A. 结构体求解
sqlstm = {12,111}——声明了一个struct sqlexd结构类型的变量sqlstm,并给其成员成员sqlvsn赋值12、给成员arrsiz赋值111。其余成员均置0(NULL、""等)。
B. 关于SQL数据库以及JAVA的一些问题,在线急等
1 付键 也就是FK formary key
www.cxrs.net/bbs 程序交流中心,这是专门为新手学习设立的论坛
二、SQL
Structur query language
结构化查询语言,是操作关系型数据库中的对象。
DDL(Data definition language 数据定义语言),用于建表或删表操作,以及对表约束进行修改
create table , alter table , drop table 对表结构的增删操作。
DML(Data manipulation language 数据操作语言),向表中插入纪录,修改纪录
insert , update , delete , merge
transaction ,事务控制语言,由DML语句组成的,commit; ,rollback;
select 查询语句
dcl 授权语句 grant
三、Oracle
DBMS 数据库管理系统
有Oracle提供,还提供AS,应用服务器
DBA 数据库管理员
四、相关操作
1、sqlplus 访问数据库命令(本地访问/远程访问),和数据库建立连接的命令,是数据库操作的环境
sqlplus 用户名/密码
2、show user 显示当前用户的用户名
改变身份可以直接connect 用户名/密码 --- 这个是sqlplus命令
在sqlplus中可以使用 ! 可以在shell和sqlplus间切换,!shell命令 可以在sqlplus中使用shell命令。
实际上是sqlplus开了子进程来执行shell命令。
3、Oracle数据库中的表分两类:用户表(用户使用操作的表),系统表(数据库系统维护的表,也叫数据字典)
对用户表的DDL操作出发了对系统表的DML操作!
五、基本语法
1、select查询语句
select table_name from user_tables;(查询系统表)
以上的查询语句就是查询本用户下所拥有的所有表的表名。
投影操作,只查看选择的字段的信息。
选择操作,查看字段中的特定某些信息。
联接操作,多表查询,通过表间连接,查寻出多表中的信息
(1)select table_name from user_tables;(查询系统表)
以上的查询语句就是查询本用户下所拥有的所有表的表名。
(2)sqlplus的buffer中会缓存最后一条sql语句,可以使用"/"来执行这最后一条sql语句,也可以使用
edit命令来编辑最后一条sql语句。
l命令(list)(sqlplus命令)可以显示buffer中最后一条命令。
sqlplus命令可以缩写
(3)desc [表名]
这是一条sqlplus命令,注意他不是sql语句,这条命令用于查看表的结构。descript的缩写
[字段名] [字段的类型],这是使用完desc命令后显示的表结构。
(4)select [表的字段名1],[表的字段名2], ... from 表名;
select * from 表名; 查寻表中所有字段的信息
(5)关键字不等拆分,sql语句,以及表名,字段名是大小写不敏感的。
sql语句要以";"结尾,来表示sql语句结束,如果不加";"系统不会执行此条sql语句,并提示。
在Oracle中字符显示是左对齐,数值右对齐。
(6)在select 语句中可以使用数学表达式。
select [表达式(必须包含本表字段名)],[...],.... from 表名;
运算的优先级的先乘除后加减,同级自左向右运算,括号改变优先级。
(7)别名
select [字段名或表达式] ["别名"],[...] ["..."],.... from 表名;
可以通过在字段名或表达式后加空格"别名",可以给列,或者表达式结果其别名。
表达别名必须加双引号。
(8)字符串拼接使用||符号
select 目标字段名||" "||目标字段名 from 表名;
注意:在Oracle中的字符串要用'..'包含
别名中需要使用空格,或是大小写敏感时需要用".."包含。
练习:
自己写一条SQL语句,执行的结果是select * from ...;
其中...是每张系统表的表名
即在每张系统表的表名前加“select * from” ,后加“;”
select 'select * from '||table_name||';' from user_tables;
2、处理错误
(1)!oerr ora [错误号] ,系统可以显示错误的原因和如何修改。如果命令错误输入可以使用edit或ed来修改输入错误。
实际上是在编辑缓存文件中的最后一条sql语句。
也可以使用 (change) c /错误字段/正确字段,来进行替换操作进行修改。
只有在Linux平台使用
! 相当于 host ,没有断连接,只是切换了一下,执行shell命令
(2)edit命令来编辑最后一条sql语句。
3、sqlplus设置
set pause on 回车响应,分屏显示,只在本会话中有效
set pause off 关闭分屏显示。
set pause "..." 设置分屏显示的提示信息。
set pause on 先输出提示信息,回车响应,分屏显示
set head off 提头输出关闭
set feed off 结尾输出关闭
set echo off 回写关闭
spool 文件名.sql 写入指定文件
spool off 关闭写入。
4、sql脚本
也就是在文件中写有sql语句的文件,可以在sqlplus中运行。
引入sql脚本
sqlplus 用户名/密码 @sql脚本 (注意:在用户名密码输入结束后一定要加空格然后再写@sql脚本)
在脚本中最后一行写上“exit”,则运行完脚本以后,回到shell上
5、
Oracle中的空值 空值会当无穷大处理,其实空值根本就不会存储,只是看作是无穷大。
Oracle中控制处理函数 NVL(字段名,值),这个字段中的空值替换为指定值,如果不为空,则会返回其原值。
例:select (salary*12)*(NVL(commission_pct,0)/100+1) salary,first_name from s_emp;
distinct关键字,去掉重复行(这个关键字会触发排序操作)
例: select distinct dept_id,title from s_emp;
dept_id与title的联合不唯一
注意:distinct,关键字之后会对from之前的字段进行排重操作。
6、column命令 --- sqlplus命令
column命令 列格式的定义
column 目标列名 查看这个类是否定义了格式
column 目标列名 format a.. 设置列宽。
column last_name heading 'Employee|Name' FORMAT A15
设置题头
这其中的'|'是换行符
column salary justify left format $99,990.00
定义数字显示格式
注意:如果不满足显示的格式,就会把数据显示为"#"
column salary justify left format $00,000.00
会出现$00,928.00 ,用0补齐
column 列名 clear (清除列格式定义)
注意:只有sqlplus命令才有简写,并且在使用sqlplus命令时结尾也不能加分号。
六、选择操作
1、order by
排序子句 ASC(默认,升序) DESC(降序)
order by 目标列名(别名) 排序顺序(不写排序顺序,会默认为升序排序)
例:select first_name from s_emp order by first_name;
select first_name from s_emp order by first_name desc;
注意:升序空值在结果的末尾,降序空值在结果的最前面。
2、where子句
where子句使用在 select ... from ... 后面,用来选择所需(符合条件的)的记录
where后面跟的是表达式 也就是 XXX=XXX, XXX between X and X ,XXX in(X,X,X)
like '...' 通配查询
between ... and ... ,表示结果在这之间,between and是一个闭区间,
也就相当于... <= ... and ... >= ... 。
!=,<>,^=,这三个都标识不等于,<=,>=,=,这些运算符都可以使用。
... in (va1,val2,...) 判断结果是否在这个枚举中存在
like '...' 字符串通配查询,'%'表示多个字符,'_',表示一个字符。
注意:转义的用法:like ‘S\_%’ escape ‘\’
... and ... 表示只有两个条件同时满足
... or ... 表示条件只要满足其中只一就可以
all ... 是要求都满足条件。
not .....,则是可以与以上的条件产生反效果。
空值会对not in造成影响,也就是不等于任何值,但是空值例外。
... is null 使用来判断值是否为空。
注意:Oracle中的字符串是严格区分大小写的。
(1)注意数据类型,数字类型直接写,字符用'......' ,缺省格式的Date可以用'......',只有别名
才用" "包含。
(2)选择合适的运算符
七、单行函数
1.字符函数
字符是大小写敏感的
转小写 lower(字段名) --- 其中的参数可以是一个字符串常量或是一个字段名
转大写 upper(字段名)
首字母大写 initcap(字段名)
字符串拼接 concat(字段1, 字段2)
截取子串 substr(字段名, 起始位置,取字符个数)
al表,是专门用于函数测试和运算的,他只有一条记录
字符串拼接 concat(...,....)
