❶ 如何用c语言编写求对称矩阵的特征值和特征向量的程序
//数值计算程序-特征值和特征向量
//////////////////////////////////////////////////////////////
//约化对称矩阵为三对角对称矩阵
//利用Householder变换将n阶实对称矩阵约化为对称三对角矩阵
//a-长度为n*n的数组,存放n阶实对称矩阵
//n-矩阵的阶数
//q-长度为n*n的数组,返回时存放Householder变换矩阵
//b-长度为n的数组,返回时存放三对角阵的主对角线元素
//c-长度为n的数组,返回时前n-1个元素存放次对角线元素
void eastrq(double a[],int n,double q[],double b[],double c[]);
//////////////////////////////////////////////////////////////
//求实对称三对角对称矩阵的全部特征值及特征向量
//利用变型QR方法计算实对称三对角矩阵全部特征值及特征向量
//n-矩阵的阶数
//b-长度为n的数组,返回时存放三对角阵的主对角线元素
//c-长度为n的数组,返回时前n-1个元素存放次对角线元素
//q-长度为n*n的数组,若存放单位矩阵,则返回实对称三对角矩阵的特征向量组
// 若存放Householder变换矩阵,则返回实对称矩阵A的特征向量组
//a-长度为n*n的数组,存放n阶实对称矩阵
int ebstq(int n,double b[],double c[],double q[],double eps,int l);
//////////////////////////////////////////////////////////////
//约化实矩阵为赫申伯格(Hessen berg)矩阵
//利用初等相似变换将n阶实矩阵约化为上H矩阵
//a-长度为n*n的数组,存放n阶实矩阵,返回时存放上H矩阵
//n-矩阵的阶数
void echbg(double a[],int n);
//////////////////////////////////////////////////////////////
//求赫申伯格(Hessen berg)矩阵的全部特征值
//返回值小于0表示超过迭代jt次仍未达到精度要求
//返回值大于0表示正常返回
//利用带原点位移的双重步QR方法求上H矩阵的全部特征值
//a-长度为n*n的数组,存放上H矩阵
//n-矩阵的阶数
//u-长度为n的数组,返回n个特征值的实部
//v-长度为n的数组,返回n个特征值的虚部
//eps-控制精度要求
//jt-整型变量,控制最大迭代次数
int edqr(double a[],int n,double u[],double v[],double eps,int jt);
//////////////////////////////////////////////////////////////
//求实对称矩阵的特征值及特征向量的雅格比法
//利用雅格比(Jacobi)方法求实对称矩阵的全部特征值及特征向量
//返回值小于0表示超过迭代jt次仍未达到精度要求
//返回值大于0表示正常返回
//a-长度为n*n的数组,存放实对称矩阵,返回时对角线存放n个特征值
//n-矩阵的阶数
//u-长度为n*n的数组,返回特征向量(按列存储)
//eps-控制精度要求
//jt-整型变量,控制最大迭代次数
int eejcb(double a[],int n,double v[],double eps,int jt);
//////////////////////////////////////////////////////////////
选自<<徐世良数值计算程序集(C)>>
每个程序都加上了适当地注释,陆陆续续干了几个月才整理出来的啊。
今天都给贴出来了
#include "stdio.h"
#include "math.h"
//约化对称矩阵为三对角对称矩阵
//利用Householder变换将n阶实对称矩阵约化为对称三对角矩阵
//a-长度为n*n的数组,存放n阶实对称矩阵
//n-矩阵的阶数
