当前位置:首页 » 编程语言 » c语言中遍历二叉树的头文件
扩展阅读
webinf下怎么引入js 2023-08-31 21:54:13
堡垒机怎么打开web 2023-08-31 21:54:11

c语言中遍历二叉树的头文件

发布时间: 2023-01-03 09:01:40

① 如何用c语言实现层次遍历二叉树

下面是c语言的前序遍历二叉树的算法,在这里假设的节点元素值假设的为字符型,
说明:算法中用到了结构体,也用到了递归的方法,你看看怎么样,祝你好运!
#include"stdio.h"
typedef
char
elemtype;
typedef
struct
node
//定义链表结构
{
elemtype
data;
//定义节点值
struct
note
*lchild;
//定义左子节点值
struct
note
*rchild;
//定义右节点值
}btree;
preorder(btree
*root)
//前序遍历
{
if(roof!=null)
//如果不是空节点
{
printf("%c\n",root->data);
//输出当前节点
preorder(root->lchild);
//递归前序遍历左子节点
preorder(root->rchild);
//递归前序遍历右子节点
}
return;
//结束
}

② c语言实现二叉树的先序,中序,后序的递归和非递归算法和层次遍历算法

#include<malloc.h> // malloc()等
#include<stdio.h> // 标准输入输出头文件,包括EOF(=^Z或F6),NULL等
#include<stdlib.h> // atoi(),exit()
#include<math.h> // 数学函数头文件,包括floor(),ceil(),abs()等

#define ClearBiTree DestroyBiTree // 清空二叉树和销毁二叉树的操作一样

typedef struct BiTNode
{
int data; // 结点的值
BiTNode *lchild,*rchild; // 左右孩子指针
}BiTNode,*BiTree;

int Nil=0; // 设整型以0为空
void visit(int e)
{ printf("%d ",e); // 以整型格式输出
}
void InitBiTree(BiTree &T)
{ // 操作结果:构造空二叉树T
T=NULL;
}

void CreateBiTree(BiTree &T)
{ // 算法6.4:按先序次序输入二叉树中结点的值(可为字符型或整型,在主程中定义),
// 构造二叉链表表示的二叉树T。变量Nil表示空(子)树。修改
int number;
scanf("%d",&number); // 输入结点的值
if(number==Nil) // 结点的值为空
T=NULL;
else // 结点的值不为空
{ T=(BiTree)malloc(sizeof(BiTNode)); // 生成根结点
if(!T)
exit(OVERFLOW);
T->data=number; // 将值赋给T所指结点
CreateBiTree(T->lchild); // 递归构造左子树
CreateBiTree(T->rchild); // 递归构造右子树
}
}

void DestroyBiTree(BiTree &T)
{ // 初始条件:二叉树T存在。操作结果:销毁二叉树T
if(T) // 非空树
{ DestroyBiTree(T->lchild); // 递归销毁左子树,如无左子树,则不执行任何操作
DestroyBiTree(T->rchild); // 递归销毁右子树,如无右子树,则不执行任何操作
free(T); // 释放根结点
T=NULL; // 空指针赋0
}
}

void PreOrderTraverse(BiTree T,void(*Visit)(int))
{ // 初始条件:二叉树T存在,Visit是对结点操作的应用函数。修改算法6.1
// 操作结果:先序递归遍历T,对每个结点调用函数Visit一次且仅一次
if(T) // T不空
{ Visit(T->data); // 先访问根结点
PreOrderTraverse(T->lchild,Visit); // 再先序遍历左子树
PreOrderTraverse(T->rchild,Visit); // 最后先序遍历右子树
}
}

void InOrderTraverse(BiTree T,void(*Visit)(int))
{ // 初始条件:二叉树T存在,Visit是对结点操作的应用函数
// 操作结果:中序递归遍历T,对每个结点调用函数Visit一次且仅一次
if(T)
{ InOrderTraverse(T->lchild,Visit); // 先中序遍历左子树
Visit(T->data); // 再访问根结点
InOrderTraverse(T->rchild,Visit); // 最后中序遍历右子树
}
}

