Ⅰ redis源码解读:单线程的redis是如何实现高速缓存的
redis可能是最近几年最火的缓存数据库方案了,在各个高并发领域都有应用。
这篇文章,我们将从源代码的角度来分析一下,为何如此一个高性能,高应用的缓存,会是单线程的方案,当然一个方案的高性能,高并发是多方面的综合因素,其它的因素我们将在后续解读。后续分析主要以LINUX操作系统为基础,这也是redis应用最广的平台。
单线程最大的受限是什么?就是CPU,现在服务器一般已经是多CPU,而单线程只能使用到其中的一个核。
redis作为一个网络内存缓存数据库,在实现高性能时,主要有4个点。
1.网络高并发,高流量的数据处理。
一个异步,高效,且对CPU要求不高的网络模型,这个模型主要是由OS来提供的,目前在LINUX最主流使用的是EPOLL,这个网上介绍很多,主要是基于事件驱动的一个异步模型。
2.程序内部的合理构架,调用逻辑,内存管理。
redis在采用纯C实现时,整体调用逻辑很短,但在内存方面,适当的合并了一些对象和对齐,比如sds等,在底层使用了内存池,在不同情况下使用的不太一样。
但整体处理上没有NGINX的内池设计巧妙,当然二者不太一样,NGINX是基于请求释放的逻辑来设计的,因此针对请求,可以一次申请大块,分量使用,再最后统一释放。
3.数据复制的代价,不管是读取数据或是写入数据,一般都是需要有数据复制的过程。
数据复制其实就是一次内存,真正的代价是在于存在大VALUE,当value值长度超过16KB时,性能会开始下降。因为单线程的原因,如果存在一个超大VALUE,比如20MB,则会因为这个请求卡住整个线程,导致后续的请求进不来,虽然后面的请求是能快速处理的小请求。
4.redis中数据结构中算法的代价,有些结构在大数据量时,代价是很高的。
很多时间,大家忽略了算法的运算代码,因为像memcached等这类是完全的KV缓存,不存在什么算法,除了一个KEY的查找定位HASH算法。
而redis不一样,提供了不少高阶的数据对象,这些对象具有上层的一些算法能力,而这些能力是需要比如GEO模块。
Ⅱ 缓存问题之异步处理(微信小程序)
微信小程序里面的本地缓存
wx.setStorage(wx.setStorageSync)、wx.getStorage(wx.getStorageSync)、wx.clearStorage(wx.clearStorageSync)
localStorage :是永久存储,以用户维度隔离,同一台设备上,A 用户无法读取到 B 用户的数据。
在小程序中无 Sync 结尾的本地缓存中,都为 异步缓存
wx.setStorage(object)
参数object说明
控制台
表示储存成功
wx.getStorage(object)
示例
这个key值就是先前setStorage的命名key,证明指定获取那个缓存中的数据
wx.clearStorage(object)
清理本地数据缓存
将之前储存在Storage中的数据清空。适用于退出登录后登录信息的清除
wx.getStorageInfo(object)
异步获取当前storage的相关信息( 当前小程序里面所有的storage的储存信息 )
参数说明
执行结果
wx.removeStorage(OBJECT)
从本地缓存中异步移除指定 key值
获取当前data值时将报错undefined
执行结果
Ⅲ 微信小程序入门(七):缓存数据-单条数据
微信小程序的编写中,涉及到有些业务场景需要将数据缓存到本地,则微信小程序api提供了两个接口函数,
wx.setStorage可以将数据缓存在本地指定的key中,如果本地缓存已经存在指定的key,则会覆盖该key对应的内容,这是一个异步的接口,在调用时会涉及到成功,失败,完成三个状态,
与wx.setStorage唯一不同的就是wx.setStorageSync是同步进行的,所以不会涉及到成功,失败,完成等回调,但是在使用时需要使用try.......catch....来捕获异常;
现在编写一个将字符串缓存本地的例子
编译项目,点击缓存按钮:
现在改变缓存的内容,但是缓存的key保持不变
可以看到第二次的内容把第一次覆盖了。
将内容缓存到本地之后,将其从本地提取展示出来,则可是使用微信小程序api提供的两个接口:wx.getStorageInfo(Object object),wx.getStorageSync(string key),与缓存同样,读取缓存也分同步和异步;
我们将刚刚存储到本地的数据展示到页面上:
编译项目,点击按钮获取缓存数据并将其展示到页面上。
完成了本地数据的缓存,获取,则接下来就是关于缓存数据的清除,同样微信小程序api也提供了可使用的接口,
至此微信小程序本地保存数据就此结束!
