决于厂家的设计。
早期的笔记本的接口采用的主要是UltraATA/DMA 33,然而笔记本硬盘转速以及容量的提高使得它成为一个阻碍本本电脑速度的瓶颈。为此正如台式机的发展趋势, Ultra ATA/DMA 66/100/133也被运用到了笔记本硬盘上。目前使用的是Ultra ATA100,E-IDE接口的产品在提供了高达100MB/s最大传输率的同时还将CPU从数据流中解放了出来。
现在SATA串口技术已在广泛使用在了台式机的硬盘中,目前在笔记本硬盘中也开始广泛应用Serial ATA接口技术,采用该接口仅以四只针脚便能完成所有工作。该技术重要之处在于可使接口驱动电路体积变得更加简洁,高达150Mb/s的传输速度使厂商能更容易地制造出对处理器依赖性更小的微型高速笔记本硬盘。
容量及采用技术:由于应用程序越来越庞大,硬盘容量也有愈来愈高的趋势,对于笔记本电脑的硬盘来说,不但要求其容量大,还要求其体积小。为解决这个矛盾,笔记本电脑的硬盘普遍采用了磁阻磁头(MR)技术或扩展磁阻磁头(MRX)技术,MR磁头以极高的密度记录数据,从而增加了磁盘容量、提高数据吞吐率,同时还能减少磁头数目和磁盘空间,提高磁盘的可靠性和抗干扰、震动性能。它还采用了诸如增强型自适应电池寿命扩展器、PRML数字通道、新型平滑磁头加载/卸载等高新技术。
目前的移动硬盘由笔记本硬盘+硬盘盒和台式机硬盘+硬盘盒两种,而市面上笔记本硬盘有2.5英寸,3.5英寸和微盘三种规格,而2.5英寸的产品由于兼具大容量、轻便灵活、可靠性高等特点,成为市场上的绝对主流。其中希捷、迈拓和西部数据三大硬盘厂商依然保持着高关注度,在品牌格局方面依然呈现出三足鼎立之势。
三、硬盘盒与抗震
目前常见的移动硬盘盒用料一般有塑料、 铝以及铝镁合金三种,这些材质的区别不光表现在移动硬盘盒的重量上,散热性能也表现不同。价格低廉的移动硬盘盒一般采用的是塑料材料,散热效果较差。 用这样的产品短时间内使用硬盘还表现正常,但如果长时间的连续工作, 由于塑料硬盘盒的散热性能较差,导致硬盘产生的热量难以散尽,淤积于硬盘盒之中, 温度直线上升,严重时会使硬盘停滞、数据损坏,甚至是死机。 而目前品牌大厂及正规厂商的移动硬盘盒大都采用铝质材料,甚至是铝镁合金的材质, 它们极大减轻了硬盘盒的质量,而且作为热的良导体,它们具有较佳的散热效果, 可以使你的硬盘更长时间、更加稳定地工作。

硬盘盒与硬盘之间的防震触点
另外一个跟材质相关的是硬盘盒的抗震性能。 由于震动是硬盘的大忌,轻则数据丢失,重则造成磁道损坏, 而移动硬盘盒的设计就是在于便携性,因此硬盘盒的抗震设计是关键。从这一点而言, 那些轻薄型、小巧玲珑的家伙反而不具有优势。
移动硬盘盒的设计,一款移动硬盘盒是否使用方便,设计是关键,主要有以下几部分:
散热孔:如果移动硬盘盒的壳体不是热的良导体, 其上应遍布散热孔,以帮助硬盘散热。不过对于2.5英寸硬盘,由于本身发热就控制得比较好, 这方面并不需要太过担心。
防尘设计:在移动硬盘盒的壳体上安装密封圈以减少灰尘的入侵,当然,前提是壳体散热良好。
防滑设计:在移动硬盘盒的壳体设计上防滑的花纹,或安装防滑塑料垫等等,以增大壳体的磨擦,防止硬盘盒无意中从手中脱落。
防震设计:好的硬盘盒,在内部、表面,尤其是易于磕碰的边角都应该覆盖有弹性材质,或者处理圆角,以减少外来冲击对硬盘的影响。通常,防滑材料也起到抗冲击缓冲垫的双重作用。
硬盘指示灯:在壳体上留有硬盘信号灯,当硬盘有数据读取或存储的时候指示灯会闪动,以提醒用户注意。另外,指示灯应该位于便于看到的位置。有些设计简单的产品要么没有指示灯,要么指示灯在电路板上的位置不理想,理接口太近,视线容易被挡住。
其实,对于硬盘盒设计的直观感受, 可以参考市售的名牌成品的一些设计。如图1就是爱国者移动存储王, 它的外壳设计就非常典型:边角全部是流线型,抗冲击能力强;正面、侧面都有防滑条的设计, 便于携带和手持;指示灯位于正面,便于阅读。
除了硬盘盒的材质外,组装与原装也是消费者需要考虑的。当然,最好是使用原装的移动硬盘,这样对你的数据会有保证,因为组装的经常会有烧毁或者线路接触不好的问题,会给你的使用造成很多麻烦,尤其是数据丢失以后就麻烦了,如果使用原装的话,会有生产厂家的技术给你做后盾,并且副送各种配套软件使你放心使用。这里不的不提的是市面上有不少所谓的“品牌”移动硬盘其实是由经销商自己组装的,也就是说,厂商提供给经销商的只是移动硬盘盒,经销商拿到盒子后再把硬盘装进去。这种“品牌”移动硬盘的品质是无法得到保证的,水货硬盘甚至返修硬盘很有可能就被奸商装进移动硬盘盒里卖给了不知情的消费者。

C. 电脑硬盘的结构,参数和结构

你好!你的问题我不是很明确!
简单的说一下 硬盘的结构分为:
1.硬盘线路板

2.硬盘主盘体

去这里看看好了!http://www.highdiy.com/html/storage/intro/331.shtml

应该可以了解一点~!

D. 硬盘和主板在哪

硬盘一般在主板右边,长方体的。外有两根电线连接着(一根电源线,一根数据线)。主板就是贴在机箱背面的板子了,最大块那个就是了。