void PostOrderTraverse(BiTree T,void(*Visit)(int))
{ // 初始条件:二叉树T存在,Visit是对结点操作的应用函数
// 操作结果:后序递归遍历T,对每个结点调用函数Visit一次且仅一次
if(T) // T不空
{ PostOrderTraverse(T->lchild,Visit); // 先后序遍历左子树
PostOrderTraverse(T->rchild,Visit); // 再后序遍历右子树
Visit(T->data); // 最后访问根结点
}
}

void main()
{
BiTree T;
InitBiTree(T); // 初始化二叉树T
printf("按先序次序输入二叉树中结点的值,输入0表示节点为空,输入范例:1 2 0 0 3 0 0\n");
CreateBiTree(T); // 建立二叉树T
printf("先序递归遍历二叉树:\n");
PreOrderTraverse(T,visit); // 先序递归遍历二叉树T
printf("\n中序递归遍历二叉树:\n");
InOrderTraverse(T,visit); // 中序递归遍历二叉树T
printf("\n后序递归遍历二叉树:\n");
PostOrderTraverse(T,visit); // 后序递归遍历二叉树T
}

③ 关于C语言二叉树

首先二叉树的结点是由做孩子指针*lchild 右孩子指针*rchild 以及数据成员data

L表示左孩子R表示右孩子T表示他们的父结点

后序遍历的访问顺序是LRT
中序遍历的访问顺序是LTR
前序遍历的访问顺序是TLR

其中说的前中后就是指访问父结点的次序;

拓扑图在这里没法给出啊。。。

--------------------------------------------

这是我用C++类写的二叉树的头文件,里面有几个函数你可能用不到,你主要看看那几个遍历函数

#include<iostream>

using namespace std;

typedef char elemType;

struct bnode
{
bnode *lchild,*rchild;
elemType data;
};

class BinaryTree
{
public:
BinaryTree();
void create(bnode* &tempR);
void visite(bnode *T);
void preorder(bnode *T);
void inorder(bnode *T);
void postorder(bnode *T);
int high(bnode *T);
void convert(bnode* &tempR,string &a,int i);
void (bnode *T,bnode *&T1);
void level(bnode *T,int i);
void swap(bnode *T);
bnode *root;
private:
int count;
};

BinaryTree::BinaryTree()
{
root = NULL;
count = 0;
}

void BinaryTree::create(bnode* &tempR)
{
elemType x;
cin>>x;
if(x == '.')
{
tempR = NULL;
}
else
{
tempR = new bnode;
count++;
tempR->data = x;
create(tempR->lchild);
create(tempR->rchild);
}
}

void BinaryTree::visite(bnode *T)
{
if(T!=NULL)
cout<<T->data<<' ';
}

void BinaryTree::preorder(bnode *T)
{
if(T!=NULL)
{
visite(T);
preorder(T->lchild);
preorder(T->rchild);
}
}

void BinaryTree::inorder(bnode *T)
{
if(T!=NULL)
{
inorder(T->lchild);
visite(T);
inorder(T->rchild);
}
}

void BinaryTree::postorder(bnode *T)
{
if(T!=NULL)
{
postorder(T->lchild);
postorder(T->rchild);
visite(T);
}
}

int BinaryTree::high(bnode *T)
{
if(T==NULL)
return 0;
else if(high(T->lchild)>high(T->rchild))
return high(T->lchild)+1;
else
return high(T->rchild)+1;
}

void BinaryTree::level(bnode *T,int i)
{
if(T!=NULL)
{
level(T->lchild,i+1);
visite(T);
cout<<i<<' ';
level(T->rchild,i+1);
}
}

void BinaryTree::convert(bnode *&T,string &a,int i)
{
elemType x;
if(i<=a.length())
{
x = a[i-1];
T = new bnode;
count++;
T->data = x;
convert(T->lchild,a,2*i);
convert(T->rchild,a,2*i+1);
}
else
{
T=NULL;
}
}

void BinaryTree::(bnode *T,bnode *&T1)
{
elemType x;
if(T!=NULL)
{
x=T->data;
if(x == '.')
{
T1 = NULL;
}
else
{
T1 = new bnode;
T1->data = x;
T1->lchild = NULL;
T1->rchild = NULL;
(T->lchild,T1->lchild);
(T->rchild,T1->rchild);
}