Ⅳ 计算机网络问题,概念有点混。不要复制。谢谢啊
题主的第一个问题应该是异步传输和同步传输的区分吧?那么我先回答第一个!
先来理解一下他们存在的必要性吧。
在网络通信过程中,通信双方要交换数据,需要高度的协同工作。为了正确的解释信号,接收方必须确切地知道信号应当何时接收和处理,因此定时是至关重要的。在计算机网络中,定时的因素称为位同步。同步是要接收方按照发送方发送的每个位的起止时刻和速滚皮丛率来接收数据大樱,否则会产生误差。通常可以采用同步或异步的传输方式对位进行同步处理。
1. 异步传输(Asynchronous Transmission): 异步传输将比特分成小组进行传送,小组可以是8位的1个字符或更长。发送方可以在任何时刻发送这些比特组,而接收方从不知道它们会在什么时候到达。一个常见的例子是计算机键盘与主机的通信。按下一个字母键、数字键或特殊字符键,就发送一个8比特位的ASCII代码。键盘可以在任何时刻发送代码,这取决于用户的输入速度,内部的硬件必须能够在任何时刻接收一个键入的字符。
异步传输存在一个潜在的问题,即接收方并不知道数据会在什么时候到达。在它检测到数据并做出响应之前,第一个比特已经过去了。这就像有人出乎意料地从后面走上来跟你说话,而你没来得及反应过来,漏掉了最前面的几个词。因此,每次异步传输的信息都以一个起始位开头,它通知接收方数据已经到达了,这就给了接收方响应、接收和缓存数据比特的时间;在传输结束时,一个停止位表示该次传输信息的终止。按照惯例,空闲(没有传送数据)的线路实际携带着一个代表二进制1的信号,异步传输的开始位使信号变握绝成0,其他的比特位使信号随传输的数据信息而变化。最后,停止位使信号重新变回1,该信号一直保持到下一个开始位到达。例如在键盘上数字“1”,按照8比特位的扩展ASCII编码,将发送“00110001”,同时需要在8比特位的前面加一个起始位,后面一个停止位。
异步传输的实现比较容易,由于每个信息都加上了“同步”信息,因此计时的漂移不会产生大的积累,但却产生了较多的开销。在上面的例子,每8个比特要多传送两个比特,总的传输负载就增加25%。对于数据传输量很小的低速设备来说问题不大,但对于那些数据传输量很大的高速设备来说,25%的负载增值就相当严重了。因此,异步传输常用于低速设备。
2. 同步传输(Synchronous Transmission):同步传输的比特分组要大得多。它不是独立地发送每个字符,每个字符都有自己的开始位和停止位,而是把它们组合起来一起发送。我们将这些组合称为数据帧,或简称为帧。
数据帧的第一部分包含一组同步字符,它是一个独特的比特组合,类似于前面提到的起始位,用于通知接收方一个帧已经到达,但它同时还能确保接收方的采样速度和比特的到达速度保持一致,使收发双方进入同步。
帧的最后一部分是一个帧结束标记。与同步字符一样,它也是一个独特的比特串,类似于前面提到的停止位,用于表示在下一帧开始之前没有别的即将到达的数据了。
同步传输通常要比异步传输快速得多。接收方不必对每个字符进行开始和停止的操作。一旦检测到帧同步字符,它就在接下来的数据到达时接收它们。另外,同步传输的开销也比较少。例如,一个典型的帧可能有500字节(即4000比特)的数据,其中可能只包含100比特的开销。这时,增加的比特位使传输的比特总数增加2.5%,这与异步传输中25 %的增值要小得多。随着数据帧中实际数据比特位的增加,开销比特所占的百分比将相应地减少。但是,数据比特位越长,缓存数据所需要的缓冲区也越大,这就限制了一个帧的大小。另外,帧越大,它占据传输媒体的连续时间也越长。在极端的情况下,这将导致其他用户等得太久。
同步传输方式中发送方和接收方的时钟是统一的、字符与字符间的传输是同步无间隔的。
