当前位置:首页 » 硬盘大全 » 总线12缓存是什么意思
扩展阅读
webinf下怎么引入js 2023-08-31 21:54:13
堡垒机怎么打开web 2023-08-31 21:54:11

总线12缓存是什么意思

发布时间: 2023-05-27 21:41:06

㈠ 什么是缓存数据缓存是什么意思

缓存(Cache memory)是硬盘控制器上的一块内存芯片,具有极快的存取速度,它是硬盘内部存储和外界接口之间的缓冲器。
由于硬盘的内部数据传输速度和外界接口传输速度不同,缓存在其中起到一个缓冲的作用。
缓存的大小与速度是直接关系到硬盘的传输速度的重要因素,能够大幅度地提高硬盘整体性能。
当硬盘存取零碎数据时需要不断地在硬盘与内存之间交换数据,如果有大缓存,则可以将那些零碎数据暂存在缓存中,减小外系统的负荷,也提高了数据的传输速度。

㈡ cpu的参数:主频\外频\总线\L2缓存\\都是什么意思,怎么理解它

1、主频

在电子技术中,脉冲信号是一个按一定电压幅度,一定时间间隔连续发出的脉冲信号。脉冲信号之间的时间间隔,称为周期;而将在单位时间(如 1 秒)内所产生的脉冲个数称为频率。频率是描述周期性循环信号(包括脉冲信号)在单位时间内所出现的脉冲数量多少的计量名称;频率的标准计量单位是 Hz(赫)。电脑中的系统时钟,就是一个典型的频率相当精确和稳定的脉冲信号发生器。频率在数学表达式中用“f”表示,其相应的单位有:

Hz(赫)
kHz(千赫)
MHz (兆赫)
GHz(吉赫)

其中:1GHz=1000MHz
1MHz=1000kHz
1KHz=1000Hz

计算脉冲信号周期的时间单位及相应的换算关系是:

s(秒)
ms(毫秒)
μs(微秒)
ns(纳秒)

其中:1s=1000ms
1ms=1000μs
1μs=1000ns

CPU 的主频,即 CPU 内核工作的时钟频率(CPU Clock Speed)。通常所说的某某 CPU 是多少兆赫的,而这个多少兆赫,就是“CPU 的主频”。很多人认为 CPU 的主频就是其运行速度,其实不然。CPU 的主频表示在 CPU 内数字脉冲信号震荡的速度,与 CPU 实际的运算能力并没有直接关系。主频和实际的运算速度存在一定的关系,但目前还没有一个确定的公式能够定量两者的数值关系,因为 CPU 的运算速度还要看 CPU 的流水线的各方面的性能指标(缓存、指令集,CPU 的位数,等等)。由于主频并不直接代表运算速度,所以在一定情况下,很可能会出现主频较高的 CPU 实际运算速度较低的现象。比如 AMD 公司的 AthlonXP 系列 CPU,大多都能以较低的主频,达到英特尔公司的 Pentium 4 系列 CPU 较高主频的 CPU 的性能。所以,Athlon XP 系列 CPU 才以 PR 值的方式来命名。因此,主频仅是 CPU 性能表现的一个方面,而不代表 CPU 的整体性能。

CPU 的主频并不代表 CPU 的速度,但提高主频对于提高 CPU 运算速度却是至关重要的。举个例子来说,假设某个 CPU 在一个时钟周期内执行一条运算指令,那么当 CPU 运行在 100MHz 主频时,将比它运行在 50MHz 主频时速度快一倍。因为 100MHz 的时钟周期比 50MHz 的时钟周期占用时间减少了一半,也就是工作在 100MHz 主频的 CPU 执行一条运算指令,所需时间仅为 10ns,比工作在 50MHz 主频时的 20ns 缩短了一半,自然运算速度也就快了一倍。只不过电脑的整体运行速度不仅取决于 CPU 运算速度,还与其它各分系统的运行情况有关,只有在提高主频的同时,各分系统运行速度和各分系统之间的数据传输速度都能得到提高时,电脑整体的运行速度,才能真正得到提高。

提高 CPU 工作主频,主要受到生产工艺的限制。由于 CPU 是在半导体硅片上制造的,在硅片上的元件之间需要导线进行联接,由于在高频状态下要求导线越细越短越好,这样才能减小导线分布电容等杂散干扰以保证 CPU 运算正确。因此,制造工艺的限制,是 CPU 主频发展的最大障碍之一。
2、前端总线