}
}

void BinaryTree::swap(bnode *T)
{
if(T!=NULL)
{
bnode *temp;
temp=T->lchild;
T->lchild=T->rchild;
T->rchild=temp;
swap(T->lchild);
swap(T->rchild);
}
}

④ C语言 树的生成和遍历

#include //头文件
#include
typedef struct BiTNode
{
char data;
struct BiTNode *lchild,*rchild;
}
BiTNode,*BiTree;//定义结点类型
BiTree CreateBiTree()//创建树
{
char p;BiTree T;
scanf("%c",&p);
if(p==' ')
T=NULL;
else
{
T=(BiTNode *)malloc(sizeof(BiTNode));//为结点开辟空间
T->data=p;
T->lchild=CreateBiTree();
T->rchild=CreateBiTree();
}
return (T);
}
void PreOrder(BiTree T)//先序
{
if(T!=NULL)
{
printf("%c",T->data);
PreOrder(T->lchild);
PreOrder(T->rchild);

}
}
void InOrder(BiTree T)//中序
{
if(T!=NULL)
{
InOrder(T->lchild);
printf("%c",T->data);
InOrder(T->rchild);

}
}
void PostOrder(BiTree T)//后序
{
if(T!=NULL)
{
PostOrder(T->lchild);
PostOrder(T->rchild);
printf("%c",T->data);
}
}
void main()//主函数
{
BiTree Ta;
Ta=CreateBiTree();
printf("先序遍历:");
printf("\n");
PreOrder(Ta);
printf("\n");
printf("中序遍历:");
printf("\n");
InOrder(Ta);
printf("\n");
printf("后序遍历:");
printf("\n");
PostOrder(Ta);
}
给你个简单的例子:
AB***
其中*代表空格
复杂点的例子
ABC**DE*f**g***
其中*代表空格

⑤ 急求C语言写二叉树的遍历

下面是一个用
递归方法
编的二叉树遍历程序,供lz参考。
#include
<stdio.h>//头文件
#include
<stdlib.h>
#include
<malloc.h>
typedef
struct
bitnode
{
char
data;
struct
bitnode
*lchild,*rchild;
}
bitnode,*bitree;//定义结点类型
bitree
createbitree()//创建树
{
char
p;bitree
t;
scanf("%c",&p);
if(p=='
')
t=null;
else
{
t=(bitnode
*)malloc(sizeof(bitnode));//为结点开辟空间
t->data=p;
t->lchild=createbitree();
t->rchild=createbitree();
}
return
(t);
}
void
preorder(bitree
t)//
先序
{
if(t!=null)
{
printf("%c",t->data);
preorder(t->lchild);
preorder(t->rchild);
}
}
void
inorder(bitree
t)//
中序
{
if(t!=null)
{
inorder(t->lchild);
printf("%c",t->data);
inorder(t->rchild);
}
}
void
postorder(bitree
t)//
后序
{
if(t!=null)
{
postorder(t->lchild);
postorder(t->rchild);
printf("%c",t->data);
}
}
void
main()//主函数
{
bitree
ta;
ta=createbitree();
printf("先序遍历:");
printf("\n");
preorder(ta);
printf("\n");
printf("中序遍历:");
printf("\n");
inorder(ta);
printf("\n");
printf("后序遍历:");
printf("\n");
postorder(ta);
}