异步传输方式并不要求发送方和接收方的时钟完全一样,字符与字符间的传输是异步的。
同步与异步传输的区别
1,异步传输是面向字符的传输,而同步传输是面向比特的传输。
2,异步传输的单位是字符而同步传输的单位是桢。
3,异步传输通过字符起止的开始和停止码抓住再同步的机会,而同步传输则是以数据中抽取同步信息。
4,异步传输对时序的要求较低,同步传输往往通过特定的时钟线路协调时序。
5,异步传输相对于同步传输效率较低。
-----------------------我是优雅分割线--------------------
虚电路虚电路又称为虚连接或虚通道,虚电路交换是分组交换的两种传输方式中的一种。在通信和网络中,虚电路是由分组交换通信所提供的面向连接的通信服务。在两个节点或应用进程之间建立起一个逻辑上的连接或虚电路后,就可以在两个节点之间依次发送每一个分组,接受端收到分组的顺序必然与发送端的发送顺序一致,因此接受端无须负责在收集分组后重新进行排序。虚电路协议向高层协议隐藏了将数据分割成段,包或帧的过程。
信元交换又叫ATM(异步传输模式),是一种面向连接的快速分组交换技术,它是通过建立虚电路来进行数据传输的。
信元交换技术是一种快速分组交换技术,它结合了电路交换技术延迟小和分组交换技术灵活的优点。信元是固定长度的分组,ATM采用信元交换技术,其信元长度为53字节。信元头5字节,数据48字节。
交换技术方面,经历了:电路交换——>报文交换——>分组交换——>信元交换的过程。
在信元中包括CRC校验和,其生成公式为X^8+X^2+X+1,校验和只是对信元头进行校验。
ATDM信元传输采用异步时分复用(Asynchronous Time Division Multioles),又称统计复用(Statistic Multiptx)。信息源随机地产生信息,因为信元到达队列也是随机的。高速的业务信元来得十分频繁、集中,低速的业务信元来得很稀疏。这些信元都按顺序在队列中排队,然后按输出次序复用到传输线上。具有同样标志的信元在传输线上并不对应某个固定的时间间隙,也不是按周期出现的,信息和它在时域的位置之间没有关系,信息只是按信头中的标志来区分的。而在同步时分复用方式(如PCM复用方式)中,信息以它在一帧中的时间位置(时隙)来区分,一个时隙对应着一条信道,不需要另外的信息头来表示信息的身份。
VPI字段用于选择一条特定的虚通路,VCI字段在一条选定的虚通路上选择一条特定的虚电路。当进行VP交换时,是选择一条特定的虚通路。
若在交换过程中出现拥塞,该信息被记录在信元的PT中。
Ⅳ 1. 电商详情页系统架构介绍
电商详情页架构方案大概分为两种,第一种小型电商,使用页面静态化的方案;第二种大型电商,架构较为复杂,使用异步多级缓存 + nginx 数据本地化动态渲染的方案。
1. 页面静态化架构(全量页吵陪面静态化,适合小型电商网站)
电商详情页分为页面数据和页面模板两块,通过页面模板渲染的方式,把页面数据填充到模板中,生成最终的静态化 HTML 页面,推送到 nginx 服务器上面,前端商品详情页的请求直接通过 nginx 服务访问静态页面。
对于小型网站,页面很少,这种架构方式很实用,也非常简单。模板引擎可以使用 velocity 或者 freemarker 实现,通过页面数据管理的 cms 系统渲染页面。当页面数据或者页面模板春游出现变更扒碰销,重新部分或者全量渲染静态化页面。
整体页面静态化架构如下图所示:
2. 异步多级缓存 + nginx 数据本地化动态渲染的架构 (适合大型电商)
对比页面静态化架构,该架构方案在保证高并发、高可用的前提下,不用提前部分或者全量渲染静态化页面,页面数据和模板可以根据业务需求实时变更,由 nginx 渲染成 HTML 静态页面返回给前端展现。
整体架构思路如下图所示:
Ⅵ 异步传输以什么为单位
异步传输是以什么为单位的数据传输,同步传输是以什么为单位的数据
异步传输是数据传输的一种方式。由于数据一般是一位接一位串行传输的,例如在传送一串字符信息时,每个字符代码由7位二进制位组成。但在一串二进制位中,每个7位又从哪一个二进制位开始算起呢?异步传输时,在传送每个数据字符之前,先发送一个叫做开始位的二进制位。当接收端收到这一信号时,就知道相继送来7位二进制位是一个字符数据。在这以后,接着再给出1位或2位二进制位,称做结束位。接收端收到结束位后,表示一个数据字符传送结束。这样,在异步传输时,每个字符是分别同步的,即字符中的每个二进制位是同步的,但字符与字符之间的间隙长度是不固定的。
异步传输,英文名AsynchronousTransfer Mode,ATM,是实现B-ISDN的一项技术基础,是建立在电路交换和分组交换的基础上的快速分组交换技术。ATM的主要特点是面向连接;采用小的、固定长度的单元(53字节);取消链路的差错控制和流量控制等,这些措施提高了传输效率。ATM的突出优点是可以为每个虚连接提供相应的服务质量(QOS),可以有效地支持视、音频多媒体传输,包括语音、视频和数据等;另外,ATM可以实现局域网和广域网的平滑无缝连接。
异步传输一般以字符为单位,不论所采用的字符代码长度为多少位,在发送每一
异步传输
字符代码时,前面均加上一个“起”信号,其长度规定为1个码元,极性为“0”,即空号的极性;字符代码后面均加上一个“止”信号,其长度为1或者2个码元,极性皆为“1”,即与信号极性相同,加上起、止信号的作用就是为了能区分串行传输的“字符”,也就是实现了串行传输收、发双方码组或字符的同步。
异步传输的单位是
异步传输:传输的数据郸字符为单位,而且字符间的发送时搜旅间是异步的,也就是说,后一个字符与前一个字符的发送时间无关。
同步传输:一种以报文和分组为单位进行传输的方式。由于报文可包含许多字符,因此可大大减少用于同枣磨步的信息量,提高传输速率。目前在计算机网络中大多采用此种传输方式。
什么是同步传输,什么是异步传输
同步传输是一种以数据块为传输单位的数据传输方式,该方式下数据块与数据块之间的时间间隔是固定的,必须严格地规定它们的时间关系。每个数据块的头部和尾部都要附加一个特殊的字符或比特序列,标记一个数据块的开始和结束,一般还要附加一个校验序列,以便对数据块进行差错控制。
异步传输(Asynchronous Tran *** ission): 异步传输将比特分成小组进行传送,小组可以是8位的1个字符或更长。发送方可以在任何时刻发送这些比特组,而接收方从不知道它们会在什么时候到达。一个常见的例子是计算机键盘与主机的通信。按下一个字母键、数字键或特殊字符键,就发送一个8比特位的ASCII代码。键盘可以在任何时刻发送代码,这取决于用户的输入速度,内部的硬件必须能够在任何时刻接收一个键入的字符。
请解释同步传输和异步传输的概念,并指明两者的区别
同步传输是一种以数据块为传输单位的数据传输方式,该方式下数据块与凳漏斗数据块之间的时间间隔是固定的,必须严格地规定它们的时间关系。每个数据块的头部和尾部都要附加一个特殊的字符或比特序列,标记一个数据块的开始和结束,一般还要附加一个校验序列,以便对数据块进行差错控制。
同步传输和异步传输有什么区别
同步与异步传输的区别
1,异步传输是面向字符的传输,而同步传输是面向比特的传输。
2,异步传输的单位是字符而同步传输的单位是桢。
3,异步传输通过字符起止的开始和停止码抓住再同步的机会,而同步传输则是以数据中抽取同步信息。
4,异步传输对时序的要求较低,同步传输往往通过特定的时钟线路协调时序。
5,异步传输相对于同步传输效率较低。
同步传输和异步传输有什么区别
慢慢的看一下,应该容易理解.
