① 请教一个Linux下c语言的进程间的信号问题
linux中的进程通信分为三个部分:低级通信,管道通信和进程间通信IPC(inter process communication)。linux的低级通信主要用来传递进程的控制信号——文件锁和软中断信号机制。linux的进程间通信IPC有三个部分——①信号量,②共享内存和③消息队列。以下是我编写的linux进程通信的C语言实现代码。操作系统为redhat9.0,编辑器为vi,编译器采用gcc。下面所有实现代码均已经通过测试,运行无误。
一.低级通信--信号通信
signal.c
#include
#include
#include
/*捕捉到信号sig之后,执行预先预定的动作函数*/
void sig_alarm(int sig)
{
printf("---the signal received is %d. /n", sig);
signal(SIGINT, SIG_DFL); //SIGINT终端中断信号,SIG_DFL:恢复默认行为,SIN_IGN:忽略信号
}
int main()
{
signal(SIGINT, sig_alarm);//捕捉终端中断信号
while(1)
{
printf("waiting here!/n");
sleep(1);
}
return 0;
}
二.管道通信
pipe.c
#include
#define BUFFER_SIZE 30
int main()
{
int x;
int fd[2];
char buf[BUFFER_SIZE];
char s[BUFFER_SIZE];
pipe(fd);//创建管道
while((x=fork())==-1);//创建管道失败时,进入循环
/*进入子进程,子进程向管道中写入一个字符串*/
if(x==0)
{
sprintf(buf,"This is an example of pipe!/n");
write(fd[1],buf,BUFFER_SIZE);
exit(0);
}
/*进入父进程,父进程从管道的另一端读出刚才写入的字符串*/
else
{
wait(0);//等待子进程结束
read(fd[0],s,BUFFER_SIZE);//读出字符串,并将其储存在char s[]中
printf("%s",s);//打印字符串
}
return 0;
}
三.进程间通信——IPC
①信号量通信
sem.c
#include
#include
#include
#include types.h>
#include ipc.h>
#include sem.h>
/*联合体变量*/
union semun
{
int val; //信号量初始值
struct semid_ds *buf;
unsigned short int *array;
struct seminfo *__buf;
};
/*函数声明,信号量定义*/
static int set_semvalue(void); //设置信号量
static void del_semvalue(void);//删除信号量
static int semaphore_p(void); //执行P操作
static int semaphore_v(void); //执行V操作
static int sem_id; //信号量标识符
int main(int argc, char *argv[])
{
int i;
int pause_time;
char op_char = 'O';
srand((unsigned int)getpid());
sem_id = semget((key_t)1234, 1, 0666 | IPC_CREAT);//创建一个信号量,IPC_CREAT表示创建一个新的信号量
/*如果有参数,设置信号量,修改字符*/
if (argc > 1)
{
if (!set_semvalue())
{
fprintf(stderr, "Failed to initialize semaphore/n");
exit(EXIT_FAILURE);
}
op_char = 'X';
sleep(5);
}
for(i = 0; i < 10; i++)
{
/*执行P操作*/
if (!semaphore_p())
exit(EXIT_FAILURE);
printf("%c", op_char);
fflush(stdout);
pause_time = rand() % 3;
sleep(pause_time);
printf("%c", op_char);
fflush(stdout);
/*执行V操作*/
if (!semaphore_v())
exit(EXIT_FAILURE);
pause_time = rand() % 2;
sleep(pause_time);
}
printf("/n%d - finished/n", getpid());
if (argc > 1)
{
sleep(10);
del_semvalue(); //删除信号量
}
exit(EXIT_SUCCESS);
}
/*设置信号量*/
static int set_semvalue(void)
{
union semun sem_union;
sem_union.val = 1;
if (semctl(sem_id, 0, SETVAL, sem_union) == -1)
return(0);
return(1);
}
/*删除信号量*/
static void del_semvalue(void)
{
union semun sem_union;
if (semctl(sem_id, 0, IPC_RMID, sem_union) == -1)
fprintf(stderr, "Failed to delete semaphore/n");
}
/*执行P操作*/
static int semaphore_p(void)
{
struct sembuf sem_b;
sem_b.sem_num = 0;
sem_b.sem_op = -1; /* P() */
sem_b.sem_flg = SEM_UNDO;
if (semop(sem_id, &sem_b, 1) == -1)
{
fprintf(stderr, "semaphore_p failed/n");
return(0);
}
return(1);
}
/*执行V操作*/
static int semaphore_v(void)