⑥ C语言二叉树的遍历。

二叉树的前中后遍历(递归与非递归)
#include<stdio.h>
#include<stdlib.h>

typedef struct NODE
{
char value;
struct NODE *LChild;
struct NODE *RChild;
}BiTNode,*BiTree; //二叉树数据结构
BiTree root;
typedef struct node
{
BiTNode *pointer;
struct node *link;
}LinkStackNode,*LinkStack; //链栈数据结构
LinkStack S;
int count = 0;
//BiTNode * InitTree(BiTree Tree);
BiTNode *CreateTree(BiTree Tree); //创建二叉树
void PreOrder(BiTree Tree); //递归前序遍历二叉树
void MidOrder(BiTree Tree); //递归中序遍历二叉树
void PostOrder(BiTree Tree); //递归后序遍历二叉树
void NPreOrder(BiTree Tree); //非递归前序遍历二叉树
void NMidOrder(BiTree Tree); //非递归中序遍历二叉树
void NPostOrder(BiTree Tree); //非递归后序遍历二叉树
//---------------------------------------------------
LinkStackNode *InitLinkStack(LinkStack top); //初始化链栈
void Push(LinkStack top,BiTNode *p); //进栈操作
BiTNode * Pop(LinkStack top); //出栈操作
//int IsEmpty(LinkStack S); //判断栈是否为空
void main()
{
//BiTree tree;
//root = InitTree(tree);
root = CreateTree(root);
PreOrder(root);
printf("\n");
MidOrder(root);
printf("\n");
PostOrder(root);
printf("\n");
NPreOrder(root);
printf("\n");
NMidOrder(root);
printf("\n");
NPostOrder(root);
printf("\n");
}

/*BiTNode * InitTree(BiTree Tree)
{
//BiTNode *root;
//root = Tree;
Tree = (BiTNode *)malloc(sizeof(BiTNode));
Tree = NULL;
//Tree->LChild = NULL;
//Tree->RChild = NULL;
return Tree;
}*/

//二叉树的扩展先序遍历的创建
BiTNode * CreateTree(BiTree Tree)
{
char ch;
ch = getchar();
if(ch == '.')
Tree = NULL;
else
{
Tree = (BiTNode *)malloc(sizeof(BiTNode));
if(Tree)
{
Tree->value = ch;
Tree->LChild = CreateTree(Tree->LChild);
Tree->RChild = CreateTree(Tree->RChild);
}
}
return Tree;
}

//递归前序遍历二叉树
void PreOrder(BiTree Tree)
{
if(Tree)
{
printf("%c",Tree->value);
PreOrder(Tree->LChild);
PreOrder(Tree->RChild);
}
}

//递归中序遍历二叉树
void MidOrder(BiTree Tree)
{
if(Tree)
{
MidOrder(Tree->LChild);
printf("%c",Tree->value);
MidOrder(Tree->RChild);
}
}

//递归后序遍历二叉树
void PostOrder(BiTree Tree)
{
if(Tree)
{
PostOrder(Tree->LChild);
PostOrder(Tree->RChild);
printf("%c",Tree->value);
}
}

//非递归前序遍历二叉树
void NPreOrder(BiTree Tree)
{
BiTNode *p;
S = InitLinkStack(S);
p = Tree;
while(p || count != 0)
{
if(p)
{
if(p->RChild)
Push(S,p->RChild);
printf("%c",p->value);
p = p->LChild;
}
else
p = Pop(S);
}
}

//非递归中序遍历二叉树
void NMidOrder(BiTree Tree)
{
//char ch;
BiTNode *p;
S = InitLinkStack(S);
p = Tree;
while(p || count != 0)
{
if(p)
{
Push(S,p);
p = p->LChild;
}
else
{
p = Pop(S);
printf("%c",p->value);
p = p->RChild;
}
}
}

//非递归后序遍历二叉树
void NPostOrder(BiTree Tree)
{
BiTNode *p,*q = NULL;
S = InitLinkStack(S);
p = Tree;
while(p || count != 0)
{
if(p)
{
Push(S,p);
p = p->LChild;
}
else
{
p = S->link->pointer;
if(p->RChild == NULL || p->RChild == q)
{
p = Pop(S);
printf("%c",p->value);
q = p;
p = NULL;
}
else
{
//p = Pop(S);
p = p->RChild;
}
}
}
}
//初始化链栈
LinkStackNode *InitLinkStack(LinkStack top)
{
top = (LinkStackNode *)malloc(sizeof(LinkStackNode));
return top;
}

//进栈操作
void Push(LinkStack top,BiTNode *p)
{
LinkStackNode *temp;
temp = (LinkStackNode *)malloc(sizeof(LinkStackNode));
if(temp)
{
temp->pointer = p;
temp->link = top->link;
top->link = temp;
count++;
}
}

//出栈操作
BiTNode * Pop(LinkStack top)
{
//char ch;
BiTNode *p;
LinkStackNode *temp;
p = (BiTNode *)malloc(sizeof(BiTNode));
temp = top->link;
if(temp)
{
top->link = temp->link;
p = temp->pointer;
free(temp);
count--;
}
return p;
}