//q-长度为n*n的数组,返回时存放Householder变换矩阵
//b-长度为n的数组,返回时存放三对角阵的主对角线元素
//c-长度为n的数组,返回时前n-1个元素存放次对角线元素
void eastrq(double a[],int n,double q[],double b[],double c[])
{
int i,j,k,u,v;
double h,f,g,h2;
for (i=0; i<=n-1; i++)
{
for (j=0; j<=n-1; j++)
{
u=i*n+j; q[u]=a[u];
}
}
for (i=n-1; i>=1; i--)
{
h=0.0;
if (i>1)
{
for (k=0; k<=i-1; k++)
{
u=i*n+k;
h=h+q[u]*q[u];
}
}
if (h+1.0==1.0)
{
c[i-1]=0.0;
if (i==1)
{
c[i-1]=q[i*n+i-1];
}
b[i]=0.0;
}
else
{
c[i-1]=sqrt(h);
u=i*n+i-1;
if (q[u]>0.0)
{
c[i-1]=-c[i-1];
}
h=h-q[u]*c[i-1];
q[u]=q[u]-c[i-1];
f=0.0;
for (j=0; j<=i-1; j++)
{
q[j*n+i]=q[i*n+j]/h;
g=0.0;
for (k=0; k<=j; k++)
{
g=g+q[j*n+k]*q[i*n+k];
}
if (j+1<=i-1)
{
for (k=j+1; k<=i-1; k++)
{
g=g+q[k*n+j]*q[i*n+k];
}
}
c[j-1]=g/h;
f=f+g*q[j*n+i];
}
h2=f/(h+h);
for (j=0; j<=i-1; j++)
{
f=q[i*n+j];
g=c[j-1]-h2*f;
c[j-1]=g;
for (k=0; k<=j; k++)
{
u=j*n+k;
q[u]=q[u]-f*c[k-1]-g*q[i*n+k];
}
}
b[i]=h;
}
}
b[0]=0.0;
for (i=0; i<=n-1; i++)
{
if ((b[i]!=0.0)&&(i-1>=0))
{
for (j=0; j<=i-1; j++)
{
g=0.0;
for (k=0; k<=i-1; k++)
{
g=g+q[i*n+k]*q[k*n+j];
}
for (k=0; k<=i-1; k++)
{
u=k*n+j;
q[u]=q[u]-g*q[k*n+i];
}
}
}
u=i*n+i;
b[i]=q[u];
q[u]=1.0;
if (i-1>=0)
{
for (j=0; j<=i-1; j++)
{
q[i*n+j]=0.0;
q[j*n+i]=0.0;
}
}
}
return;
//求实对称三对角对称矩阵的全部特征值及特征向量
//利用变型QR方法计算实对称三对角矩阵全部特征值及特征向量
//n-矩阵的阶数
//b-长度为n的数组,返回时存放三对角阵的主对角线元素
//c-长度为n的数组,返回时前n-1个元素存放次对角线元素
//q-长度为n*n的数组,若存放单位矩阵,则返回实对称三对角矩阵的特征向量组
// 若存放Householder变换矩阵,则返回实对称矩阵A的特征向量组
//a-长度为n*n的数组,存放n阶实对称矩阵
int ebstq(int n,double b[],double c[],double q[],double eps,int l)
{
int i,j,k,m,it,u,v;
double d,f,h,g,p,r,e,s;
c[n-1]=0.0;
d=0.0;
f=0.0;
for (j=0; j<=n-1; j++)
{
it=0;
h=eps*(fabs(b[j])+fabs(c[j]));
if (h>d)
{
d=h;
}
m=j;
while ((m<=n-1)&&(fabs(c[m])>d))
{
m=m+1;
}
if (m!=j)
{
do
{
if (it==l)
{
printf("fail\n");
return(-1);
}
it=it+1;
g=b[j];
p=(b[j+1]-g)/(2.0*c[j]);