在网络通信过程中,通信双方要交换数据,需要高度的协同工作。为了正确的解释信号,接收方必须确切地知道信号应当何时接收和处理,因此定时是至关重要的。在计算机网络中,定时的因素称为位同步。同步是要接收方按照发送方发送的每个位的起止时刻和速率来接收数据,否则会产生误差。通常可以采用同步或异步的传输方式对位进行同步处理。
1. 异步传输(Asynchronous Tran *** ission): 异步传输将比特分成小组进行传送,小组可以是8位的1个字符或更长。发送方可以在任何时刻发送这些比特组,而接收方从不知道它们会在什么时候到达。一个常见的例子是计算机键盘与主机的通信。按下一个字母键、数字键或特殊字符键,就发送一个8比特位的ASCII代码。键盘可以在任何时刻发送代码,这取决于用户的输入速度,内部的硬件必须能够在任何时刻接收一个键入的字符。
异步传输存在一个潜在的问题,即接收方并不知道数据会在什么时候到达。在它检测到数据并做出响应之前,第一个比特已经过去了。这就像有人出乎意料地从后面走上来跟你说话,而你没来得及反应过来,漏掉了最前面的几个词。因此,每次异步传输的信息都以一个起始位开头,它通知接收方数据已经到达了,这就给了接收方响应、接收和缓存数据比特的时间;在传输结束时,一个停止位表示该次传输信息的终止。按照惯例,空闲(没有传送数据)的线路实际携带着一个代表二进制1的信号,异步传输的开始位使信号变成0,其他的比特位使信号随传输的数据信息而变化。最后,停止位使信号重新变回1,该信号一直保持到下一个开始位到达。例如在键盘上数字“1”,按照8比特位的扩展ASCII编码,将发送“00110001”,同时需要在8比特位的前面加一个起始位,后面一个停止位。
异步传输的实现比较容易,由于每个信息都加上了“同步”信息,因此计时的漂移不会产生大的积累,但却产生了较多的开销。在上面的例子,每8个比特要多传送两个比特,总的传输负载就增加25%。对于数据传输量很小的低速设备来说问题不大,但对于那些数据传输量很大的高速设备来说,25%的负载增值就相当严重了。因此,异步传输常用于低速设备。
2. 同步传输(Synchronous Tran *** ission):同步传输的比特分组要大得多。它不是独立地发送每个字符,每个字符都有自己的开始位和停止位,而是把它们组合起来一起发送。我们将这些组合称为数据帧,或简称为帧。
数据帧的第一部分包含一组同步字符,它是一个独特的比特组合,类似于前面提到的起始位,用于通知接收方一个帧已经到达,但它同时还能确保接收方的采样速度和比特的到达速度保持一致,使收发双方进入同步。
帧的最后一部分是一个帧结束标记。与同步字符一样,它也是一个独特的比特串,类似于前面提到的停止位,用于表示在下一帧开始之前没有别的即将到达的数据了。
同步传输通常要比异步传输快速得多。接收方不必对每个字符进行开始和停止的操作。一旦检测到帧同步字符,它就在接下来的数据到达时接收它们。另外,同步传输的开销也比较少。例如,一个典型的帧可能有500字节(即4000比特)的数据,其中可能只包含100比特的开销。这时,增加的比特位使传输的比特总数增加2.5%,这与异步传输中25 %的增值要小得多。随着数据帧中实际数据比特位的增加,开销比特所占的百分比将相应地减少。但是,数据比特位越长,缓存数据所需要的缓冲区也越大,这就限制了一个帧的大小。另外,帧越大,它占据传输媒体的连续时间也越长。在极端的情况下,这将导致其他用户等得太久。
同步传输方式中发......
同步传输和异步传输有什么区别?
慢慢的看一下,应该容易理解.
在网络通信过程中,通信双方要交换数据,需要高度的协同工作。为了正确的解释信号,接收方必须确切地知道信号应当何时接收和处理,因此定时是至关重要的。在计算机网络中,定时的因素称为位同步。同步是要接收方按照发送方发送的每个位的起止时刻和速率来接收数据,否则会产生误差。通常可以采用同步或异步的传输方式对位进行同步处理。
1. 异步传输(Asynchronous Tran *** ission): 异步传输将比特分成小组进行传送,小组可以是8位的1个字符或更长。发送方可以在任何时刻发送这些比特组,而接收方从不知道它们会在什么时候到达。一个常见的例子是计算机键盘与主机的通信。按下一个字母键、数字键或特殊字符键,就发送一个8比特位的ASCII代码。键盘可以在任何时刻发送代码,这取决于用户的输入速度,内部的硬件必须能够在任何时刻接收一个键入的字符。