{
struct sembuf sem_b;
sem_b.sem_num = 0;
sem_b.sem_op = 1; /* V() */
sem_b.sem_flg = SEM_UNDO;
if (semop(sem_id, &sem_b, 1) == -1)
{
fprintf(stderr, "semaphore_v failed/n");
return(0);
}
return(1);
}
②消息队列通信
send.c
#include
#include
#include
#include
#include
#include types.h>
#include ipc.h>
#include msg.h>
#define MAX_TEXT 512
/*用于消息收发的结构体--my_msg_type:消息类型,some_text:消息正文*/
struct my_msg_st
{
long int my_msg_type;
char some_text[MAX_TEXT];
};
int main()
{
int running = 1;//程序运行标识符
struct my_msg_st some_data;
int msgid;//消息队列标识符
char buffer[BUFSIZ];
/*创建与接受者相同的消息队列*/
msgid = msgget((key_t)1234, 0666 | IPC_CREAT);
if (msgid == -1)
{
fprintf(stderr, "msgget failed with error: %d/n", errno);
exit(EXIT_FAILURE);
}
/*向消息队列中发送消息*/
while(running)
{
printf("Enter some text: ");
fgets(buffer, BUFSIZ, stdin);
some_data.my_msg_type = 1;
strcpy(some_data.some_text, buffer);
if (msgsnd(msgid, (void *)&some_data, MAX_TEXT, 0) == -1)
{
fprintf(stderr, "msgsnd failed/n");
exit(EXIT_FAILURE);
}
if (strncmp(buffer, "end", 3) == 0)
{
running = 0;
}
}
exit(EXIT_SUCCESS);
}
receive.c
#include
#include
#include
#include
#include
#include types.h>
#include ipc.h>
#include msg.h>
/*用于消息收发的结构体--my_msg_type:消息类型,some_text:消息正文*/
struct my_msg_st
{
long int my_msg_type;
char some_text[BUFSIZ];
};
int main()
{
int running = 1;//程序运行标识符
int msgid; //消息队列标识符
struct my_msg_st some_data;
long int msg_to_receive = 0;//接收消息的类型--0表示msgid队列上的第一个消息
/*创建消息队列*/
msgid = msgget((key_t)1234, 0666 | IPC_CREAT);
if (msgid == -1)
{
fprintf(stderr, "msgget failed with error: %d/n", errno);
exit(EXIT_FAILURE);
}
/*接收消息*/
while(running)
{
if (msgrcv(msgid, (void *)&some_data, BUFSIZ,msg_to_receive, 0) == -1)
{
fprintf(stderr, "msgrcv failed with error: %d/n", errno);
exit(EXIT_FAILURE);
}
printf("You wrote: %s", some_data.some_text);
if (strncmp(some_data.some_text, "end", 3) == 0)
{
running = 0;
}
}
/*删除消息队列*/
if (msgctl(msgid, IPC_RMID, 0) == -1)
{
fprintf(stderr, "msgctl(IPC_RMID) failed/n");
exit(EXIT_FAILURE);
}
exit(EXIT_SUCCESS);
}
③共享内存通信
share.h
#define TEXT_SZ 2048 //申请共享内存大小
struct shared_use_st
{
int written_by_you; //written_by_you为1时表示有数据写入,为0时表示数据已经被消费者提走
char some_text[TEXT_SZ];
};
procer.c
#include
#include
#include
#include
#include types.h>
#include ipc.h>
#include shm.h>
#include "share.h"
int main()
{
int running = 1; //程序运行标志位
void *shared_memory = (void *)0;
struct shared_use_st *shared_stuff;
char buffer[BUFSIZ];
int shmid; //共享内存标识符
/*创建共享内存*/
shmid = shmget((key_t)1234, sizeof(struct shared_use_st), 0666 | IPC_CREAT);
if (shmid == -1)
{
fprintf(stderr, "shmget failed/n");
exit(EXIT_FAILURE);
}
/*将共享内存连接到一个进程的地址空间中*/
shared_memory = shmat(shmid, (void *)0, 0);//指向共享内存第一个字节的指针
if (shared_memory == (void *)-1)
{
fprintf(stderr, "shmat failed/n");