求指定子串 substr(...,起始位置,取字符个数)
可以使用"-"表示从右向左取,取的时候可以从左往友取。
例:select substr(first_name,-2,2) sub from s_emp;(取后两个)
select substr(first_name,2,2) sub from s_emp;(取前两个)
2,数值函数
四舍五入 round(数据,保留小数点后几位)
可以用负数表示小数点前,0,表示小数点后第一位,也就是保留个位,-1表示个位(保留到十 位)。
例:select round(15.36,1) from al;
截取数字函数 trunc(数据,保留的位数(小数点后位数)) 截取个位之后补0
例:select trunc(123.456,1) from al;
3,日期函数
日期格式,
全日期格式 世纪信息,年月日,时分秒。
缺省日期格式,日-月-年 dd-mon-rr
修改当前会话的日期格式,会按照指定的格式输出日期
alter session set nls_date_format='yyyy mm dd hh24:mi:ss';
返回当前日期 sysdate
例:select sysdate from al;
select sysdate+1 from al; 获得明天的日期,加1,单位是天
日期是格式敏感的
求两个日期间相隔了多少个月 months_between(date1,date2)
加减指定数量的月份 add_months(date,月数),月数可以为负,负值就是减去相应的月数。
从date日期开始的第一个星期五 next_day(date,FriDay)
返回月末的日期 last_day(date)
截取日期 trunc(date,'年或月或日或时分秒')
例:select next_day(sysdate,2) from al;
例:select trunc(add_months(sysdate,1),'month') from al;
ROUND('25-MAY-95','MONTH') 01-JUN-95
ROUND('25-MAY-95 ','YEAR') 01-JAN-95
TRUNC('25-MAY-95 ','MONTH') 01-MAY-95
TRUNC('25-MAY-95 ','YEAR') 01-JAN-95
练习:
返回下个月的第一天的日期
select round(last_day(sysdate),'MONTH') from al;
select add_months(trunc(sysdate,'MONTH'),1);
4,不同数据类型间转换函数
将日期转成字符 tochar(date,'日期格式')
日期格式要用有效格式,格式大小写敏感 'yyyy mm dd hh24:mi:ss',
'year'(全拼的年),'mm'(数字表示的月) 'month'(全拼的月),'day'(星期的全拼),'ddspth' (日期的全拼) 'yy mm dd'
例:select to_char(sysdate,'yyyy mm dd hh24:mi:ss')from al;
将字符转换成数字 to_number('...')
将数字转字符to_char(number,'fmt') fmt是数字格式
将字符串转成日期 to_date('...','日期格式')
例:select to_char(to_date('2006 11 03','yyyy mm dd'),'dd-month-yy') from al;
1、等值连接
select [表别名1.字段名1],[表别名2.字段名2],...
from 表1 表别名1 ,表2 表别名2
where 表别名1.字段名3=表别名2.字段名4;
表连接时,当表与表之间有同名字段时,可以加上表名或表的别名,加以区分,使用时要用
表名.字段名或表别名.字段名(列名)。当表的字段名是唯一时,可以不用加上表名或表的别名。
注意:当为表起了别名,就不能再使用表名.字段名。
例:select a.first_name,a.last_name,b.name
from s_emp a,s_dept b
where a.dept_id=b.id;
2、非等值连接
select [表别名1.字段名1],[表别名2.字段名2],...
from 表1 表别名1 ,表2 表别名2
where 表别名1.字段名3 ..... 表别名2.字段名4
....可以使比较运算符,也可以使其他的除了'='的运算符
例:select e.ename, d.grade,e.sal
from emp e,salgrade d
where e.sal between d.losal and d.hisal;
3、自连接
用别名把一张表中的数据分成两部分,然后在使用条件过滤。
select [表别名1.字段名1],[表别名2.字段名2],...