总线是将信息以一个或多个源部件传送到一个或多个目的部件的一组传输线。通俗的说,就是多个部件间的公共连线,用于在各个部件之间传输信息。人们常常以 MHz 表示的速度来描述总线频率。总线的种类很多,前端总线的英文名字是 Front Side Bus,通常用 FSB 表示,是将 CPU 连接到北桥芯片的总线。计算机的前端总线频率是由 CPU 和北桥芯片共同决定的。

北桥芯片(将在以后的主板专题中做详解)负责联系内存、显卡等数据吞吐量最大的部件,并和南桥芯片连接。CPU 就是通过前端总线(FSB)连接到北桥芯片,进而通过北桥芯片和内存、显卡交换数据。前端总线是 CPU 和外界交换数据的最主要通道。因此,前端总线的数据传输能力,对计算机整体性能作用很大。如果没有足够快的前端总线,再强的 CPU 也不能明显提高计算机整体速度。数据传输最大带宽,取决于所有同时传输的数据的宽度和传输频率,即数据带宽=(总线频率×数据位宽)÷8。目前 PC 机上所能达到的前端总线频率,有 266MHz、333MHz、400MHz、533MHz、800MHz 几种。前端总线频率越大,代表着 CPU 与北桥芯片之间的数据传输能力越大,更能充分发挥出 CPU 的功能。现在的 CPU 技术发展很快,运算速度提高很快,而足够大的前端总线,可以保障有足够的数据供给给 CPU,较低的前端总线,将无法供给足够的数据给 CPU,这样就限制了 CPU 性能得发挥,成为系统瓶颈。

外频与前端总线频率的区别:前端总线的速度,指的是 CPU 和北桥芯片间总线的速度,更实质性的表示了 CPU 和外界数据传输的速度。而外频的概念,是建立在数字脉冲信号震荡速度基础之上的,也就是说,100MHz 外频,特指数字脉冲信号在每秒钟震荡一万万次,它更多的影响了 PCI 及其他总线的频率。之所以前端总线与外频这两个概念容易混淆,主要的原因是在以前的很长一段时间里(主要是在 Pentium 4 出现之前和刚出现 Pentium 4 时),前端总线频率与外频是相同的。因此,往往直接称前端总线为外频,最终造成这样的误会。随着计算机技术的发展,人们发现前端总线频率需要高于外频,因此采用了 QDR(Quad Date Rate)技术,或者其他类似的技术实现这个目的。这些技术的原理,类似于 AGP 的 2X 或者 4X,它们使得前端总线的频率成为外频的 2 倍、4 倍甚至更高。从此之后,前端总线和外频的区别,才开始被人们重视起来。此外,在前端总线中,比较特殊的是 AMD 64 的 HyperTransport。

HyperTransport 最初是 AMD 在1999年提出的一种总线技术,随着 AMD 64 位平台的发布和推广,HyperTransport 应用越来越广泛,也越来越被人们所熟知。

HyperTransport 是一种为主板上的集成电路互连而设计的端到端总线技术,它可以在内存控制器、磁盘控制器以及 PCI 总线控制器之间,提供更高的数据传输带宽。HyperTransport 采用类似 DDR 的工作方式,在 400MHz 工作频率下,相当于 800MHz 的传输频率。此外 HyperTransport 是在同一个总线中模拟出两个独立数据链进行点对点数据双向传输,因此理论上最大传输速率可以视为翻倍,具有 4、8、16 及 32 位频宽的高速序列连接功能。在 400MHz 下,双向 4bit 模式的总线带宽为 0.8GB/sec,双向 8bit 模式的总线带宽为 1.6GB/sec;800MHz 下,双向 8bit 模式的总线带宽为 3.2GB/sec,双向 16bit 模式的总线带宽为 6.4GB/sec,双向 32bit 模式的总线带宽为 12.8GB/sec。以 400MHz 下,双向 4bit 模式为例,带宽计算方法为 400MHz ×2×2×4bit÷8=0.8GB/sec。

HyperTransport 还有一大特色,就是当数据位宽并非 32bit 时,可以分批传输数据来达到与 32bit 相同的效果。例如 16bit 的数据就可以分两批传输,8bit 的数据就可以分四批传输。这种数据分包传输的方法,给了 HyperTransport 在应用上更大的弹性空间。

2004 年 2 月,HyperTransport 技术联盟(Hyper Transport Technology Consortium)又正式发布了HyperTransport 2.0 规格,由于采用了 Dual-data 技术,使频率成功提升到了 1.0GHz、1.2GHz 和 1.4GHz,数据传输带宽由每通道 1.6Gb/sec 提升到了 2.0GB/sec、2.4Gb/sec 和 2.8GB/sec,最大带宽由原来的 12.8Gb/sec 提升到了 22.4GB/sec。