exit(EXIT_FAILURE);
}
printf("Memory attached at %X/n", (int)shared_memory);
shared_stuff = (struct shared_use_st *)shared_memory;
/*生产者写入数据*/
while(running)
{
while(shared_stuff->written_by_you == 1)
{
sleep(1);
printf("waiting for client.../n");
}
printf("Enter some text: ");
fgets(buffer, BUFSIZ, stdin);
strncpy(shared_stuff->some_text, buffer, TEXT_SZ);
shared_stuff->written_by_you = 1;
if (strncmp(buffer, "end", 3) == 0)
{
running = 0;
}
}
/*该函数用来将共享内存从当前进程中分离,仅使得当前进程不再能使用该共享内存*/
if (shmdt(shared_memory) == -1)
{
fprintf(stderr, "shmdt failed/n");
exit(EXIT_FAILURE);
}
printf("procer exit./n");
exit(EXIT_SUCCESS);
}
customer.c
#include
#include
#include
#include
#include types.h>
#include ipc.h>
#include shm.h>
#include "share.h"
int main()
{
int running = 1;//程序运行标志位
void *shared_memory = (void *)0;
struct shared_use_st *shared_stuff;
int shmid; //共享内存标识符
srand((unsigned int)getpid());
/*创建共享内存*/
shmid = shmget((key_t)1234, sizeof(struct shared_use_st), 0666 | IPC_CREAT);
if (shmid == -1)
{
fprintf(stderr, "shmget failed/n");
exit(EXIT_FAILURE);
}
/*将共享内存连接到一个进程的地址空间中*/
shared_memory = shmat(shmid, (void *)0, 0);//指向共享内存第一个字节的指针
if (shared_memory == (void *)-1)
{
fprintf(stderr, "shmat failed/n");
exit(EXIT_FAILURE);
}
printf("Memory attached at %X/n", (int)shared_memory);
shared_stuff = (struct shared_use_st *)shared_memory;
shared_stuff->written_by_you = 0;
/*消费者读取数据*/
while(running)
{
if (shared_stuff->written_by_you)
{
printf("You wrote: %s", shared_stuff->some_text);
sleep( rand() % 4 );
shared_stuff->written_by_you = 0;
if (strncmp(shared_stuff->some_text, "end", 3) == 0)
{
running = 0;
}
}
}
/*该函数用来将共享内存从当前进程中分离,仅使得当前进程不再能使用该共享内存*/
if (shmdt(shared_memory) == -1)
{
fprintf(stderr, "shmdt failed/n");
exit(EXIT_FAILURE);
}
/*将共享内存删除,所有进程均不能再访问该共享内存*/
if (shmctl(shmid, IPC_RMID, 0) == -1)
{
fprintf(stderr, "shmctl(IPC_RMID) failed/n");
exit(EXIT_FAILURE);
}
exit(EXIT_SUCCESS);
}
摘自:
② C语言 union semun { }什么意思
这个也叫共用体,用法跟结构体有点相同,但数据存储“空间”跟结构体不一样,具体用法参照http://ke..com/link?url=Ayg3do4Cy4aEK0JMO74-TRZcEHZ62x-A2gmsjKi--a
③ 怎么用c语言编程 实现创建原语、撤销原语、阻塞原语和唤醒原语
下,应该差不多
一、如何建立线程
用到的头文件
(a)pthread.h
(b)semaphore.h
(c) stdio.h
(d)string.h
定义线程标识
pthread_t
创建线程
pthread_create
对应了一个函数作为线程的程序段
注意的问题
要保证进程不结束(在创建线程后加死循环)
在线程中加入While(1)语句,也就是死循环,保证进程不结束。
二、控制线程并发的函数
sem_t:信号量的类型
sem_init:初始化信号量
sem_wait:相当于P操作
sem_post:相当于V操作
三、实现原形系统
父亲、母亲、儿子和女儿的题目:
桌上有一只盘子,每次只能放入一只水果。爸爸专放苹果,妈妈专放橘子,一个儿子专等吃盘子中的橘子,一个女儿专等吃盘子中的苹果。分别用P,V操作和管程实现
每个对应一个线程
pthread_t father; father进程
pthread_t mother; mother进程
pthread_t son; son进程
pthread_t daughter; daughter进程
盘子可以用一个变量表示
sem_t empty;
各线程不是只做一次,可以是无限或有限次循环
用While(1)控制各线程无限次循环
输出每次是那个线程执行的信息
printf("%s\n",(char *)arg);通过参数arg输出对应线程执行信息
编译方法
gcc hex.c -lpthread
生成默认的可执行文件a.out
输入./a.out命令运行
查看结果:程序连续运行显示出
father input an apple.