from 表1 表别名1 ,表1 表别名2
where 表别名1.字段名3=表别名2.字段名4;
例:select a.first_name ename,b.first_name cname
from s_emp a,s_emp b
where a.manager_id=b.id;
以上所提到的表连接,都叫做内连接,严格匹配两表的记录。
4、外连接
会使用一方表中的所有记录去和另一格表中的记录按条件匹配,空值也会匹配,这个表中的所有记录都会显示,数据库会模拟出记录去和那些不匹配的记录匹配。
例:select a.first_name enamei,a.id,b.first_name cname,b.id
from s_emp a,s_emp b
where a.manager_id=b.id(+);
即用a表中的数据去匹配b表的,若b表中有null,系统模拟纪录与其匹配
注意:要把那一方的记录全部都显示出来,还有注意条件(+)跟在要全部选出的对端。
外连接的应用:
列出哪个部门没有员工
select e.deptno,d.deptno
from emp e,dept d
where e.deptno(+)=d.deptno
and e.deptno is null;
三、组函数
group 组
group by 分组子句,按指定的分组规则分组 ,这个group by 子句可以跟在 select 语句后或是 having后面。
group by子句也会出发排序操作,会按分组字段排序。
select [组函数或分组的字段名] ,... from 表名 group by [字段名1],[字段名2],.....;
例:select avg(salary) from s_emp group by dept_id;
注意:组函数可以处理一组数据,返回一个值。
组函数会忽略空值。
avg(..),求平均值,sum(..),求和 这两个函数的参数只能是number型的。
以下所提到的函数可以使用任意类型做参数。
count(..),用来统计记录数,可以使用排重命令。count(...)默认使用的是all。
max(..),min(..)求最大值和最小值,
count(*),统计表中记录数。
例:select max(b.name),avg(a.salary), max(c.name)
from s_emp a,s_dept b,s_region c
where a.dept_id=b.id and b.region_id=c.id
group by b.dept_id;
注意:只要写了group by子句,
*** select后就只能用group by后的字段或者是组函数。 ***
where子句只能够过滤记录,放单行函数。
having子句可以过滤组函数结果或是分组的信息,且写在group by子句后。
例:
select max(b.name),avg(a.salary), max(c.name)
from s_emp a,s_dept b,s_region c
where a.dept_id=b.id and b.region_id=c.id
group by b.id
having sum(a.salary)>4000;
column 也可以定义有别名的列的格式。
column "别名" 格式定义
注意:要先过滤掉不需要的记录,然后再进行分组操作,提高效率。
四、子查询
子查询,就是可以嵌在任何的sql语句中的select语句。
在select语句中嵌套子查询时,会先执行子查询。一般的会将子查询放在运算符的右边。
注意:在使用子查询时,要注意这个运算符是单行的(也就是只能是单值),还是多行运算符(范围,多值,in)。
配合使用子查询返回的结果必须符合运算符的用法。
例:
select first_name,title
from s_emp
where title=any(select title from s_emp
where last_name='Smith')
and upper(last_name)!='SMITH';
select first_name,title
from s_emp
where title in (select title from s_emp
where last_name='Smith')
and upper(last_name)!='SMITH';
五、将业务需求转换成可操作的表
一: 需求分析
二: 画E-R图
三: 转换成表关系
四: 割接(新老系统交接)
五:
E-R图属性:
* 为强制且非空属性
o 可选属性(可以有值也可以没有)
#* 表示此属性唯一且非空
实体关系:
mastbean maybean
数量关系: 多对一关系
一对多关系
一对一关系
多对多关系
第一范式,所有的属性都必须是单值,也就是属性只表示单一的意义。(记录可以重复,没有任何限制)
第二范式,属性要求唯一且非空,(记录不可重复,但是数据可能会出现冗余)。
第三范式,非主属性只能依赖于主属性,不能依赖于其他非主属性。(解决数据冗余问题)
六、约束
约束是针对表中的字段进行定义的。
primary key (主键约束 PK)保证实体的完整性,保证记录的唯一
主键约束,唯一且非空,并且每一个表中只能有一个主键,有两个字段联合作为主键,只有两个字段放在一起唯一标识记录,叫做联合主键。
foreign key (外建约束 FK)保证引用的完整性,
外键约束,外键的取值是受另外一张表中的主键或唯一值得约束,不能够取其他值,只能够引用主键会唯一键的值,被引用的表,叫做parent table(父表),引用方的表叫做child table(子表),要想创建子表,就要先创建父表,后创建子表,记录的插入也是如此,先父表后子表,删除记录,要先删除子表记录,后删除父表记录,要修改记录,如果要修改父表的记录要保证没有被子表引用。要删表时,要先删子表,后删除父表。
unuque key(唯一键),值为唯一
index(索引)是数据库特有的一类对象,view(示图)
典型的一对多 class 对应多个学生。
student table class table
______________________________ _________________________
| id | name | address| class_id| | id |class_desc|class_num|
|(PK)|______|________|___(FK)__| |(pk)|__________|_________|
| | | | | | | | |
一对一
student tabel shenfenzheng table
____________________ _________________________________
| id | name | address| | s_id |shenfen_desc|shenfen_num|
|(PK)|______|________| |(PK,FK)|____________|___________|
| | | | | | | |
多对多
student tabel zhongjian table kecheng table
____________________ _________________________________ __________________
| id | name | address| | s_id |shenfen_desc|shenfen_num| | kid | kechengname|
|(PK)|______|________| |(FK,FK)|____________|___________| | (PK)|____________|
| | | | |联合主键| | | | | |
引用对方表的主键,当作本身的主键,所以这个表的主键,既是主键又是外建
建表和其他相关操作
DDL语句
创建表:
create table 表名 ( 字段名1 类型(数据长度)(default ...) 约束条件, 字段名2 类型(数据长度) 约束条件 );
Oracle数据库中的数据类型
varchar(长度),可变长字符串,char(长度) 定长
number(..,..),number 表示浮点数,或者是整数
long 大对象,clog 字符的大对象,相当于文本文件在表中只存放一个相当于只针对值
blog 二进制的大对象,也是以相当于指针的形式存放的。
primary key约束:
主键约束的定义:
第一种定义形式:
create table test(c number primary key ); 列级约束
第二种定义形式:
create table test(c number , primary key(c) ) ; 表级约束
create table test( c1 number constraints pkc1 primary key ); 此约束有名字: pkc1
create table test(c number , c2 number , primary key (c ,c1) ) ; 用表级约束可以实现联合主键
foregin key (fk) 外键约束:
(先定义父表,再定义子表)
carete table parent(c1 number primary key );
create table child (c number primary key , c2 number references parent(c1));
或表级约束定义:
create table child( c number primary key , c2 number , foreign key(c2) references parent(c1));
如果两个字段都为唯一且非空,这时可以定义成UK+NOT NULL
(PK或UK)一对多(FK)
(PK+UK)一对一(FK) 或 (PK)一对一(PK)
多对对多关系,一般都通过一张中间表来分解成两个一对多的表
建立表
create table[schema]table
schema: 一个用户对应一个schema 不同用户下的表不能互相查看
select count(*) from s_dept; <===> select count(*) from sd0611.s_dept;
一个表中只能存储一个LONG类型
CLOB 存储大的文本对象
BLOB 存储大的二进制对象
create table test(c1 number primary key); 设置主键
create table test(c1 number constraints test_c1 primary key); 定义约束名,默认约束名为SYS_ 在列后面定义约束称为列级约束
create table test(c1 number primary key(c1)); 所有列定义完后再定义约束称为表级约束(能定义联合主键)
cretae table test(c1 number,c2 number,priary key(c1,c2)); 定义联合主键
create table child(c1 number primary key); 先要定义父表
create table child(c1 number primary key, c2 number references parent(c1)); 然后定义子表 references parent定义外键
create table child(c1 number primary key, c2 number references parent(c1) on delete cascate); on delete cascate为级联删除
create table child(c1 number primary key, c2 number references parent(c1) on delete set null); on delete set null删除后将外键置空
create table child (c1 number primary key, c2 number,foreignkey(c2) references parent(c1));