当 HyperTransport 应用于内存控制器时,其实也就类似于传统的前端总线(FSB,Front Side Bus),因此对于将 HyperTransport 技术用于内存控制器的 CPU 来说,其 HyperTransport 的频率也就相当于前端总线的频率。
10、外频

外频是 CPU 乃至整个计算机系统的基准频率,单位是 MHz(兆赫兹)。在早期的电脑中,内存与主板之间的同步运行的速度等于外频。在这种方式下,可以理解为 CPU 外频直接与内存相连通,实现两者间的同步运行状态。对于目前的计算机系统来说,两者完全可以不相同。但是外频的意义仍然存在,计算机系统中大多数的频率都是在外频的基础上,乘以一定的倍数来实现,这个倍数可以是大于 1 的,也可以是小于 1 的。

说到处理器外频,就要提到与之密切相关的两个概念:倍频与主频,主频就是 CPU 的时钟频率;倍频即主频与外频之比的倍数。主频、外频、倍频,其关系式:主频=外频×倍频。

在 486 之前,CPU 的主频还处于一个较低的阶段,CPU 的主频一般都等于外频。而在 486 出现以后,由于 CPU 工作频率不断提高,而 PC 机的一些其他设备(如插卡、硬盘等)却受到工艺的限制,不能承受更高的频率,因而限制了 CPU 频率的进一步提高。因此出现了倍频技术,该技术能够使 CPU 内部工作频率变为外部频率的倍数,从而通过提升倍频而达到提升主频的目的。倍频技术,就是使外部设备可以工作在一个较低外频上,而 CPU 主频是外频的倍数。

在 Pentium 时代,CPU 的外频一般是 60/66MHz,从 Pentium Ⅱ 350 开始,CPU 外频提高到 100MHz,目前 CPU 外频已经达到了 200MHz。由于正常情况下,外频和内存总线频率相同,所以当 CPU 外频提高后,与内存之间的交换速度也相应得到了提高,对提高电脑整体运行速度影响较大。

外频与前端总线(FSB)频率,很容易被混为一谈。前端总线的速度,指的是 CPU 和北桥芯片间总线的速度,更实质性的表示了 CPU 和外界数据传输的速度。而外频的概念,是建立在数字脉冲信号震荡速度基础之上的,也就是说,100MHz 外频特指数字脉冲信号在每秒钟震荡一万万次,它更多的影响了 PCI 及其他总线的频率。之所以前端总线与外频这两个概念容易混淆,主要的原因,是在以前的很长一段时间里(主要是在 Pentium 4 出现之前和刚出现 Pentium 4 时),前端总线频率与外频是相同的,因此往往直接称前端总线为外频,最终造成这样的误会。随着计算机技术的发展,人们发现前端总线频率需要高于外频,因此采用了 QDR(Quad Date Rate)技术,或者其他类似的技术实现这个目的。这些技术的原理类似于 AGP 的 2X 或者 4X,它们使得前端总线的频率成为外频的 2 倍、4 倍甚至更高,从此之后,前端总线和外频的区别,才开始被人们重视起来。

3、倍频

CPU 的倍频,全称是倍频系数。CPU 的核心工作频率与外频之间,存在着一个比值关系,这个比值就是倍频系数,简称倍频。理论上,倍频是从 1.5 一直到无限的。但需要注意的是,倍频是以 0.5 为一个间隔单位。外频与倍频相乘,就是主频。所以,其中任何一项提高,都可以使 CPU 的主频上升。

原先并没有倍频概念,CPU 的主频和系统总线的速度是一样的。但随着 CPU 的速度越来越快,倍频技术也就应运而生。它可使系统总线工作在相对较低的频率上,而 CPU 速度可以通过倍频来无限提升。那么 CPU 主频的计算方式,就变为:主频 = 外频 x 倍频。也就是,倍频是指 CPU 和系统总线之间相差的倍数,当外频不变时,提高倍频,CPU 主频也就越高。
13、二级缓存容量

CPU 缓存(Cache Memoney)是位于 CPU 与内存之间的临时存储器。它的容量比内存小,但交换速度更快。缓存中的数据,只是内存数据中的一小部分,但这一小部分是短时间内 CPU 即将访问的,当 CPU 调用大量数据时,就可避开内存直接从缓存中调用,从而加快读取速度。由此可见,在 CPU 中加入缓存,是一种高效的解决方案。这样,整个内存储器(缓存+内存)就变成了既有缓存的高速度,又有内存的大容量的存储系统了。缓存对 CPU 的性能影响很大。主要是因为 CPU 的数据交换顺序和 CPU 与缓存间的带宽引起的。