r=sqrt(p*p+1.0);
if (p>=0.0)
{
b[j]=c[j]/(p+r);
}
else
{
b[j]=c[j]/(p-r);
}
h=g-b[j];
for (i=j+1; i<=n-1; i++)
{
b[i]=b[i]-h;
}
f=f+h;
p=b[m];
e=1.0;
s=0.0;
for (i=m-1; i>=j; i--)
{
g=e*c[i];
h=e*p;
if (fabs(p)>=fabs(c[i]))
{
e=c[i]/p;
r=sqrt(e*e+1.0);
c[i+1]=s*p*r;
s=e/r;
e=1.0/r;
}
else
{
e=p/c[i];
r=sqrt(e*e+1.0);
c[i+1]=s*c[i]*r;
s=1.0/r;
e=e/r;
}
p=e*b[i]-s*g;
b[i+1]=h+s*(e*g+s*b[i]);
for (k=0; k<=n-1; k++)
{
u=k*n+i+1;
v=u-1;
h=q[u];
q[u]=s*q[v]+e*h;
q[v]=e*q[v]-s*h;
}
}
c[j]=s*p;
b[j]=e*p;
}
while (fabs(c[j])>d);
}
b[j]=b[j]+f;
}
for (i=0; i<=n-1; i++)
{
k=i; p=b[i];
if (i+1<=n-1)
{
j=i+1;
while ((j<=n-1)&&(b[j]<=p))
{
k=j;
p=b[j];
j=j+1;
}
}
if (k!=i)
{
b[k]=b[i];
b[i]=p;
for (j=0; j<=n-1; j++)
{
u=j*n+i;
v=j*n+k;
p=q[u];
q[u]=q[v];
q[v]=p;
}
}
}
return(1);
}
//约化实矩阵为赫申伯格(Hessen berg)矩阵
//利用初等相似变换将n阶实矩阵约化为上H矩阵
//a-长度为n*n的数组,存放n阶实矩阵,返回时存放上H矩阵
//n-矩阵的阶数
void echbg(double a[],int n)
{ int i,j,k,u,v;
double d,t;
for (k=1; k<=n-2; k++)
{
d=0.0;
for (j=k; j<=n-1; j++)
{
u=j*n+k-1;
t=a[u];
if (fabs(t)>fabs(d))
{
d=t;
i=j;
}
}
if (fabs(d)+1.0!=1.0)
{
if (i!=k)
{
for (j=k-1; j<=n-1; j++)
{
u=i*n+j;
v=k*n+j;
t=a[u];
a[u]=a[v];
a[v]=t;
}
for (j=0; j<=n-1; j++)
{
u=j*n+i;
v=j*n+k;
t=a[u];
a[u]=a[v];
a[v]=t;
}
}
for (i=k+1; i<=n-1; i++)
{
u=i*n+k-1;
t=a[u]/d;
a[u]=0.0;
for (j=k; j<=n-1; j++)
{
v=i*n+j;
a[v]=a[v]-t*a[k*n+j];
}
for (j=0; j<=n-1; j++)
{
v=j*n+k;
a[v]=a[v]+t*a[j*n+i];
}
}
}
}
return;
}
//求赫申伯格(Hessen berg)矩阵的全部特征值
//利用带原点位移的双重步QR方法求上H矩阵的全部特征值
//返回值小于0表示超过迭代jt次仍未达到精度要求
//返回值大于0表示正常返回
//a-长度为n*n的数组,存放上H矩阵
//n-矩阵的阶数
//u-长度为n的数组,返回n个特征值的实部
//v-长度为n的数组,返回n个特征值的虚部
//eps-控制精度要求
//jt-整型变量,控制最大迭代次数
int edqr(double a[],int n,double u[],double v[],double eps,int jt)
{
int m,it,i,j,k,l,ii,jj,kk,ll;
double b,c,w,g,xy,p,q,r,x,s,e,f,z,y;
it=0;
m=n;
while (m!=0)
{
l=m-1;