二、约束
1、非空约束(not null)
这是一个列级约束
在建表时,在数据类型的后面加上 not null ,也就是在插入时不允许插入空值。
例:create table student(id number primary key,name varchar2(32) not null,address varchar2(32));
2、unique 唯一约束
唯一约束,是会忽略空值的,唯一约束,要求插入的记录中的值是为一的。
例:create table student(id number,name varchar2(32),address varchar2(32),primary key (id),unique (address));
如果创建一个uk,系统自动建一个唯一索引
3、pk、uk
Oralce支持级联删除,不支持级联更新
4、check约束
检查约束,可以按照指定条件,检查记录的插入。check中不能使用尾列,不能使用函数,不能引用其他字段。
例:create table sal (a1 number , check(a1>1000));
C. 静态SQL和动态SQL的区别和测试实例
所谓SQL的动态和静态,是指SQL语句在何时被编译和执行,二者都是用在SQL嵌入式编程中的。
静态SQL:在高级语言中,如果嵌入了SQL语句,而这个SQL语句的主体结构已经明确,例如在c的一段代码中有一个待执行的SQL“select * from t1 where c1>5”,在编译阶段,就可以将这段SQL交给数据库管理系统去分析,数据库软件可以对这段SQL进行语法解析,生成数据库方面的可执行代码,这样的SQL称为静态SQL,即在编译阶段就可以确定数据库要做什么事情。
动态SQL:如果嵌入的SQL没有明确给出,如在c中定义了一个字符数组类型的变量name:char name[32];,然后采用prepared Statement对象的execute方法去执行这个sql,该sql的值可能等于从文本框中读取的一个SQL或者从键盘输入的SQL,但具体是什么,在编译时无法确定,只有等到程序运行起来,在执行的过程中才能确定,这种SQL叫做动态SQL。例如每一种数据库软件都有能够执行SQL语句的界面,那个界面接收的SQL就是动态SQL,因为数据库厂商在做这个界面时,并不知道用户会输入哪些SQL,只有在该界面执行后,接收了用户的实际输入,才知道SQL是什么。
注意:在SQL中如果某些参数没有确定,如”select * from t1 where c1>? and c2#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<unistd.h>
EXEC SQL INCLUDE SQLCA;
EXEC SQL INCLUDE SQLDA;
/*此函数属于静态SQL编程*/
int DBSelect_static(){
EXEC SQL BEGIN DECLARE SECTION;
char _typename[32];
short _length;
EXEC SQL END DECLARE SECTION;
EXEC SQL SELECT typename,length
INTO :_typename,:_length
FROM syscat.columns
WHERE tabname='SYSCOLUMNS' and colname='DEFAULT';
printf("【typename:%s】【length:%d】\n",_typename,_length);
}
/*此函数属于静态SQL编程:指定函数参数作为SQL语句的变量*/
int DBSelect_static_param(char *tbl_str,char *col_str){
EXEC SQL BEGIN DECLARE SECTION;
char _typename1[32];
short _length1;
EXEC SQL END DECLARE SECTION;
EXEC SQL SELECT typename,length
INTO :_typename1,:_length1
FROM syscat.columns
WHERE tabname='tbl_str' and colname='col_str';
printf("【typename:%s】【length:%d】\n",_typename1,_length1);
}
/*此函数属于动态SQL编程:SQL语句的结构是不确定的,需要根据用户的输入补全SQL语句*/
int DBUpdate_dynamic(){
EXEC SQL BEGIN DECLARE SECTION;
char _address1[32];
char _tablename[32];
char _tmp[32];
char buf[256];
EXEC SQL END DECLARE SECTION;
EXEC SQL SELECT count(address1) INTO :_tmp FROM cisaddressinfo WHERE customid='100000100000000000178';
if(0==_tmp) {printf("Not Found!\n");return -1;}
memset(buf,0x00,sizeof(buf));
sprintf(buf,"update ");
printf("Pls input : tablename ->");
scanf("%s",&_tablename);
strcat(buf,_tablename);
strcat(buf," set address1=? where customid='100000100000000000178'");
EXEC SQL PREPARE project FROM :buf;
if(sqlca.sqlcode) perror("PREPARE");
printf("Pls input : address1 ->");
scanf("%s",&_address1);
EXEC SQL EXECUTE project USING :_address1;
if(sqlca.sqlcode) perror("EXECUTE");
EXEC SQL COMMIT WORK;
if(sqlca.sqlcode) perror("COMMIT");
}
/*此函数属于动态SQL编程:使用sqlda数据结构组装复杂多变的动态SQL*/
int DBSelect_dynamic(){
EXEC SQL BEGIN DECLARE SECTION;
char hostVarStmt[256];
EXEC SQL END DECLARE SECTION;
// 声明两个 SQLDA 指针,minsqlda 将是一个最小的 SQLDA 结构,用于 PREPARE 语句,
// 此时结果集的字段数量未知,所以只需一个最小的 SQLDA,即包含 HEADER 和一个 SQLVAR
struct sqlda * minsqlda = (struct sqlda*)malloc(SQLDASIZE(1));
struct sqlda * fulsqlda = NULL;
strcpy(hostVarStmt, "select WUID from workprocess where muid = '185001'");
// PREPARE 将填写 minsqlda 的 header,sqldabc 为 SQLDA 总长度,sqln 为 SQLVAR 数量,即字段数量
EXEC SQL PREPARE STMT INTO :*minsqlda FROM :hostVarStmt;
// 根据从 minsqlda 中获取的长度,分配完整的 SQLDA 结构 fulsqlda,其中将包括合适数量的 SQLVAR 结构
//结构sqlda的成员变量sqld返回select查询语句的字段的数目,可以根据此变量分配内存
fulsqlda = (struct sqlda *)malloc(SQLDASIZE(minsqlda->sqld));
// 使用 DESCRIBE 语句,获取结果集中每个字段的描述信息,包括各字段的类型 (sqltype) 和长度 (sqllen)
EXEC SQL DESCRIBE STMT INTO :*fulsqlda;
int i;
for(i=0;i<minsqlda->sqld;i++)
{
// 根据每个字段的长度,分配内存,将地址存储在对应 SQLVAR 的 sqldata 中
// fulsqlda->sqlvar[i].sqldata=malloc(fulsqlda->sqlvar[i].sqllen);
fulsqlda->sqlvar[i].sqldata=malloc(32);
fulsqlda->sqlvar[i].sqlind=malloc(sizeof(short));
}
// 声明游标
EXEC SQL DECLARE c1 CURSOR FOR STMT;
EXEC SQL OPEN c1;
EXEC SQL WHENEVER not found goto no_more_data;
// 读取记录,记录中每个字段的内容将写入 fulsqlda 中对应 SQLVAR 结构的 sqldata 指向的内存
// EXEC SQL FETCH c1 USING DESCRIPTOR :*fulsqlda;
// 循环读取所有记录
for (;;)
{
EXEC SQL FETCH c1 USING DESCRIPTOR :*fulsqlda;
for(i=0;i<minsqlda->sqld;i++){
printf("%d %s\n",fulsqlda->sqlvar[i].sqltype,fulsqlda->sqlvar[i].sqldata);
usleep(10000);
}
}
return 0;
no_more_data:
printf("\nEND of Data\n");
free(minsqlda);
free(fulsqlda);
EXEC SQL CLOSE c1;
return 0;
}
int main(){
/*连接数据库*/
EXEC SQL CONNECT TO ezeelink USER ezeelink USING EA704075ezeelink;
DBSelect_static();
DBSelect_static_param("SYSCOLUMNS","DEFAULT");
DBUpdate_dynamic();
DBSelect_dynamic();
no_more_data:
;
return 0;
}
案例输出结果如下:
【typename:VARCHAR】【length:254】
【typename:VARCHAR】【length:254】
Pls input : tablename ->cisaddressinfo
Pls input : address1 ->ShangHai
452 cis505
452 cis506
452 pub806
452 ips007
452 ips032
452 dps302
END of Data
注意:
如果使用动态SQL编程编写select查询语句并保存结果,需要使用sqlda数据结构的,同时使用SQL的特性和功能,如:PREPARE ,EXECUTE ,DESCRIBE , DECLARE CURSE C1 FOR … , OPEN CURSE , CLOSE CURSE ….等等
建议:
动态SQL适用于表名及查询字段名未知的情况。在已知查询字段名及表名的情况下,使用动态SQL(字符串拼接方式)会增加硬解析的开销,在这种情况下,建议使用静态SQL,这样可以提高执行效率。在过程过程用拼凑的动态sql效率并不高,有时候还不如程序直接传递sql.静态SQL是前置编译绑定,动态SQL是后期执行时才编译绑定
D. SQL语句执行过程详解
SQL语句执行过程详解
一条sql,plsql的执行到底是怎样执行的呢?