缓存的工作原理,是当 CPU 要读取一个数据时,首先从缓存中查找,如果找到,就立即读取并送给 CPU 处理;如果没有找到,就用相对慢的速度从内存中读取并送给 CPU 处理,同时把这个数据所在的数据块调入缓存中,可以使得以后对整块数据的读取都从缓存中进行,不必再调用内存。

正是这样的读取机制,使 CPU 读取缓存的命中率非常高(大多数 CPU 可达 90% 左右),也就是说,CPU 下一次要读取的数据 90% 都在缓存中,只有大约 10% 需要从内存读取。这就大大节省了 CPU 直接读取内存的时间,也使 CPU 读取数据时基本无需等待。总的来说,CPU 读取数据的顺序,是先缓存,后内存。

最早先的 CPU 缓存是个整体的,而且容量很低,英特尔公司从 Pentium 时代开始,把缓存进行了分类。当时集成在 CPU 内核中的缓存已不足以满足 CPU 的需求,而制造工艺上的限制,又不能大幅度提高缓存的容量。因此出现了集成在与 CPU 同一块电路板上或主板上的缓存,此时,就把 CPU 内核集成的缓存,称为一级缓存。而外部的称为二级缓存。一级缓存中,还分数据缓存(Data Cache,D-Cache)和指令缓存(Instruction Cache,I-Cache)。二者分别用来存放数据和执行这些数据的指令,而且两者可以同时被 CPU 访问,减少了争用 Cache 所造成的冲突,提高了处理器的效能。英特尔公司在推出 Pentium 4 处理器时,还新增了一种一级追踪缓存,容量为 12KB。

随着 CPU 制造工艺的发展,二级缓存也能轻易的集成在 CPU 内核中,容量也在逐年提升。现在再用集成在 CPU 内部与否来定义一、二级缓存,已不确切。而且随着二级缓存被集成入 CPU 内核中,以往二级缓存与 CPU 大差距分频的情况也被改变,此时其以相同于主频的速度工作,可以为 CPU 提供更高的传输速度。

二级缓存是 CPU 性能表现的关键之一。在 CPU 核心不变的情况下,增加二级缓存容量,能使性能大幅度提高。而同一核心的 CPU 高低端之分,往往也是在二级缓存上有差异。由此可见,二级缓存对于 CPU 的重要性。

CPU 在缓存中找到有用的数据被称为“命中”,当缓存中没有 CPU 所需的数据时(这时称为未命中),CPU 才访问内存。从理论上讲,在一颗拥有二级缓存的 CPU 中,读取一级缓存的命中率为 80%。也就是说,CPU 一级缓存中找到的有用数据,占数据总量的 80%,剩下的 20% 从二级缓存中读取。由于不能准确预测将要执行的数据,读取二级缓存的命中率也在 80% 左右(从二级缓存读到有用的数据占总数据的 16%)。那么,还有的数据就不得不从内存调用,但这已经是一个相当小的比例了。目前的较高端的 CPU 中,还会带有三级缓存,它是为读取二级缓存后未命中的数据设计的—种缓存,在拥有三级缓存的 CPU 中,只有约 5% 的数据需要从内存中调用,这进一步提高了 CPU 的效率。

为了保证 CPU 访问时有较高的命中率,缓存中的内容应该按一定的算法替换。一种较常用的算法,是“最近最少使用算法”(LRU 算法),它是将最近一段时间内最少被访问过的行淘汰出局。因此,需要为每行设置一个计数器,LRU 算法是把命中行的计数器清零,其他各行计数器加 1。当需要替换时,淘汰行计数器计数值最大的数据行出局。这是一种高效、科学的算法。其计数器清零过程,可以把一些频繁调用后再不需要的数据淘汰出缓存,提高缓存的利用率。

CPU 产品中,一级缓存的容量基本在 4KB 到 64KB 之间,二级缓存的容量则分为 128KB、256KB、512KB、1MB、2MB 等。一级缓存容量,各产品之间相差不大,而二级缓存容量,则是提高 CPU 性能的关键。二级缓存容量的提升,是由 CPU 制造工艺所决定的,容量增大必然导致 CPU 内部晶体管数的增加,要在有限的 CPU 面积上集成更大的缓存,对制造工艺的要求也就越高。

㈢ CPU的缓存L1,L2,L3都是什么意思..