异步传输存在一个潜在的问题,即接收方并不知道数据会在什么时候到达。在它检测到数据并做出响应之前,第一个比特已经过去了。这就像有人出乎意料地从后面走上来跟你说话,而你没来得及反应过来,漏掉了最前面的几个词。因此,每次异步传输的信息都以一个起始位开头,它通知接收方数据已经到达了,这就给了接收方响应、接收和缓存数据比特的时间;在传输结束时,一个停止位表示该次传输信息的终止。按照惯例,空闲(没有传送数据)的线路实际携带着一个代表二进制1的信号,异步传输的开始位使信号变成0,其他的比特位使信号随传输的数据信息而变化。最后,停止位使信号重新变回1,该信号一直保持到下一个开始位到达。例如在键盘上数字“1”,按照8比特位的扩展ASCII编码,将发送“00110001”,同时需要在8比特位的前面加一个起始位,后面一个停止位。
异步传输的实现比较容易,由于每个信息都加上了“同步”信息,因此计时的漂移不会产生大的积累,但却产生了较多的开销。在上面的例子,每8个比特要多传送两个比特,总的传输负载就增加25%。对于数据传输量很小的低速设备来说问题不大,但对于那些数据传输量很大的高速设备来说,25%的负载增值就相当严重了。因此,异步传输常用于低速设备。
2. 同步传输(Synchronous Tran *** ission):同步传输的比特分组要大得多。它不是独立地发送每个字符,每个字符都有自己的开始位和停止位,而是把它们组合起来一起发送。我们将这些组合称为数据帧,或简称为帧。
数据帧的第一部分包含一组同步字符,它是一个独特的比特组合,类似于前面提到的起始位,用于通知接收方一个帧已经到达,但它同时还能确保接收方的采样速度和比特的到达速度保持一致,使收发双方进入同步。
帧的最后一部分是一个帧结束标记。与同步字符一样,它也是一个独特的比特串,类似于前面提到的停止位,用于表示在下一帧开始之前没有别的即将到达的数据了。
同步传输通常要比异步传输快速得多。接收方不必对每个字符进行开始和停止的操作。一旦检测到帧同步字符,它就在接下来的数据到达时接收它们。另外,同步传输的开销也比较少。例如,一个典型的帧可能有500字节(即4000比特)的数据,其中可能只包含100比特的开销。这时,增加的比特位使传输的比特总数增加2.5%,这与异步传输中25 %的增值要小得多。随着数据帧中实际数据比特位的增加,开销比特所占的百分比将相应地减少。但是,数据比特位越长,缓存数据所需要的缓冲区也越大,这就限制了一个帧的大小。另外,帧越大,它占据传输媒体的连续时间也越长。在极端的情况下,这将导致其他用户等得太久。
同步传输方式中发送方和接收方的时钟是......
什么叫异步提交
异步传输是面向字符的传输,它的单位是字符;而同步传输是面向比特的传输,它的单位是桢,它传输的时候要求接受方和发送方的时钟是保持一致的。 具体来说,异步传输是将比特分成小组来进行传送。一般每个小组是一个8位字符,在每个小组的头部和尾部都有一个开始位和一个停止位,它在传送过程中接收方和发送方的时钟不要求一致,也就是说,发送方可以在任何时刻发送这些小组,而接收方并不知道它什么时候到达。一个最明显的例子就是计算机键盘和主机的通信,按下一个键的同时向主机发送一个8比特位的ASCII代 码,键盘可以在任何时刻发送代码,这取决于用户的输入速度,内部的硬件必须能够在任何时刻接收一个键入的字符。这是一个典型的异步传输过程。异步传输存在 一个潜在的问题,即接收方并不知道数据会在什么时候到达。在它检测到数据并做出响应之前,第一个比特已经过去了。这就像有人出乎意料地从后面走上来跟你说 话,而你没来得及反应过来,漏掉了最前面的几个词。因此,每次异步传输的信息都以一个起始位开头,它通知接收方数据已经到达了,这就给了接收方响应、接收 和缓存数据比特的时间;在传输结束时,一个停止位表示该次传输信息的终止。按照惯例,空闲(没有传送数据)的线路实际携带着一个代表二进制1的信号。步传输的开始位使信号变成0,其他的比特位使信号随传输的数据信息而变化。最后,停止位使信号重新变回1,该信号一直保持到下一个开始位到达。例如在键盘上数字“1”,按照8比特位的扩展ASCII编码,将发送“00110001”,同时需要在8比特位的前面加一个起始位,后面一个停止位。
异步传输和同步传输的区别?