一、SQL语句执行原理:
第一步:客户端把语句发给服务器端执行当我们在客户端执行 select 语句时,客户端会把这条 SQL 语句发送给服务器端,让服务器端的
进程来处理这语句。也就是说,Oracle 客户端是不会做任何的操作,他的主要任务就是把客户端产生
的一些 SQL 语句发送给服务器端。虽然在客户端也有一个数据库进程,但是,这个进程的作用跟服务器
上的进程作用事不相同的。服务器上的数据库进程才会对SQL 语句进行相关的处理。不过,有个问题需
要说明,就是客户端的进程跟服务器的进程是一一对应的。也就是说,在客户端连接上服务器后,在客户
端与服务器端都会形成一个进程,客户端上的我们叫做客户端进程;而服务器上的我们叫做服务器进程。
第二步:语句解析
当客户端把 SQL 语句传送到服务器后,服务器进程会对该语句进行解析。同理,这个解析的工作,
也是在服务器端所进行的。虽然这只是一个解析的动作,但是,其会做很多“小动作”。
1. 查询高速缓存(library cache)。服务器进程在接到客户端传送过来的 SQL 语句时,不
会直接去数据库查询。而是会先在数据库的高速缓存中去查找,是否存在相同语句的执行计划。如果在
数据高速缓存中,则服务器进程就会直接执行这个 SQL 语句,省去后续的工作。所以,采用高速数据缓
存的话,可以提高 SQL 语句的查询效率。一方面是从内存中读取数据要比从硬盘中的数据文件中读取
数据效率要高,另一方面,也是因为这个语句解析的原因。
不过这里要注意一点,这个数据缓存跟有些客户端软件的数据缓存是两码事。有些客户端软件为了
提高查询效率,会在应用软件的客户端设置数据缓存。由于这些数据缓存的存在,可以提高客户端应用软
件的查询效率。但是,若其他人在服务器进行了相关的修改,由于应用软件数据缓存的存在,导致修改的
数据不能及时反映到客户端上。从这也可以看出,应用软件的数据缓存跟数据库服务器的高速数据缓存
不是一码事。
2. 语句合法性检查(data dict cache)。当在高速缓存中找不到对应的 SQL 语句时,则服
务器进程就会开始检查这条语句的合法性。这里主要是对 SQL 语句的语法进行检查,看看其是否合乎
语法规则。如果服务器进程认为这条 SQL 语句不符合语法规则的时候,就会把这个错误信息,反馈给客
户端。在这个语法检查的过程中,不会对 SQL 语句中所包含的表名、列名等等进行 SQL 他只是语法
上的检查。
3. 语言含义检查(data dict cache)。若 SQL 语句符合语法上的定义的话,则服务器进程
接下去会对语句中的字段、表等内容进行检查。看看这些字段、表是否在数据库中。如果表名与列名不
准确的话,则数据库会就会反馈错误信息给客户端。所以,有时候我们写 select 语句的时候,若语法
与表名或者列名同时写错的话,则系统是先提示说语法错误,等到语法完全正确后,再提示说列名或表名
错误。
4. 获得对象解析锁(control structer)。当语法、语义都正确后,系统就会对我们需要查询
的对象加锁。这主要是为了保障数据的一致性,防止我们在查询的过程中,其他用户对这个对象的结构发
生改变。
5. 数据访问权限的核对(data dict cache)。当语法、语义通过检查之后,客户端还不一定
能够取得数据。服务器进程还会检查,你所连接的用户是否有这个数据访问的权限。若你连接上服务器
的用户不具有数据访问权限的话,则客户端就不能够取得这些数据。有时候我们查询数据的时候,辛辛苦
苦地把 SQL 语句写好、编译通过,但是,最后系统返回个 “没有权限访问数据”的错误信息,让我们气
半死。这在前端应用软件开发调试的过程中,可能会碰到。所以,要注意这个问题,数据库服务器进程先
检查语法与语义,然后才会检查访问权限。
6. 确定最佳执行计划 ?。当语句与语法都没有问题,权限也匹配的话,服务器进程还是不会直接对
数据库文件进行查询。服务器进程会根据一定的规则,对这条语句进行优化。不过要注意,这个优化是有
限的。一般在应用软件开发的过程中,需要对数据库的 sql 语言进行优化,这个优化的作用要大大地大
于服务器进程的自我优化。所以,一般在应用软件开发的时候,数据库的优化是少不了的。当服务器进程
的优化器确定这条查询语句的最佳执行计划后,就会将这条 SQL 语句与执行计划保存到数据高速缓存
(library cache)。如此的话,等以后还有这个查询时,就会省略以上的语法、语义与权限检查的步骤,
而直接执行 SQL 语句,提高 SQL 语句处理效率。
第三步:语句执行
语句解析只是对 SQL 语句的语法进行解析,以确保服务器能够知道这条语句到底表达的是什么意
思。等到语句解析完成之后,数据库服务器进程才会真正的执行这条 SQL 语句。这个语句执行也分两
种情况。
一是若被选择行所在的数据块已经被读取到数据缓冲区的话,则服务器进程会直接把这个数据传递
给客户端,而不是从数据库文件中去查询数据。
若数据不在缓冲区中,则服务器进程将从数据库文件中查询相关数据,并把这些数据放入到数据缓冲
区中(buffer cache)。
第四步:提取数据
当语句执行完成之后,查询到的数据还是在服务器进程中,还没有被传送到客户端的用户进程。所以,
在服务器端的进程中,有一个专门负责数据提取的一段代码。他的作用就是把查询到的数据结果返回给
用户端进程,从而完成整个查询动作。从这整个查询处理过程中,我们在数据库开发或者应用软件开发过
程中,需要注意以下几点:
一是要了解数据库缓存跟应用软件缓存是两码事情。数据库缓存只有在数据库服务器端才存在,在
客户端是不存在的。只有如此,才能够保证数据库缓存中的内容跟数据库文件的内容一致。才能够根据
相关的规则,防止数据脏读、错读的发生。而应用软件所涉及的数据缓存,由于跟数据库缓存不是一码事
情,所以,应用软件的数据缓存虽然可以提高数据的查询效率,但是,却打破了数据一致性的要求,有时候
会发生脏读、错读等情况的发生。所以,有时候,在应用软件上有专门一个功能,用来在必要的时候清除
数据缓存。不过,这个数据缓存的清除,也只是清除本机上的数据缓存,或者说,只是清除这个应用程序
的数据缓存,而不会清除数据库的数据缓存。
二是绝大部分 SQL 语句都是按照这个处理过程处理的。我们 DBA 或者基于 Oracle 数据库的
开发人员了解这些语句的处理过程,对于我们进行涉及到 SQL 语句的开发与调试,是非常有帮助的。有
时候,掌握这些处理原则,可以减少我们排错的时间。特别要注意,数据库是把数据查询权限的审查放在
语法语义的后面进行检查的。所以,有时会若光用数据库的权限控制原则,可能还不能满足应用软件权限
控制的需要。此时,就需要应用软件的前台设置,实现权限管理的要求。而且,有时应用数据库的权限管
理,也有点显得繁琐,会增加服务器处理的工作量。因此,对于记录、字段等的查询权限控制,大部分程
序涉及人员喜欢在应用程序中实现,而不是在数据库上实现。
DBCC DROPCLEANBUFFERS
从缓冲池中删除所有清除缓冲区。
DBCC FREEPROCCACHE
从过程缓存中删除所有元素。
DBCC FREESYSTEMCACHE