缓存大小也是CPU的重要指标之一,而且缓存的结构和大小对CPU速度的影响非常大,CPU内缓存的运行频率极高,一般是和处理器同频运作,工作效率远远大于系统内存和硬盘。实际工作时,CPU往往需要重复读取同样的数据块,而缓存容量的增大,可以大幅度提升CPU内部读取数据的命中率,而不用再到内存或者硬盘上寻找,以此提高系统性能。但是由于CPU芯片面积和成本的因素来考虑,缓存都很小。 L1 Cache(一级缓存)是CPU第一层高速缓存,分为数据缓存和指令缓存。内置的L1高速缓存的容量和结构对CPU的性能影响较大,不过高速缓冲存储器均由静态RAM组成,结构较复杂,在CPU管芯面积不能太大的情况下,L1级高速缓存的容量不可能做得太大。一般服务器CPU的L1缓存的容量通常在32—256KB。 L2 Cache(二级缓存)是CPU的第二层高速缓存,分内部和外部两种芯片。内部的芯片二级缓存运行速度与主频相同,而外部的二级缓存则只有主频的一半。L2高速缓存容量也会影响CPU的性能,原则是越大越好,现在家庭用CPU容量最大的是512KB,而服务器和工作站上用CPU的L2高速缓存更高达256-1MB,有的高达2MB或者3MB。 L3 Cache(三级缓存),分为两种,早期的是外置,现在的都是内置的。而它的实际作用即是,L3缓存的应用可以进一步降低内存延迟,同时提升大数据量计算时处理器的性能。降低内存延迟和提升大数据量计算能力对游戏都很有帮助。而在服务器领域增加L3缓存在性能方面仍然有显着的提升。比方具有较大L3缓存的配置利用物理内存会更有效,故它比较慢的磁盘I/O子系统可以处理更多的数据请求。具有较大L3缓存的处理器提供更有效的文件系统缓存行为及较短消息和处理器队列长度。 其实最早的L3缓存被应用在AMD发布的K6-III处理器上,当时的L3缓存受限于制造工艺,并没有被集成进芯片内部,而是集成在主板上。在只能够和系统总线频率同步的L3缓存同主内存其实差不了多少。后来使用L3缓存的是英特尔为服务器市场所推出的Itanium处理器。接着就是P4EE和至强MP。Intel还打算推出一款9MB L3缓存的Itanium2处理器,和以后24MB L3缓存的双核心Itanium2处理器。 但基本上L3缓存对处理器的性能提高显得不是很重要,比方配备1MB L3缓存的Xeon MP处理器却仍然不是Opteron的对手,由此可见前端总线的增加,要比缓存增加带来更有效的性能提升。

㈣ 什么是L1缓存啊什么是L2缓存啊

二级缓存是CPU性能的体现,像以前的P4的CPU,二级缓存都为1M,现在双核心的为2M,之所有INTEL的CPU比AMD的CPU在制图,处理数据方面快得多的原因也正在此,AMD的二级缓存基本上只有INTEL的一半。二级缓存是在和内存之间读取数据的时候体现的,如果二级缓存不够,那大量的数据就会堆积在内存里进行运算,所以速度就会大大降低,相反,如果二级缓存够大,进入内存运算的数据就会相对的减少,所以二级缓存很重要,也是CPU的性能优越的指标。

㈤ 缓存是什么意思,缓存是什么意思

什么是缓存,计算机专业术语名词解释

缓存(Cache)是硬盘与外部总线交换数据的场所。缓存也是购买硬盘的一个主要的依据,败茄现在主流硬盘的缓存一般为2MB,部分高性能的硬盘甚至达仿枯旦备扰到8MB。

㈥ 系统缓存是什么意思

问题一:系统缓存到底是什么意思 在电脑系统中,硬件运行速度的快慢基本由缓存决定,缓存的容量越大,相应的硬件运行速度也就越快。缓存的应用几乎遍及所有的硬件, 比如CPU、硬盘、刻录机等,甚至是软件也有缓存。什么是缓存?简单来说缓存就是数据交换的缓冲区(称作Cache),当某一硬件要读取数据时, 会首先从缓存中查找需要的数据,如果找到了则直接执行,找不到的话则从内存中找。由于缓存的运行速度比内存快得多,故缓存的作用就是 帮助硬件更快地运行

问题二:手机里的应用缓存和系统缓存是啥意思 可以清除吗 可以,都是看过的视频啊新闻啊留下的垃圾文件,

问题三:手机系统缓存和应用缓存有什么区别 您好,手机系统缓存指的是手机自带的系统软件占用的缓存;应用缓存指的是应用软件占用的缓存。

问题四:什么是缓存?什么是系统缓存? 缓存就是用来加速软件运行的存储。如由于硬盘速度比内存慢因此运算需要经常用到的东西放到内存中做缓存。数据库中的常用数据如代码表,可以先从数据库读出来,放到应用服务器端的缓存软件中作为缓存加快应用服务器读取速度。
缓存是一张非常常用的性能优化方法。常用缓存软件有ehcache,memcache,redis等