while ((l>0)&&(fabs(a[l*n+l-1])>eps*(fabs(a[(l-1)*n+l-1])+fabs(a[l*n+l]))))
{
l=l-1;
}
ii=(m-1)*n+m-1;
jj=(m-1)*n+m-2;
kk=(m-2)*n+m-1;
ll=(m-2)*n+m-2;
if (l==m-1)
{
u[m-1]=a[(m-1)*n+m-1];
v[m-1]=0.0;
m=m-1; it=0;
}
else if (l==m-2)
{
b=-(a[ii]+a[ll]);
c=a[ii]*a[ll]-a[jj]*a[kk];
w=b*b-4.0*c;
y=sqrt(fabs(w));
if (w>0.0)
{
xy=1.0;
if (b<0.0)
{
xy=-1.0;
}
u[m-1]=(-b-xy*y)/2.0;
u[m-2]=c/u[m-1];
v[m-1]=0.0; v[m-2]=0.0;
}
else
{
u[m-1]=-b/2.0;
u[m-2]=u[m-1];
v[m-1]=y/2.0;
v[m-2]=-v[m-1];
}
m=m-2;
it=0;
}
else
{
if (it>=jt)
{
printf("fail\n");
return(-1);
}
it=it+1;
for (j=l+2; j<=m-1; j++)
{
a[j*n+j-2]=0.0;
}
for (j=l+3; j<=m-1; j++)
{
a[j*n+j-3]=0.0;
}
for (k=l; k<=m-2; k++)
{
if (k!=l)
{
p=a[k*n+k-1];
q=a[(k+1)*n+k-1];
r=0.0;
if (k!=m-2)
{
r=a[(k+2)*n+k-1];
}
}
else
{
x=a[ii]+a[ll];
y=a[ll]*a[ii]-a[kk]*a[jj];
ii=l*n+l;
jj=l*n+l+1;
kk=(l+1)*n+l;
ll=(l+1)*n+l+1;
p=a[ii]*(a[ii]-x)+a[jj]*a[kk]+y;
q=a[kk]*(a[ii]+a[ll]-x);
r=a[kk]*a[(l+2)*n+l+1];
}
if ((fabs(p)+fabs(q)+fabs(r))!=0.0)
{
xy=1.0;
if (p<0.0)
{
xy=-1.0;
}
s=xy*sqrt(p*p+q*q+r*r);
if (k!=l)
{
a[k*n+k-1]=-s;
}
e=-q/s;
f=-r/s;
x=-p/s;
y=-x-f*r/(p+s);
g=e*r/(p+s);
z=-x-e*q/(p+s);
for (j=k; j<=m-1; j++)
{
ii=k*n+j;
jj=(k+1)*n+j;
p=x*a[ii]+e*a[jj];
q=e*a[ii]+y*a[jj];
r=f*a[ii]+g*a[jj];
if (k!=m-2)
{
kk=(k+2)*n+j;
p=p+f*a[kk];
q=q+g*a[kk];
r=r+z*a[kk];
a[kk]=r;
}
a[jj]=q;
a[ii]=p;
}
j=k+3;
if (j>=m-1)
{
j=m-1;
}
for (i=l; i<=j; i++)
{
ii=i*n+k;
jj=i*n+k+1;
p=x*a[ii]+e*a[jj];
q=e*a[ii]+y*a[jj];
r=f*a[ii]+g*a[jj];
if (k!=m-2)
{
kk=i*n+k+2;
p=p+f*a[kk];
q=q+g*a[kk];
r=r+z*a[kk];
a[kk]=r;
}
a[jj]=q;
a[ii]=p;
}
}
}
}
}
return(1);
}
//求实对称矩阵的特征值及特征向量的雅格比法
//利用雅格比(Jacobi)方法求实对称矩阵的全部特征值及特征向量
//返回值小于0表示超过迭代jt次仍未达到精度要求
//返回值大于0表示正常返回
//a-长度为n*n的数组,存放实对称矩阵,返回时对角线存放n个特征值
//n-矩阵的阶数
//u-长度为n*n的数组,返回特征向量(按列存储)
//eps-控制精度要求
//jt-整型变量,控制最大迭代次数
int eejcb(double a[],int n,double v[],double eps,int jt)