从所有缓存中释放所有未使用的缓存条目
SQL语句中的函数、关键字、排序等执行顺序:
1. FROM 子句返回初始结果集。
2. WHERE 子句排除不满足搜索条件的行。
3. GROUP BY 子句将选定的行收集到 GROUP BY 子句中各个唯一值的组中。
4. 选择列表中指定的聚合函数可以计算各组的汇总值。
5. 此外,HAVING 子句排除不满足搜索条件的行。
6. 计算所有的表达式;
7. 使用 order by 对结果集进行排序。
8. 查找你要搜索的字段。
二、SQL语句执行完整过程:
1.用户进程提交一个 sql 语句:
update temp set a=a*2,给服务器进程。
2.服务器进程从用户进程把信息接收到后,在 PGA 中就要此进程分配所需内存,存储相关的信息,如在会
话内存存储相关的登录信息等。
3.服务器进程把这个 sql 语句的字符转化为 ASCII 等效数字码,接着这个 ASCII 码被传递给一个
HASH 函数,并返回一个 hash 值,然后服务器进程将到shared pool 中的 library cache 中去查找是否存在相
同的 hash 值,如果存在,服务器进程将使用这条语句已高速缓存在 SHARED POOL 的library cache 中的已
分析过的版本来执行。
4.如果不存在,服务器进程将在 CGA 中,配合 UGA 内容对 sql,进行语法分析,首先检查语法的正确性,接
着对语句中涉及的表,索引,视图等对象进行解析,并对照数据字典检查这些对象的名称以及相关结构,并根据
ORACLE 选用的优化模式以及数据字典中是否存在相应对象的统计数据和是否使用了存储大纲来生成一个
执行计划或从存储大纲中选用一个执行计划,然后再用数据字典核对此用户对相应对象的执行权限,最后生成
一个编译代码。
5.ORACLE 将这条 sql 语句的本身实际文本、HASH 值、编译代码、与此语名相关联的任何统计数据
和该语句的执行计划缓存在 SHARED POOL 的 library cache中。服务器进程通过 SHARED POOL 锁存
器(shared pool latch)来申请可以向哪些共享 PL/SQL 区中缓存这此内容,也就是说被SHARED POOL 锁存
器锁定的 PL/SQL 区中的块不可被覆盖,因为这些块可能被其它进程所使用。
6.在 SQL 分析阶段将用到 LIBRARY
CACHE,从数据字典中核对表、视图等结构的时候,需要将数据
字典从磁盘读入 LIBRARY
CACHE,因此,在读入之前也要使用LIBRARY
CACHE 锁存器(library cache
pin,library cache lock)来申请用于缓存数据字典。 到现在为止,这个 sql 语句已经被编译成可执行的代码了,
但还不知道要操作哪些数据,所以服务器进程还要为这个 sql 准备预处理数据。
7.首先服务器进程要判断所需数据是否在 db buffer 存在,如果存在且可用,则直接获取该数据,同时根据
LRU 算法增加其访问计数;如果 buffer 不存在所需数据,则要从数据文件上读取首先服务器进程将在表头部
请求 TM 锁(保证此事务执行过程其他用户不能修改表的结构),如果成功加 TM 锁,再请求一些行级锁(TX
锁),如果 TM、TX 锁都成功加锁,那么才开始从数据文件读数据,在读数据之前,要先为读取的文件准备好
buffer 空间。服务器进程需要扫面 LRU list 寻找 free db buffer,扫描的过程中,服务器进程会把发现的所有
已经被修改过的 db buffer 注册到 dirty list 中, 这些 dirty buffer 会通过 dbwr 的触发条件,随后会被写出到
数据文件,找到了足够的空闲 buffer,就可以把请求的数据行所在的数据块放入到 db buffer 的空闲区域或者
覆盖已经被挤出 LRU list 的非脏数据块缓冲区,并排列在 LRU list 的头部,也就是在数据块放入 DB
BUFFER 之前也是要先申请 db buffer 中的锁存器,成功加锁后,才能读数据到 db buffer。
8.记日志 现在数据已经被读入到 db buffer 了,现在服务器进程将该语句所影响的并被读
入 db buffer 中的这些行数据的 rowid 及要更新的原值和新值及 scn 等信息从 PGA 逐条的写入 redo log
buffer 中。在写入 redo log buffer 之前也要事先请求 redo log buffer 的锁存器,成功加锁后才开始写入,当
写入达到 redo log buffer 大小的三分之一或写入量达到 1M 或超过三秒后或发生检查点时或者 dbwr 之前
发生,都会触发 lgwr 进程把 redo log buffer 的数据写入磁盘上的 redo file 文件中(这个时候会产生log file
sync 等待事件)
已经被写入 redofile 的 redo log buffer 所持有的锁存器会被释放,并可被后来的写入信息覆盖,
redo log buffer是循环使用的。Redo file 也是循环使用的,当一个 redo file 写满后,lgwr 进程会自动切换到
下一 redo file(这个时候可能出现 log fileswitch(checkpoint complete)等待事件)。如果是归档模式,归档进
程还要将前一个写满的 redo file 文件的内容写到归档日志文件中(这个时候可能出现 log file
switch(archiving needed)。
9.为事务建立回滚段 在完成本事务所有相关的 redo log buffer 之后,服务器进程开始改写这个 db buffer
的块头部事务列表并写入 scn,然后 包含这个块的头部事务列表及 scn 信息的数据副本放入回滚段中,将
这时回滚段中的信息称为数据块的“前映像“,这个”前映像“用于以后的回滚、恢复和一致性读。(回滚段可以
存储在专门的回滚表空间中,这个表空间由一个或多个物理文件组成,并专用于回滚表空间,回滚段也可在其它
表空间中的数据文件中开辟。
10.本事务修改数据块 准备工作都已经做好了,现在可以改写 db buffer 块的数据内容了,并在块的头部写
入回滚段的地址。
11.放入 dirty list 如果一个行数据多次 update 而未 commit,则在回滚段中将会有多个“前映像“,除了第
一个”前映像“含有 scn 信息外,其他每个“前映像“的头部都有 scn 信息和“前前映像”回滚段地址。一个
update 只对应一个 scn,然后服务器进程将在 dirty list 中建立一
条指向此 db buffer 块的指针(方便 dbwr 进程可以找到 dirty list 的 db buffer 数据块并写入数据文件中)。
接着服务器进程会从数据文件中继续读入第二个数据块,重复前一数据块的动作,数据块的读入、记日志、建
立回滚段、修改数据块、放入 dirty list。当 dirty queue 的长度达到阀值(一般是 25%),服务器进程将通知