daughter get an apple.
mother input an orange.
son get an orange.
mother input an orange.
son get an orange.
………………..
四、程序源代码
#include <stdio.h>
#include<string.h>
#include <semaphore.h>
#include <pthread.h>
sem_t empty; //定义信号量
sem_t applefull;
sem_t orangefull;
void *procf(void *arg) //father线程
{
while(1){
sem_wait(&empty); //P操作
printf("%s\n",(char *)arg);
sem_post(&applefull); //V操作
sleep(7);
}
}
void *procm(void *arg) //mother线程
{
while(1){
sem_wait(&empty);
printf("%s\n",(char *)arg);
sem_post(&orangefull);
sleep(3);
}
}
void *procs(void *arg) //son线程
{
while(1){
sem_wait(&orangefull);
printf("%s\n",(char *)arg);
sem_post(&empty);
sleep(2);
}
}
void *procd(void *arg) //daughter线程
{
while(1){
sem_wait(&applefull);
printf("%s\n",(char *)arg);
sem_post(&empty);
sleep(5);
}
}
main()
{
pthread_t father; //定义线程
pthread_t mother;
pthread_t son;
pthread_t daughter;
sem_init(&empty, 0, 1); //信号量初始化
sem_init(&applefull, 0, 0);
sem_init(&orangefull, 0, 0);
pthread_create(&father,NULL,procf,"father input an apple."); //创建线程
pthread_create(&mother,NULL,procm,"mother input an orange.");
pthread_create(&daughter,NULL,procd,"daughter get an apple.");
pthread_create(&son,NULL,procs,"son get an orange.");
while(1){} //循环等待
}
另外,站长团上有产品团购,便宜有保证
④ C语言生产者消费者进程代码问题
实现一个队列CQueue CQueue提供两个公有成员函数 addTail():往队列尾部增加一个元素 removeHead():读出并移除队列的第一个元素 生产者:两个线程通过调用CQueue::addTail()往队列中增加元素 消费者:一个线程通过调用CQueue::removeHead()从队列中读取元素 #include <iostream> #include <list> #include <windows.h> #include <process.h> using namespace std; #define P(sem) WaitForSingleObject(sem,INFINITE) #define V(sem) ReleaseSemaphore(sem,1,NULL) class CQueue { public: void addTail();//往队列尾部增加一个元素 void removeHead();//读出并移除队列的第一个元素 private: list<int> L; }; CQueue buffer;//全局的缓冲区 const int buf_size = 10;//缓冲区大小 static int GOODS_ID = 0;//商品序号 const int procers = 3;//生产者数量 const int consumers = 8;//消费者数量 void ProcerThread(void* param); void ConsumerThread(void* param); HANDLE empty,occupy,op_mutex; int main() { int i; int p_id[procers],c_id[consumers];
⑤ C 语言多线程怎么读文件高效
C语言---多个线程读取文件,其代码如下:
#include
#include
#include
#include
#include
#include
#define THREAD_NUM 25
typedef struct
{undefined
FILE *_fp;