{
int i,j,p,q,u,w,t,s,l;
double fm,cn,sn,omega,x,y,d;
l=1;
for (i=0; i<=n-1; i++)
{
v[i*n+i]=1.0;
for (j=0; j<=n-1; j++)
{
if (i!=j)
{
v[i*n+j]=0.0;
}
}
}
while (1==1)
{
fm=0.0;
for (i=0; i<=n-1; i++)
{
for (j=0; j<=n-1; j++)
{
d=fabs(a[i*n+j]);
if ((i!=j)&&(d>fm))
{
fm=d;
p=i;
q=j;
}
}
}
if (fm<eps)
{
return(1);
}
if (l>jt)
{
return(-1);
}
l=l+1;
u=p*n+q;
w=p*n+p;
t=q*n+p;
s=q*n+q;
x=-a[u];
y=(a[s]-a[w])/2.0;
omega=x/sqrt(x*x+y*y);
if (y<0.0)
{
omega=-omega;
}
sn=1.0+sqrt(1.0-omega*omega);
sn=omega/sqrt(2.0*sn);
cn=sqrt(1.0-sn*sn);
fm=a[w];
a[w]=fm*cn*cn+a[s]*sn*sn+a[u]*omega;
a[s]=fm*sn*sn+a[s]*cn*cn-a[u]*omega;
a[u]=0.0;
a[t]=0.0;
for (j=0; j<=n-1; j++)
{
if ((j!=p)&&(j!=q))
{
u=p*n+j;
w=q*n+j;
fm=a[u];
a[u]=fm*cn+a[w]*sn;
a[w]=-fm*sn+a[w]*cn;
}
}
for (i=0; i<=n-1; i++)
{
if ((i!=p)&&(i!=q))
{
u=i*n+p;
w=i*n+q;
fm=a[u];
a[u]=fm*cn+a[w]*sn;
a[w]=-fm*sn+a[w]*cn;
}
}
for (i=0; i<=n-1; i++)
{
u=i*n+p;
w=i*n+q;
fm=v[u];
v[u]=fm*cn+v[w]*sn;
v[w]=-fm*sn+v[w]*cn;
}
}
return(1);
}
❷ 四阶矩阵,所有元素都是1,要怎么算特征值,求简单点的方法
|A|=0,则它必有特征值0,又因为r(A)=1,AX=0的解空间的维数是4-r(A)=3,从而0是A的三重特征值,由于A的各行加起来都是4,则设X0=(1,1,1,1)^T,便有AX0=4X0,从而4也是A的特征值,故A的全部特征值0,0,0,4。
判断矩阵可对角化的充要条件:
矩阵可对角化有两个充要条件:
1、矩阵有n个不同的特征向量。
2、特征向量重根的重数等于基础解系的个数。对于第二个充要条件,则需要出现二重以上的重特征值可验证(一重相当于没有重根)。
(2)c语言求4阶特征值与特征向量扩展阅读:
求n阶矩阵A的特征值的基本方法:
根据定义可改写为关系式,为单位矩阵(其形式为主对角线元素为λ-,其余元素乘以-1)。要求向量具有非零解,即求齐次线性方程组有非零解的值。即要求行列式。
解此行列式获得的值即为矩阵A的特征值。将此值回代入原式求得相应的,即为输入这个行列式的特征向量。
❸ 如何用c语言写求矩阵的特征值和特征向量
方法1:推导出det(aA-I)=0的解析式,这应该是个四次方程,因为只有4阶,不是很困难的,写出后就可以用方程求根的方法求解(如newton迭代法)
方法2:如果你是对角优势阵,也就是对角线上的值的绝对值,比同行所有其他元素的绝对值的和还大,可以通过局部旋转的方法把矩阵“能量”集中到对角线
这个是方法,你可以自己去写一下试试~
❹ 特征值和特征向量怎么求
对于特征值λ和特征向量a,得到Aa=aλ
于是把每个特征值和特征向量写在一起
注意对于实对称矩阵不同特征值的特征向量一定正交
得到矩阵P,再求出其逆矩阵P^(-1)
可以解得原矩阵A=PλP^(-1)
设A为n阶矩阵,若存在常数λ及n维非零向量x,使得Ax=λx,则称λ是矩阵A的特征值,x是A属于特征值λ的特征向量。