dbwr 把脏数据写出,就是释放 db buffer 上的锁存器,腾出更多的 free db buffer。前面一直都是在说明
oracle 一次读一个数据块,其实 oracle 可以一次读入多个数据块(db_file_multiblock_read_count 来设置一
次读入块的个数)
说明:
在预处理的数据已经缓存在 db buffer 或刚刚被从数据文件读入到 db buffer 中,就要根据 sql 语句
的类型来决定接下来如何操作。
1>如果是 select 语句,则要查看 db buffer 块的头部是否有事务,如果有事务,则从回滚段中读取数据;如
果没有事务,则比较 select 的 scn 和 db buffer 块头部的 scn,如果前者小于后者,仍然要从回滚段中读取数据;
如果前者大于后者,说明这是一非脏缓存,可以直接读取这个 db buffer 块的中内容。
2>如果是 DML 操作,则即使在 db buffer 中找到一个没有事务,而且 SCN 比自己小的非脏
缓存数据块,服务器进程仍然要到表的头部对这条记录申请加锁,加锁成功才能进行后续动作,如果不成功,则要
等待前面的进程解锁后才能进行动作(这个时候阻塞是 tx 锁阻塞)。
用户 commit 或 rollback 到现在为止,数据已经在 db buffer 或数据文件中修改完
成,但是否要永久写到数文件中,要由用户来决定 commit(保存更改到数据文件) rollback 撤销数据的更改)。
1.用户执行 commit 命令
只有当 sql 语句所影响的所有行所在的最后一个块被读入 db buffer 并且重做信息被写入 redo log
buffer(仅指日志缓冲区,而不包括日志文件)之后,用户才可以发去 commit 命令,commit 触发 lgwr 进程,但不
强制立即 dbwr来释放所有相应 db buffer 块的锁(也就是no-force-at-commit,即提交不强制写),也就是说有
可能虽然已经 commit 了,但在随后的一段时间内 dbwr 还在写这条 sql 语句所涉及的数据块。表头部的行锁
并不在 commit 之后立即释放,而是要等 dbwr 进程完成之后才释放,这就可能会出现一个用户请求另一用户
已经 commit 的资源不成功的现象。
A .从 Commit 和 dbwr 进程结束之间的时间很短,如果恰巧在 commit 之后,dbwr 未结束之前断电,因为
commit 之后的数据已经属于数据文件的内容,但这部分文件没有完全写入到数据文件中。所以需要前滚。由
于 commit 已经触发 lgwr,这些所有未来得及写入数据文件的更改会在实例重启后,由 smon 进程根据重做日
志文件来前滚,完成之前 commit 未完成的工作(即把更改写入数据文件)。
B.如果未 commit 就断电了,因为数据已经在 db buffer 更改了,没有 commit,说明这部分数据不属于数
据文件,由于 dbwr 之前触发 lgwr 也就是只要数据更改,(肯定要先有 log) 所有 DBWR,在数据文件上的修改
都会被先一步记入重做日志文件,实例重启后,SMON 进程再根据重做日志文件来回滚。
其实 smon 的前滚回滚是根据检查点来完成的,当一个全部检查点发生的时候,首先让 LGWR 进程将
redo log buffer 中的所有缓冲(包含未提交的重做信息)写入重做日志文件,然后让 dbwr 进程将 db buffer 已
提交的缓冲写入数据文件(不强制写未提交的)。然后更新控制文件和数据文件头部的 SCN,表明当前数据库
是一致的,在相邻的两个检查点之间有很多事务,有提交和未提交的。
像前面的前滚回滚比较完整的说法是如下的说明:
A.发生检查点之前断电,并且当时有一个未提交的改变正在进行,实例重启之后,SMON 进程将从上一个
检查点开始核对这个检查点之后记录在重做日志文件中已提交的和未提交改变,因为
dbwr 之前会触发 lgwr,所以 dbwr 对数据文件的修改一定会被先记录在重做日志文件中。因此,断电前被
DBWN 写进数据文件的改变将通过重做日志文件中的记录进行还原,叫做回滚,
B. 如果断电时有一个已提交,但 dbwr 动作还没有完全完成的改变存在,因为已经提交,提交会触发 lgwr
进程,所以不管 dbwr 动作是否已完成,该语句将要影响的行及其产生的结果一定已经记录在重做日志文件中
了,则实例重启后,SMON 进程根据重做日志文件进行前滚.
实例失败后用于恢复的时间由两个检查点之间的间隔大小来决定,可以通个四个参数设置检查点执行的频
率:
Log_checkpoint_interval:
决定两个检查点之间写入重做日志文件的系统物理块(redo blocks)
的大小,默认值是 0,无限制。
log_checkpoint_timeout:
两 个 检 查 点 之 间 的 时 间 长 度(秒)默 认 值 1800s。
fast_start_io_target:
决定了用于恢复时需要处理的块的多少,默认值是 0,无限制。
fast_start_mttr_target:
直接决定了用于恢复的时间的长短,默认值是 0,无限制(SMON 进程执行的前滚
和回滚与用户的回滚是不同的,SMON 是根据重做日志文件进行前滚或回滚,而用户的回滚一定是根据回滚段
的内容进行回滚的。
在这里要说一下回滚段存储的数据,假如是 delete 操作,则回滚段将会记录整个行的数据,假如是 update,
则回滚段只记录被修改了的字段的变化前的数据(前映像),也就是没有被修改的字段是不会被记录的,假如是
insert,则回滚段只记录插入记录的 rowid。 这样假如事务提交,那回滚段中简单标记该事务已经提交;假如是
回退,则如果操作是 delete,回退的时候把回滚段中数据重新写回数据块,操作如果是 update,则把变化前数据
修改回去,操作如果是 insert,则根据记录的 rowid 把该记录删除。
2.如果用户 rollback。
则服务器进程会根据数据文件块和 DB BUFFER 中块的头部的事务列表和 SCN 以及回滚段地址找到
回滚段中相应的修改前的副本,并且用这些原值来还原当前数据文件中已修改但未提交的改变。如果有多个
“前映像”,服务器进程会在一个“前映像”的头部找到“前前映像”的回滚段地址,一直找到同一事务下的最早的
一个“前映像”为止。一旦发出了 COMMIT,用户就不能rollback,这使得 COMMIT 后 DBWR 进程还没有
全部完成的后续动作得到了保障。到现在为例一个事务已经结束了。
说明:
TM 锁:
符合 lock 机制的,用于保护对象的定义不被修改。 TX 锁:
这个锁代表一个事务,是行
级锁,用数据块头、数据记录头的一些字段表示,也是符合 lock 机制,有 resource structure、lock
structure、enqueue 算法。
E. MySQL数据库查询字段属性(即表结构)的SQL语句怎么写
DESC mydb.mytable ;这样可以不?