收发两端对时间的精确度要求高低而已。同步要求高,异步没有同步要求那么高。
异步通信”是一种很常用的通信方式。异步通信在发送字符时,所发送的字符之间的时间间隔可以是任意的。当然,接收端必须时刻做好接收的准备(如果接收端主机的电源都没有加上,那么发送端发送字符就没有意义,因为接收端根本无法接收)。发送端可以在任意时刻开始发送字符,因此必须在每一个字符的开始和结束的地方加上标志,即加上开始位和停止位,以便使接收端能够正确地将禒一个字符接收下来。异步通信的好处是通信设备简单、便宜,但传输效率较低(因为开始位和停止位的开销所占比例较大)。
异步通信也可以是以帧作为发送的单位。接收端必须随时做好接收帧的准备。这是,帧的首部必须设有一些特殊的比特组合,使得接收端能够找出一帧的开始。这也称为帧定界。帧定界还包含确定帧的结束位置。这有两种方法。一种是在帧的尾部设有某种特殊的比特组合来标志帧的结束。或者在帧首部中设有帧长度的字段。需要注意的是,在异步发送帧时,并不是说发送端对帧中的每一个字符都必须加上开始位和停止位后再发送出去,而是说,发送端可以在任意时间发送一个帧,而帧与帧之间的时间间隔也可以是任意的。在一帧中的所有比特是连续发送的。发送端不需要在发送一帧之前和接收端进行协调(不需要先进行比特同步)。 每个字符开始发送的时间可以是任意的t0 0 1 1 0 1 1 0起始位结束位t每个帧开始发送的时间可以是任意的以字符为单位发送以帧为单位发送帧开始帧结束
“同步通信”的通信双方必须先建立同步,即双方的时钟要调整到同一个频率。收发双方不停地发送和接收连续的同步比特流。但这时还有两种不同的同步方式。一种是使用全网同步,用一个非常精确的主时钟对全网所有结点上的时钟进行同步。另一种是使用准同步,各结点的时钟之间允许有微小的误差,然后采用其他措施实现同步传输。
Ⅶ uni-app数据缓存
首先uni-app提供的数据缓存Storage分四种模式:
一种是set(用于存储数据)、一种是get(用于获取数据)、一种是remove
(用于移除指定数据)、最后一种是clear(清除缓存数据)
然后区分:带Sync字段是同步的,没有带的是异步。
查看缓存数据的界面面板:
谷歌浏览器--开发者工具--Application--Storage--Local Storage
上面这个面板就是进行查看数据缓存相关信息的。
下面进行异步数据缓存展示,就是没带Sync字段的,顺序:先有set模式-->get模式-->remove模式-->clear模式(一般很少用)
首先准备三个按钮,分别对应上面的三个功能: 存储数据、获取数据、移除数据
方法定义:
功能实现:
(1)存储数据
uni.setStorage(OBJECT)
这个对象里面传入一个key和一个data,你可以理解为键值对的形式,然后一个回调函数success
当我们点击“存储数据”的这个按钮时,我们来到面板就会看到数据已经缓存成功呈现在面板上。而key为键,data为值。
(2)获取数据
uni.getStorage() 用于获取缓存的数据
这里的key对应setStorage的key,然后再success回调函数里面接受res返回数据的结果,控制台输出。
(3)移除数据
一般用于移除整个数据。
回到数据缓存的面板查看,发现key为"student"的字段已经完整移除。
带Sync的,不需要指定特定的键(key)和值(data)。
以setStorageSync(key,value)为例子,同步可以直接接受参数,第一个参时就是key键,第二个参数为value值。
将上面的例子改成同步,效果是一样的。
数据缓存:
获取数据:
Ⅷ 为什么redis在java是同步缓存,而在nodejs是异步缓存
JAVASCRIPT中是没有多线程的,所有涉及外部IO的全部都是回调。
这样的好处是JS天然就是一个不会阻塞的系统,这也是NODEJS现在作为前后端黏合层的原因。
Ⅸ 微信小程序开发——本地缓存
本地缓存是指微信小程序存储在当前设备空间里地数据。在官方文档说明中,其所有的数据存储上限为10MB即单个小程序的存储空间上限为10MB。==在使用过程中用户使用本地缓存可以存储一些非重要性的生产操作,例如让小程序再次打开能快速渲染页面,减少用户等待时间。
小程序提供了读写删本地缓存的方法:
关于同步缓存和异步缓存的区别
异步与同步的区别是,异步不会阻塞当前任务,同步缓存直到同步方法处理完才能继续往下执行。
写入本地缓存
根据key读取本地缓存
根据key移除本地缓存
清除本地所有缓存
最后,还要注意的一点是如果写入了同样key的缓存数据,后写的会覆盖了前者,因此需要我们注意一下