int _nThreadId;//第几个线程
sem_t *_semLock;
}IDD_THREAD_PARAM;
void *ThreadFunc(void *args)
{undefined
char sLine[100+1];
FILE *fpRead = ((IDD_THREAD_PARAM *)args)->_fp;
sem_t *semLock = ((IDD_THREAD_PARAM *)args)->_semLock;
int nId = ((IDD_THREAD_PARAM *)args)->_nThreadId;
sem_wait(semLock);
while(!feof(fpRead))
{undefined
memset(sLine,0,sizeof(sLine));
fgets(sLine,100,fpRead);
fprintf(stderr,"Thread ID-%d:%s",nId,sLine);
}
sem_post(semLock);
}
int main()
{undefined
pthread_t *pThreads;
sem_t semLock;
pThreads = (pthread_t *)malloc(THREAD_NUM*sizeof(pthread_t));
sem_init(&semLock,0,1);
FILE *fp = fopen("test.txt","r");
//开始线程循环
IDD_THREAD_PARAM param;
for(int i=0;i
{undefined
memset(param,0,sizeof(IDD_THREAD_PARAM));
param._fp = fp;
param._nThreadId = i;
param._semLock = &semLock;
pthread_create((pThreads+i),NULL,ThreadFunc,param);
}
for(int i=0;i
pthread_join(*(pThreads+i),NULL);
free(pThreads);
pThreads = NULL;
fclose(fp);
fp = NULL;
return 0;
}
⑥ c语言实例,linux线程同步的信号量方式 谢谢
这么高的悬赏,实例放后面。信号量(sem),如同进程一样,线程也可以通过信号量来实现通信,虽然是轻量级的。信号量函数的名字都以"sem_"打头。线程使用的基本信号量函数有四个。
信号量初始化。
intsem_init(sem_t*sem,intpshared,unsignedintvalue);
这是对由sem指定的信号量进行初始化,设置好它的共享选项(linux只支持为0,即表示它是当前进程的局部信号量),然后给它一个初始值VALUE。
等待信号量。给信号量减1,然后等待直到信号量的值大于0。
intsem_wait(sem_t*sem);
释放信号量。信号量值加1。并通知其他等待线程。
intsem_post(sem_t*sem);
销毁信号量。我们用完信号量后都它进行清理。归还占有的一切资源。
intsem_destroy(sem_t*sem);
#include<stdlib.h>
#include<stdio.h>
#include<unistd.h>
#include<pthread.h>
#include<semaphore.h>
#include<errno.h>
#definereturn_if_fail(p)if((p)==0){printf("[%s]:funcerror!/n",__func__);return;}
typedefstruct_PrivInfo
{
sem_ts1;
sem_ts2;
time_tend_time;
}PrivInfo;
staticvoidinfo_init(PrivInfo*thiz);
staticvoidinfo_destroy(PrivInfo*thiz);
staticvoid*pthread_func_1(PrivInfo*thiz);
staticvoid*pthread_func_2(PrivInfo*thiz);
intmain(intargc,char**argv)
{
pthread_tpt_1=0;
pthread_tpt_2=0;
intret=0;
PrivInfo*thiz=NULL;
thiz=(PrivInfo*)malloc(sizeof(PrivInfo));
if(thiz==NULL)
{
printf("[%s]:Failedtomallocpriv./n");
return-1;
}
info_init(thiz);
ret=pthread_create(&pt_1,NULL,(void*)pthread_func_1,thiz);
if(ret!=0)
{
perror("pthread_1_create:");
}
ret=pthread_create(&pt_2,NULL,(void*)pthread_func_2,thiz);
if(ret!=0)
{