问题五:手机里的缓存可以全部清理吗?什么叫系统缓存 系统缓存是可以清理的,就像是打开网页,会提示加载,那就是缓存。
手机党,望采纳

问题六:这上面的“后台服务”和“系统缓存”分别是什么意思啊 系统缓存可以分为1级和2级缓存.英文叫CACHE.它的最主要的作用就是来调节低速CPU和高度内存之间的矛盾.起平衡减少冲突可以增加使用寿命和加快电脑运行速度.一般来说.2级缓存越高越好.
后台服务又叫做电脑后台.运行后在电脑上显示不出来必须有热键才能显示出.电脑分为前台和后台.前台就是你可以看到的桌面了游戏了QQ了之类的东西.而后台的东西你就看不见了.只有你知道的命令才可以把它显示出来.比方说你在玩些游戏.但突然父母或者老板来了.你就可以把它藏到后台运行.但并不是关闭.只是暂时看不到而且继抚运行.实际上电脑的任务管理器上面显示的进程数一般为26左右.其实在后台还有10几个任务在进行.只是看不到而已.
后台和缓存设置好了都可以增加电脑速度.

问题七:硬盘的缓存是什么意思?有什么用? 什么是缓存盘: 在电脑系统中,硬件运行速度的快慢基本由缓存决定,缓存的容量越大,相应的硬件运行速度也就越快。缓存的应用几乎遍及所有的硬件,比如CPU、硬盘、刻录机等,甚至是软件也有缓存。什么是缓存?简单来说缓存就是数据交换的缓冲区(称作Cache),当某一硬件要读取数据时,会首先从缓存中查找需要的数据,如果找到了则直接执行,找不到的话则从内存中找。由于缓存的运行速度比内存快得多,故缓存的作用就是帮助硬件更快地运行,因此,我们要不惜使出一切手段来增加硬件的缓存,让机器“飞”起来,以下就介绍几种增加缓存的方法。 CPU的缓存 CPU的缓存分二级:L1(一级缓存)和L2(二级缓存),当处理器要读取数据时,首先要在L1缓存中查找,其次才是L2缓存,最后才是系统内存。如果有一天你发觉自己的电脑慢了很多,进入到Windows桌面也要几分钟,这时候就要检查一下CPU的一、二级缓存有没有打开。在BIOS设置中的Standard CMOS Setup(标准CMOS设定)有两项是用来打开或关闭缓存的:CPUInternal Cache设为Enable时开启CPU内部的一级缓冲区,若设置为Disabl则为关闭,这时系统性能将大大降低;ExternalCache选项是控制主板上二级缓冲区,如果主板上有二级缓存则应设成Enable。 硬盘的缓存 点击电脑桌面上的“开始”/“运行”,键入“Msconfig”启动“系统配置实用程序”,跟着选中“system.ini”标签下的“Vcache”项,就可以根据系统的实际情况来调节硬盘的缓存了。在该选项中一般会有三行内容:ChunkSize=1024、MaxFileCache=10240和MinFileCache=10240;其中第一行是缓冲区读写单元值,第二、三行是硬盘的最大和最小缓冲值,等号后的数值都是可以修改的,只要右键单击选中任一行就可以进行修改了。如果你的内存是128MB的话,上面这三行的取值就比较合理了,当然也可以自定。如果不知道该如何设置合适的缓冲值,请“Windows优化大师”帮忙吧,这个软件中有一个“磁盘缓存优化”项,用鼠标就可以方便地设置好缓存;又或者让“Windows优化大师”自动帮你进行优化设置。当硬盘的缓存值足够大时,硬盘就不用频繁地读写磁盘,一来可以延长硬盘的寿命,二来也可以提高数据的传输速度。 另外,将硬盘的“文件系统缓存”设置为“网络服务器”,可以加快系统对硬盘的访问速度,因为文件系统缓存里存放了硬盘最近被访问过的文件名和路径,缓存越大所能储存的内容也就越多。如果点击“控制面板”/“系统”/“性能”/“文件系统”/“硬盘”,将“此计算机的主要用途”由“台式机”改为“网络服务器”,可以将原来10K左右的缓存增加至近50K左右。 软驱和光驱的缓存 一般来说,软驱读写数据的速度都比较慢,这是因为盘片的转速不能太高,但是,我们可以提高软驱的读写缓存,让软驱一次读写更多的数据。方法是:在桌面上的“开始”/“运行”框中键入“Regedit”运行注册表编辑器,依次进入HKEY-LOCAL-MACHINE\System\CurrentControlSet\Services\Class\FDC\0000,新建一个为ForeFifo的“DWORD值”,将其值设为“0”,这样就对软驱进行了软提速。 很多人都知道右键单击桌面“我的电脑”图标,选“属性”/“性能”/“文件系统”/“CD-ROM”,将最佳的访问方式设为“四倍速或更高速”,将追加的高速缓存大小滑块拖到最大处,可以明显提高光驱的读盘速度。除了这种方式,我们还可以在注册......>>