一个矩阵A的特征值可以通过求解方程pA(λ) = 0来得到。 若A是一个n×n矩阵,则pA为n次多项式,因而A最多有n个特征值。
反过来,代数基本定理说这个方程刚好有n个根,如果重根也计算在内的话。所有奇数次的多项式必有一个实数根,因此对于奇数n,每个实矩阵至少有一个实特征值。在实矩阵的情形,对于偶数或奇数的n,非实数特征值成共轭对出现。
(4)c语言求4阶特征值与特征向量扩展阅读
求矩阵的全部特征值和特征向量的方法如下:
第一步:计算的特征多项式;
第二步:求出特征方程的全部根,即为的全部特征值;
第三步:对于的每一个特征值,求出齐次线性方程组。
若是的属于的特征向量,则也是对应于的特征向量,因而特征向量不能由特征值惟一确定.反之,不同特征值对应的特征向量不会相等,亦即一个特征向量只能属于一个特征值。
在A变换的作用下,向量ξ仅仅在尺度上变为原来的λ倍。称ξ是A 的一个特征向量,λ是对应的特征值(本征值),是(实验中)能测得出来的量,与之对应在量子力学理论中,很多量并不能得以测量,当然,其他理论领域也有这一现象。
❺ C语言求特征向量
特征值及特征向量 //利用变型QR方法计算实对称三对角矩阵全部特征值及特征向量 //n-矩阵的阶数 //b- 特征值及特征向量 //利用变型QR方法计算实对称三对角矩阵全部特征值及特征向量 //n-矩阵的阶数 //b-
❻ (在线等!)求特征值和特征向量的步骤是
令|A-λE|=0,求出λ值。A是n阶矩阵,Ax=λx,则x为特征向量,λ为特征值。
设矩阵为A,特征向量是t,特征值是x,At=x*t,移项得(A-x*I)t=0,
∵t不是零向量
∴A-x*I=0,(2-x)(1-x)(-x)-4(2-x)=0,化简得(x-2)(x^2-x-4)=0,
∴矩阵有三个特征值:2,(1±根号17)/2。把特征值分别代入方程,设x=(a,b,c),可得到对于x=2,b=0,a+c=0,对应x=2的特征向量为(-1,0,1)(未归一化),其它x的一样做。
求矩阵的全部特征值和特征向量:
1、计算的特征多项式;
2、求出特征方程的全部根,即为的全部特征值;
3、对于的每一个特征值,求出齐次线性方程组:的一个基础解系,则的属于特征值的全部特征向量是(其中是不全为零的任意实数)
[注]:若是的属于的特征向量,则也是对应于的特征向量,因而特征向量不能由特征值惟一确定。反之,不同特征值对应的特征向量不会相等,亦即一个特征向量只能属于一个特征值。
以上内容参考:网络-特征值
❼ 如何用C语言求一般矩阵的特征值和特征向量
C语言并没有封装这类函数,只能自己实现。MATLAB倒是可以直接求。
自己实现的话可以用雅克比迭代法、高斯-赛戴尔迭代法等算法
❽ 怎样求特征值和特征向量
求特征值的传统方法是令特征多项式| AE-A| = 0,求出A的特征值,对于A的任一特征值h,特征方程( aE- A)X= 0的所有非零解X即为矩阵A的属于特征值N的特征向量两者的计算是分割的,一个是计算行列式,另一个是解齐次线性方程组,且计算量都较大。使用matlab可以方便的计算任何复杂的方阵的特征值和特征向量:
1、首先需要知道计算矩阵的特征值和特征向量要用eig函数,可以在命令行窗口中输入help eig,查看一下eig函数的用法,如下图所示:
注意事项:
特征值和特征向量的应用:
1、可以用在研究物理、化学领域的微分方程、连续的或离散的动力系统中。例如,在力学中,惯量的特征向量定义了刚体的主轴。惯量是决定刚体围绕质心转动的关键数据;
2、数学生态学家用来预测原始森林遭到何种程度的砍伐,会造成猫头鹰的种群灭亡;
3、着名的图像处理中的PCA方法,选取特征值最高的k个特征向量来表示一个矩阵,从而达到降维分析+特征显示的方法,还有图像压缩的K-L变换。再比如很多人脸识别,数据流模式挖掘分析等方面。
❾ 如何用C语言求一般矩阵(非对称矩阵)的特征值和特征向量
用C++或者VB编程很烦人的,matlab中命令:[a,b]=eig(A)就是求解矩阵A的特征值和特征值对应的向量,他们分别会构成一个由特征值组成的对角矩阵b和一个由对应特征值的特征列向量组成的a矩阵。或者命令a=eig[A]就只有特征值组成的对角矩阵a,别去想用C++和VB之类的,这些软件用来求解矩阵和matlab相差太远了。我之前也想过编程解决,人家一个命令就能解决的问题何不取巧呢?