perror("pthread_2_create:");
}
pthread_join(pt_1,NULL);
pthread_join(pt_2,NULL);
info_destroy(thiz);
return0;
}
staticvoidinfo_init(PrivInfo*thiz)
{
return_if_fail(thiz!=NULL);
thiz->end_time=time(NULL)+10;
sem_init(&thiz->s1,0,1);
sem_init(&thiz->s2,0,0);
return;
}
staticvoidinfo_destroy(PrivInfo*thiz)
{
return_if_fail(thiz!=NULL);
sem_destroy(&thiz->s1);
sem_destroy(&thiz->s2);
free(thiz);
thiz=NULL;
return;
}
staticvoid*pthread_func_1(PrivInfo*thiz)
{
return_if_fail(thiz!=NULL);
while(time(NULL)<thiz->end_time)
{
sem_wait(&thiz->s2);
printf("pthread1:pthread1getthelock./n");
sem_post(&thiz->s1);
printf("pthread1:pthread1unlock/n");
sleep(1);
}
return;
}
staticvoid*pthread_func_2(PrivInfo*thiz)
{
return_if_fail(thiz!=NULL);
while(time(NULL)<thiz->end_time)
{
sem_wait(&thiz->s1);
printf("pthread2:pthread2gettheunlock./n");
sem_post(&thiz->s2);
printf("pthread2:pthread2unlock./n");
sleep(1);
}
return;
}
⑦ c语言指令有哪些啊
第一章:绪论?
内核版本号格式:x.y.zz-www/x为主版本号,y为次版本号,zz为次次版本号,www为发行号/次版本号改变说明内核有重大变革,其偶数为稳定版本,奇数为尚在开发中的版本
第二章:基础?
文件种类:-:txt,二进制/d:目录/l:链接文件(link)/b:区块设备文件/c:字符设备文件/p:管道
目录结构:bin:可执行/boot:开机引导/dev:设备文件/etc:系统配置文件/lib:库文件/mnt:设备挂载点/var:系统日志/
命令:rmdir:删除空目录/find [path] [expression]/touch命令还可以修改指定文件的最近一次访问时间/tar -czvf usr.tar.gz path/tar –zxvf usr.tar.gz/tar –cjvf usr.tar.bz2 path/tar –jxvf usr.tar.bz2
gcc:预处理:-g/I在头文件搜索路径中添加目录,L在库文件搜索路径中
gdb:设置断点:b/查看断点信息:info
Makefile:make –f other_makefile/<:第一个依赖文件的名称/@:目标文件的完整名称/^:所有不重复的依赖文件/+:所有依赖文件(可能重复)
第三章:文件IO
read:read(fd, temp, size); /读fd中长度为size的值到temp/返回0表示file为NULL
write:write(fd, buf, buf_size); /写长度为buf_size的buf内容到fd中
lseek:lseek(fd, offset, SEEK_SET); /从文件开头向后增加offset个位移量
unlink:从文件系统中删除一个名字
open1:int open(const char * pathname, int flags, mode_t mode);/flags为读写方式/mode为权限设置/O_EXCL:测试文件是否存在/O_TRUNC:若存在同名文件则删除之并新建
open2:注意O_NONBLOCK
mmap.1:void *mmap(void *start, size_t length, int prot, int flags, int fd, off_t offsize);
mmap.2:mmap(start_addr, flength, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0);
fcntl:上锁/int fcntl(int fd, int cmd, struct flock * lock);/对谁;做什么;设置所做内容
select:fd_max+1,回传读状况,回传写状况,回传异常,select等待的时间/NULL为永远等待/0为从不等待/凡需某状况则用之,反则(fd_set *)NULL之
FD_*那几个函数……
一般出错则返回-1
第四章:文件与目录
硬链接与符号链接?