⑦ 二叉树的建立与遍历(C语言)

楼主你好~~~“ф”字符的源代码我忘记了,我这里有一个自己写过的遍历算法
#include<iostream.h>
typedef struct btnode
{
char data;
struct btnode *Lchild,*Rchild;
}*bitreptr;

void Create(bitreptr &p)
{
char n;
p=new btnode;
cin>>n;
if(n!='#')
{
p->data=n;
Create(p->Lchild);
Create(p->Rchild);

}
else
p=NULL;

}

void preorder(bitreptr &p)
{
if(p)
{
cout<<p->data<<" ";
preorder(p->Lchild);
preorder(p->Rchild);
}
}

void midorder(bitreptr &p)
{
if(p)
{
midorder(p->Lchild);
cout<<p->data<<" ";
midorder(p->Rchild);
}
}

void postorder(bitreptr &p)
{
if(p)
{
postorder(p->Lchild);
postorder(p->Rchild);
cout<<p->data<<" ";
}
}

void change(bitreptr &p)
{
bitreptr t,q;
if(p)
{
t=p->Lchild;
q=p->Rchild;
p->Lchild=q;
p->Rchild=t;
change(p->Lchild);
change(p->Rchild);
}
}

void main()
{
char i;
cout<<"请选择所需功能('A'输出该二叉树序列,'B'输出交换后二叉树序列)"<<endl;
cin>>i;
bitreptr p;
cout<<"输入数据:";
Create(p);
switch(i)
{
case 'A':
{
cout<<"前序:";
preorder(p);
cout<<endl;
cout<<"中序:";
midorder(p);
cout<<endl;
cout<<"后序:";
postorder(p);
cout<<endl;
}break;
case 'B':
{
change(p);
cout<<"交换二叉树前序:";
preorder(p);
cout<<endl;
cout<<"交换二叉树中序:";
midorder(p);
cout<<endl;
cout<<"交换二叉树后序:";
postorder(p);
cout<<endl;
}break;
}

}

这个算法输入时要以“#”代表空节点,及将[测试数据] “ABCффDEфGффFффф”改成“ABC##DE#G##F###”即可。另外我的算法包括了二叉树左右子树交换的代码“change(bitreptr &p)”,只要楼主稍作修改就可以得到你想要的完美结果~

⑧ 二叉树的遍历程序!数据结构C语言!要能运行的!

#include<iostream>
using
namespace
std;
#define
OK
1
#define
ERROR
0
#define
OVERFLOW
-1
typedef
int
Status
;
typedef
char
TElemType;
typedef
struct
TreeNode{
//定义的树结点
TElemType
Data;
struct
TreeNode
*lchild,*rchild;
}TreeNode,*Treep;
Treep
CreateTree(Treep
&T)
//使用先序遍历优势创建
{
char
ch;
//
cout<<"\n请你输入你要创建的树元素:";
cin>>ch;
if(ch
==
'#')
//若是"#",代表该节点为空
T
=
NULL;
else
{
T
=
new
TreeNode;
//申请空间
if(!T)
return
ERROR;
//空间申请失败返回错误信息
T->Data
=
ch;
//键盘输入结点信息
CreateTree(T->lchild);
//递归调用创建左子树
CreateTree(T->rchild);
//递归调用创建右子树
}
return
T;
}
void
TreeTreaverseF(Treep
T)
//二叉树先序遍历
{
if(T)
{
cout<<T->Data;
//输出根节点值
TreeTreaverseF(T->lchild);
//递归调用输出左子树
TreeTreaverseF(T->rchild);
//递归调用输出右子树
}
}
void
TreeTreaverseS(Treep
T)
//中序遍历二叉树
{
if(T)
{
TreeTreaverseS(T->lchild);
//递归调用输出左子树
cout<<T->Data;
//输出左节点
TreeTreaverseS(T->rchild);
//递归调用输出右子树
}
}
void
TreeTreaverseT(Treep
T)
{
if(T)
{
TreeTreaverseT(T->lchild);
//递归调用输出左子树
TreeTreaverseT(T->rchild);
//递归调用输出右子树
cout<<T->Data;
//输出右节点
}
}
int
main()
{
Treep
T=NULL;
cout<<"\n开始创建树状结构...\n";
cout<<"\n各元素以空格隔开\n";
CreateTree(T);
cout<<"\n先序遍历输出树...\n";
TreeTreaverseF(T);
cout<<endl<<endl;
cout<<"\n中序遍历输出树...\n";
TreeTreaverseS(T);
cout<<endl<<endl;
cout<<"\n后序遍历输出树...\n";
TreeTreaverseT(T);
cout<<endl<<endl;
return
0;
}