问题八:手机系统缓存删除的是什么 简单的说
比如:
手机里面的java小程序或者游戏什么的,你玩了后,没去关闭,然后就退出来了,那些小游戏实际还是占用内存的。
亲历缓存就清理这些你打开而没有正确关闭的程序。

问题九:CPU的缓存是什么意思啊 缓存大小也是CPU的重要指标之一,而且缓存的结构和大小对CPU速度的影响非常大,CPU内缓存的运行频率极高,一般是和处理器同频运作,工作效率远远大于系统内存和硬盘。实际工作时,CPU往往需要重复读取同样的数据块,而缓存容量的增大,可以大幅度提升CPU内部读取数据的命中率,而不用再到内存或者硬盘上寻找,以此提高系统性能。但是由于CPU芯片面积和成本的因素来考虑,缓存都很小。
L1 Cache(一级缓存)是CPU第一层高速缓存,分为数据缓存和指令缓存。内置的L1高速缓存的容量和结构对CPU的性能影响较大,不过高速缓冲存储器均由静态RAM组成,结构较复杂,在CPU管芯面积不能太大的情况下,L1级高速缓存的容量不可能做得太大。一般服务器CPU的L1缓存的容量通常在32―256KB。
L2 Cache(二级缓存)是CPU的第二层高速缓存,分内部和外部两种芯片。内部的芯片二级缓存运行速度与主频相同,而外部的二级缓存则只有主频的一半。L2高速缓存容量也会影响CPU的性能,原则是越大越好,现在家庭用CPU容量最大的是512KB,而服务器和工作站上用CPU的L2高速缓存更高达256-1MB,有的高达2MB或者3MB。
L3 Cache(三级缓存),分为两种,早期的是外置,现在的都是内置的。而它的实际作用即是,L3缓存的应用可以进一步降低内存延迟,同时提升大数据量计算时处理器的性能。降低内存延迟和提升大数据量计算能力对游戏都很有帮助。而在服务器领域增加L3缓存在性能方面仍然有显着的提升。比方具有较大L3缓存的配置利用物理内存会更有效,故它比较慢的磁盘I/O子系统可以处理更多的数据请求。具有较大L3缓存的处理器提供更有效的文件系统缓存行为及较短消息和处理器队列长度。 jz5u
其实最早的L3缓存被应用在AMD发布的K6-III处理器上,当时的L3缓存受限于制造工艺,并没有被集成进芯片内部,而是集成在主板上。在只能够和系统总线频率同步的L3缓存同主内存其实差不了多少。后来使用L3缓存的是英特尔为服务器市场所推出的Itanium处理器。接着就是P4EE和至强MP。Intel还打算推出一款9MB L3缓存的Itanium2处理器,和以后24MB L3缓存的双核心Itanium2处理器。
但基本上L3缓存对处理器的性能提高显得不是很重要,比方配备1MB L3缓存的Xeon MP处理器却仍然不是Opteron的对手,由此可见前端总线的增加,要比缓存增加带来更有效的性能提升。

㈦ 12M三级缓存是什么意思

级缓存是为读取二级缓存后未命中的数据设计的—种缓存,在拥有三级缓存的CPU中,只有约5%的数据需要从内存中调用,这进一步提高了CPU的效率。其运作原理在于使用较快速的储存装置保留一份从慢速储存装置中所读取数据且进行拷贝,当有需要再从较慢的储存体中读写数据时,CACHE能够使得读写的动作先在快速的装置上完成,如此会使系统的响应较为快速。一级最重要,但是现在CPU的一级缓存几乎都一样,所以忽略。 二级缓存的话对于Intel的CPU是很重要的,Intel的CPU的二级缓存越大性能提升非常明显,而AMD的CPU虽然二级缓存也很重要,但是二级缓存大小对AMD的CPU的性能提升不是很明显。

㈧ 计算机中cpu的缓存怎么分的为什么这题中12M是2级如何得知

1、这题已经老了,至少已经落伍10年。现在的CPU已经没有前端总线这一概念。

2、这个是Intel的CPU型号的标注:2.8GHz就是主频,12M二级缓存,1333MHz是前端总线。该处理器型号是酷睿2Q9550.