chdir改变目录
0:in/1:out/2:err
第五章:内存管理
可执行文件存储时:代码区、数据区和未初始化区
栈:by编译器,向低址扩展,连续,效率高/堆:by程序员
/etc/syslog.conf,系统log记录文件/优先级为-20时最高
第六章:进程和信号
程序代码、数据、变量、文件描述符和环境/init的pid为1
execl族:int execl(const char * path, const char * arg, ....);/path即可执行文件的路径,一般为./最后一个参数以NULL结束
waitpid:waitpid(pid_t pid,int * status,int options);/option:一般用WNOHANG,没有已经结束的子进程则马上返回,不等待
kill:int kill(pid_t pid,int sig);/发送信号sig给pid
void (*signal(int signum, void(* handler)(int)))(int);/第一个参数被满足时,执行handler/第一个参数常用:SIG_IGN:忽略信号/SIG_DFL:恢复默认信号
第七章:线程
sem_init(sem_t *sem, int pshared, unsigned int value)/pshared为0/value即初始值
第八章:管道
1:write/0:read
第九章:信号量、共享内存和消息队列
临界资源:操作系统中只允许一个进程访问的资源/临界区:访问临界资源的那段代码
信号量:建立联系(semget),然后初始化,PV操作,最后destroy
共享内存没有提供同步机制
第十章:套接字
UDP:无连接协议,无主客端的区分/实时性
TCP:字节流/数据可靠性/网络可靠性
数据报:SOCK_STREAM/SOCK_DGRAM
其它
管道一章的both_pipe即父子进程间的全双工管道通讯
关系到信号和互斥的服务器-客户端程序
线程一章的class的multi_thread文件夹下的thread8.c
int main(void)
{
int data_processed;
int file_pipes_1[2];
int file_pipes_2[2];
char buffer[BUFSIZ + 1];
const char some_data[] = "123";
const char ch2p[] = "this is the string from child to the parent!";
const char p2ch[] = "this is the string from parent to the child!";
pid_t fork_result;
memset(buffer,'\0',sizeof(buffer));
if(pipe(file_pipes_1) == 0){
if(pipe(file_pipes_2) == 0){
fork_result = fork();
switch(fork_result){
case -1:
perror("fork error");
exit(EXIT_FAILURE);
case 0://child
close(file_pipes_1[1]);
close(file_pipes_2[0]);
printf("in the child!\n");
read(file_pipes_1[0],buffer, BUFSIZ);
printf("in the child, read_result is \"%s\"\n",buffer);
write(file_pipes_2[1],ch2p, sizeof(ch2p));
printf("in the child, write_result is \"%s\"\n",ch2p);
exit(EXIT_SUCCESS);
default://parent
close(file_pipes_1[0]);
close(file_pipes_2[1]);
printf("in the parent!\n");
write(file_pipes_1[1], p2ch, sizeof(p2ch));
printf("in the parent, write_result is \"%s\"\n",p2ch);
read(file_pipes_2[0],buffer, BUFSIZ);
printf("in the parent, read_result is \"%s\"\n",buffer);
exit(EXIT_SUCCESS);
}
}
}
}
#ifndef DBG
#define DBG
#endif
#undef DBG
#ifdef DBG
#define PRINTF(fmt, args...) printf("file->%s line->%d: " \
fmt, __FILE__, __LINE__, ##args)
#else
#define PRINTF(fmt, args...) do{}while(0);
#endif
int main(void)
{
PRINTF("%s\n", "hello!");
fprintf(stdout, "hello hust!\n");
return 0;
}
#define N 5
#define MAX 5
int nput = 0;
char buf[MAX][50];
char *buffer = "";
char buf_r[100];
sem_t mutex,full,avail;
void *proctor(void *arg);
void *consumer(void *arg);
int i = 0;
int main(int argc, char **argv)
{
int cnt = -1;
int ret;
int nput = 0;
pthread_t id_proce[10];
pthread_t id_consume;