⑨ c语言 关于二叉树的创建和遍历(中序遍历)

#include <stdio.h>
#include <stdlib.h> //需要包含这个头文件,后面exit()用到
#include <malloc.h>
#define OVERFLOW 1
#define NULL 0
#define OK 1

typedef struct BiTNode
{ char data;
struct BiTNode * lchild, * rchild;
} BiTNode, * BiTree;

int flag=0;//增加这个变量,用于标记当前是否是根结点
BiTNode *head;//增加这个变量,用于记录根结点

CreateBiTree ( BiTree T )
{ char ch;
fflush(stdin);//建议加上这个键盘缓冲区清空处理,防止读入了上次输入的回车
scanf ("%c",&ch);
if (ch=='*') T=NULL;
else {
T=( BiTNode * ) malloc( sizeof( BiTNode ) ) ;
if(T==NULL) exit(OVERFLOW); //不是判断if (T) ,而是判断if(T==NULL)
if(flag==0)//如果当前是第一个结点(根结点)
{
head=T;//将head指向根结点
flag=1;//flag置为1
}
T->data=ch;
CreateBiTree(T->lchild);
CreateBiTree(T->rchild);}
return OK;
}

PreOrderTraverse(BiTree T)
{if(T)
{printf("%c",T->data);
PreOrderTraverse(T->lchild);
PreOrderTraverse(T->rchild);}
}

main()
{
BiTree t;
CreateBiTree(t);
PreOrderTraverse(head);//由于在CreateBiTree执行后,t指向的位置已经变为了叶结点了,所以这里传入的应该是根结点head的地址
}

⑩ 二叉树的基本操作 C语言版的

#include<stdio.h>
#include<malloc.h>
int count=0;
typedef struct BiTNode { // 结点结构
char data;
struct BiTNode *lchild, *rchild; // 左右孩子指针
} BiTNode, *BiTree;

void CreateBiTree(BiTree &T){
char ch;
scanf("%c",&ch);
if(ch=='#')T=NULL;
else{
if(!(T = (BiTNode * )malloc(sizeof(BiTNode)))) return;
T->data=ch;
CreateBiTree(T->lchild);
CreateBiTree(T->rchild);
}
}//CreatBiTree
int PreOrder(BiTree T)//先序遍历二叉树的递归算法
{
if (!T) return 0;
printf("%c ",T->data); // 访问结点
PreOrder(T->lchild); // 遍历左子树
PreOrder(T->rchild);// 遍历右子树
return 1;
}
int InOrder(BiTree T)//先序遍历二叉树的递归算法
{
if (!T) return 0;

InOrder(T->lchild); // 遍历左子树
printf("%c ",T->data); // 访问结点
InOrder(T->rchild);// 遍历右子树
return 1;
}
int PostOrder(BiTree T)//先序遍历二叉树的递归算法
{
if (!T) return 0;

PostOrder(T->lchild); // 遍历左子树
PostOrder(T->rchild);// 遍历右子树
printf("%c ",T->data); // 访问结点
return 1;
}
int CountLeaf (BiTree T){
//返回指针T所指二叉树中所有叶子结点个数
if (!T ) return 0;//空树
if (!T->lchild && !T->rchild) return 1;//只有树根
int m;
int n;
m = CountLeaf( T->lchild);

n = CountLeaf( T->rchild);

return (m+n);

} // CountLeaf

void main(){
int a;
BiTree T;
CreateBiTree(T);
printf("先序遍历:");
PreOrder(T);
printf("中序遍历:");
InOrder(T);
printf("后序遍历:");
PostOrder(T);
a=CountLeaf(T);
printf("叶子节点个数:");
printf("%d",a);
}