3、CPU发布后,这些常规参数就会同时发布的,当初公布参数的时候就是以二级缓存大作为卖点的。

4、就象现在的处理器参数说缓存,已经不注重于二级缓存了,现在注重的三级缓存,“以缓存大为卖点”。现在主流处理器的二级缓存基本也就在1~2MB左右,三级缓存在3~8M左右。因此这个其实要结合CPU当时的主流卖点来看的。

㈨ 电脑cpu缓存12兆是什么意思

三级缓存吧,还有一级,二级之分哦
CPU缓存是为更快速的连接CPU与内存而存在的中间媒介。
CPU缓存是位于CPU与内存之间的临时存储器,它的容量比内存小的多,但是交换速度却比内存要快得多。
高速缓存的出现主要是为了解决CPU运算速度与内存读写速度不匹配的矛盾,因为CPU运算速度要比内存读写速度快很多,这样会使CPU花费很长时间等待数据到来或把数据写入内存。在缓存中的数据是内存中的一小部分,但这一小部分是短时间内CPU即将访问的,当CPU调用大量数据时,就可避开内存直接从缓存中调用,从而加快读取速度。

㈩ 缓存是什么意思有什么作用

许多人认为,“缓存”是内存的一部分

许多技术文章都是这样教授的

但是还是有很多人不知道缓存在什么地方,缓存是做什么用的

其实,缓存是CPU的一部分,它存在于CPU中

CPU存取数据的速度非常的快,一秒钟能够存取、处理十亿条指令和数据(术语:CPU主频1G),而内存就慢很多,快的内存能够达到几十兆就不错了,可见两者的速度差异是多么的大

缓存是为了解决CPU速度和内存速度的速度差异问题

内存中被CPU访问最频繁的数据和指令被复制入CPU中的缓存,这样CPU就可以不经常到象“蜗牛”一样慢的内存中去取数据了,CPU只要到缓存中去取就行了,而缓存的速度要比内存快很多

这里要特别指出的是:
1.因为缓存只是内存中少部分数据的复制品,所以CPU到缓存中寻找数据时,也会出现找不到的情况(因为这些数据没有从内存复制到缓存中去),这时CPU还是会到内存中去找数据,这样系统的速度就慢下来了,不过CPU会把这些数据复制到缓存中去,以便下一次不要再到内存中去取。

2.因为随着时间的变化,被访问得最频繁的数据不是一成不变的,也就是说,刚才还不频繁的数据,此时已经需要被频繁的访问,刚才还是最频繁的数据,现在又不频繁了,所以说缓存中的数据要经常按照一定的算法来更换,这样才能保证缓存中的数据是被访问最频繁的

3.关于一级缓存和二级缓存
为了分清这两个概念,我们先了解一下RAM

ram和ROM相对的,RAM是掉电以后,其中才信息就消失那一种,ROM在掉电以后信息也不会消失那一种

RAM又分两种,

一种是静态RAM,SRAM;一种是动态RAM,DRAM。前者的存储速度要比后者快得多,我们现在使用的内存一般都是动态RAM。

有的菜鸟就说了,为了增加系统的速度,把缓存扩大不就行了吗,扩大的越大,缓存的数据越多,系统不就越快了吗

缓存通常都是静态RAM,速度是非常的快,

但是静态RAM集成度低(存储相同的数据,静态RAM的体积是动态RAM的6倍),

价格高(同容量的静态RAM是动态RAM的四倍),

由此可见,扩大静态RAM作为缓存是一个非常愚蠢的行为,

但是为了提高系统的性能和速度,我们必须要扩大缓存,

这样就有了一个折中的方法,不扩大原来的静态RAM缓存,而是增加一些高速动态RAM做为缓存,

这些高速动态RAM速度要比常规动态RAM快,但比原来的静态RAM缓存慢,

我们把原来的静态ram缓存叫一级缓存,而把后来增加的动态RAM叫二级缓存。

一级缓存和二级缓存中的内容都是内存中访问频率高的数据的复制品(映射),它们的存在都是为了减少高速CPU对慢速内存的访问。
通常CPU找数据或指令的顺序是:先到一级缓存中找,找不到再到二级缓存中找,如果还找不到就只有到内存中找了