ret = sem_init(&mutex, 0, 1);
ret = sem_init(&avail, 0, N);
ret = sem_init(&full, 0, 0);
for(cnt = 0; cnt < 6; cnt ++ ){
//pthread_create(&id_proce[cnt], NULL, (void *)proctor, &cnt);
pthread_create(&id_proce[cnt], NULL, (void *)proctor, (void *)cnt);
}
pthread_create(&id_consume, NULL, (void *)consumer, NULL);
for(cnt = 0; cnt < 6; cnt ++){
pthread_join(id_proce[cnt], NULL);
}
pthread_join(id_consume,NULL);
sem_destroy(&mutex);
sem_destroy(&avail);
sem_destroy(&full);
exit(EXIT_SUCCESS);
}
void *proctor(void *arg)
{
while(1){
sem_wait(&avail);
sem_wait(&mutex);
if(nput >= MAX * 3){
sem_post(&avail);
//sem_post(&full);
sem_post(&mutex);
return NULL;
}
sscanf(buffer + nput, "%s", buf[nput % MAX]);
//printf("write[%d] \"%s\" to the buffer[%d]\n", (*(int*)arg), buf[nput % MAX],nput % MAX);
printf("write[%d] \"%s\" to the buffer[%d]\n", (int)arg, buf[nput % MAX],nput % MAX);
nput ++;
printf("nput = %d\n", nput);
sem_post(&mutex);
sem_post(&full);
}
return NULL;
}
void *consumer(void *arg)
{
int nolock = 0;
int ret, nread, i;
for(i = 0; i < MAX * 3; i++)
{
sem_wait(&full);
sem_wait(&mutex);
memset(buf_r, 0, sizeof(buf_r));
strncpy(buf_r, buf[i % MAX], sizeof(buf[i % MAX]));
printf("read \"%s\" from the buffer[%d]\n\n",buf_r, i % MAX);
sem_post(&mutex);
sem_post(&avail);
//sleep(1);
}
return NULL;
}
⑧ C语言 信号量的疑惑。。
一个是Posix实现,一个是System V实现
使用的环境不一样
一般来讲SV的适用于进程同步,POSIX适用于线程同步
System V进程同步 api:semget/semop/semctl
POSIX 线程同步 api:sem_init/sem_destroy
不过POSIX貌似还会分为有名和无名信号量上面说的是无名信号量。
具体的还要看使用的环境。
⑨ C语言如何在线程间实现同步和互斥
线程之间的同步和互斥解决的问题是线程对共同资源进行访问。Posix有两种方式:
信号量和互斥锁;信号量适用同时可用的资源为多个的情况;互斥锁适用于线程可用的资源只有一个的情况
1、互斥锁:互斥锁是用加锁的方式来控制对公共资源的原子操作(一旦开始进行就不会被打断的操作)
互斥锁只有上锁和解锁两种状态。互斥锁可以看作是特殊意义的全局变量,因为在同一时刻只有一个线程能够对互斥锁进行操作;只有上锁的进程才可以对公共资源进行访问,其他进程只能等到该进程解锁才可以对公共资源进行操作。
互斥锁操作函数:
pthread_mutex_init();//初始化
pthread_mutex_lock();//上锁 参数:pthread_mutex_t *mutex
pthread_mutex_trylock();//判断上锁 参数:pthread_mutex_t *mutex
pthread_mutex_unlock();//解锁 参数:pthread_mutex_t *mutex
pthread_mutex_release();//消除互斥锁 参数:pthread_mutex_t *mutex
互斥锁分为快速互斥锁、递归互斥锁、检错互斥锁;在 init 的时候确定
int pthread_mutex_t(pthread_mutex_t *mutex, const pthread_mutex_t mutexattr);
第一个参数:进行操作的锁
mutexattr:锁的类型,默认快速互斥锁(阻塞)123456789
2、信号量:信号量本质上是一个计数器,在操作系统做用于PV原子操作;
P操作使计数器-1;V操作使计数器+1.
在互斥操作中可以是使用一个信号量;在同步操作中需要使用多个信号量,并设置不同的初始值安排它们顺序执行
sem_init(); // 初始化操作
sem_wait(); // P操作,计数器减一;阻塞 参数:sem_t *sem
sem_trywait(); // P操作,计数器减一;非阻塞 参数:sem_t *sem
sem_post(); // V操作,计数器加一 参数:sem_t *sem
sem_destroy(); // 销毁信号量 参数:sem_t *sem
sem_init(sem_t *sem, int pshared, int value);
pshared用于指定多少个进程共享;value初始值
⑩ sem_t的介绍
C语言中,信号量的数据类型为结构sem_t,它本质上是一个长整型的数。