更详细的,可以用SHOW FULL COLUMNS FROM mydb.mytable ;
F. 一条sql的整个过程是怎样的
SQL语句执行过程详解
一、SQL语句执行原理:
第一步:客户端把语句发给服务器端执行
当我们在客户端执行 select 语句时,客户端会把这条 SQL 语句发送给服务器端,让服务器端的
进程来处理这语句。也就是说,Oracle 客户端是不会做任何的操作,他的主要任务就是把客户端产生
的一些 SQL 语句发送给服务器端。虽然在客户端也有一个数据库进程,但是,这个进程的作用跟服务器
上的进程作用事不相同的。服务器上的数据库进程才会对SQL 语句进行相关的处理。不过,有个问题需
要说明,就是客户端的进程跟服务器的进程是一一对应的。也就是说,在客户端连接上服务器后,在客户
端与服务器端都会形成一个进程,客户端上的我们叫做客户端进程;而服务器上的我们叫做服务器进程。
第二步:语句解析
当客户端把 SQL 语句传送到服务器后,服务器进程会对该语句进行解析。同理,这个解析的工作,
也是在服务器端所进行的。虽然这只是一个解析的动作,但是,其会做很多“小动作”。
1. 查询高速缓存(library cache)。服务器进程在接到客户端传送过来的 SQL 语句时,不
会直接去数据库查询。而是会先在数据库的高速缓存中去查找,是否存在相同语句的执行计划。如果在
数据高速缓存中,则服务器进程就会直接执行这个 SQL 语句,省去后续的工作。所以,采用高速数据缓
存的话,可以提高 SQL 语句的查询效率。一方面是从内存中读取数据要比从硬盘中的数据文件中读取
数据效率要高,另一方面,也是因为这个语句解析的原因。
不过这里要注意一点,这个数据缓存跟有些客户端软件的数据缓存是两码事。有些客户端软件为了
提高查询效率,会在应用软件的客户端设置数据缓存。由于这些数据缓存的存在,可以提高客户端应用软
件的查询效率。但是,若其他人在服务器进行了相关的修改,由于应用软件数据缓存的存在,导致修改的
数据不能及时反映到客户端上。从这也可以看出,应用软件的数据缓存跟数据库服务器的高速数据缓存
不是一码事。
2. 语句合法性检查(data dict cache)。当在高速缓存中找不到对应的 SQL 语句时,则服
务器进程就会开始检查这条语句的合法性。这里主要是对 SQL 语句的语法进行检查,看看其是否合乎
语法规则。如果服务器进程认为这条 SQL 语句不符合语法规则的时候,就会把这个错误信息,反馈给客
户端。在这个语法检查的过程中,不会对 SQL 语句中所包含的表名、列名等等进行 SQL 他只是语法
上的检查。
3. 语言含义检查(data dict cache)。若 SQL 语句符合语法上的定义的话,则服务器进程
接下去会对语句中的字段、表等内容进行检查。看看这些字段、表是否在数据库中。如果表名与列名不
准确的话,则数据库会就会反馈错误信息给客户端。所以,有时候我们写 select 语句的时候,若语法
与表名或者列名同时写错的话,则系统是先提示说语法错误,等到语法完全正确后,再提示说列名或表名
错误。
4. 获得对象解析锁(control structer)。当语法、语义都正确后,系统就会对我们需要查询
的对象加锁。这主要是为了保障数据的一致性,防止我们在查询的过程中,其他用户对这个对象的结构发
生改变。
5. 数据访问权限的核对(data dict cache)。当语法、语义通过检查之后,客户端还不一定
能够取得数据。服务器进程还会检查,你所连接的用户是否有这个数据访问的权限。若你连接上服务器
的用户不具有数据访问权限的话,则客户端就不能够取得这些数据。有时候我们查询数据的时候,辛辛苦
苦地把 SQL 语句写好、编译通过,但是,最后系统返回个 “没有权限访问数据”的错误信息,让我们气
半死。这在前端应用软件开发调试的过程中,可能会碰到。所以,要注意这个问题,数据库服务器进程先
检查语法与语义,然后才会检查访问权限。
6. 确定最佳执行计划 。当语句与语法都没有问题,权限也匹配的话,服务器进程还是不会直接对
数据库文件进行查询。服务器进程会根据一定的规则,对这条语句进行优化。不过要注意,这个优化是有
限的。一般在应用软件开发的过程中,需要对数据库的 sql 语言进行优化,这个优化的作用要大大地大
于服务器进程的自我优化。所以,一般在应用软件开发的时候,数据库的优化是少不了的。当服务器进程
的优化器确定这条查询语句的最佳执行计划后,就会将这条 SQL 语句与执行计划保存到数据高速缓存
(library cache)。如此的话,等以后还有这个查询时,就会省略以上的语法、语义与权限检查的步骤,
而直接执行 SQL 语句,提高 SQL 语句处理效率。
第三步:语句执行
语句解析只是对 SQL 语句的语法进行解析,以确保服务器能够知道这条语句到底表达的是什么意
思。等到语句解析完成之后,数据库服务器进程才会真正的执行这条 SQL 语句。这个语句执行也分两
种情况。
一是若被选择行所在的数据块已经被读取到数据缓冲区的话,则服务器进程会直接把这个数据传递
给客户端,而不是从数据库文件中去查询数据。
若数据不在缓冲区中,则服务器进程将从数据库文件中查询相关数据,并把这些数据放入到数据缓冲
区中(buffer cache)。
第四步:提取数据
当语句执行完成之后,查询到的数据还是在服务器进程中,还没有被传送到客户端的用户进程。所以,
在服务器端的进程中,有一个专门负责数据提取的一段代码。他的作用就是把查询到的数据结果返回给
用户端进程,从而完成整个查询动作。从这整个查询处理过程中,我们在数据库开发或者应用软件开发过
程中,需要注意以下几点:
一是要了解数据库缓存跟应用软件缓存是两码事情。数据库缓存只有在数据库服务器端才存在,在
客户端是不存在的。只有如此,才能够保证数据库缓存中的内容跟数据库文件的内容一致。才能够根据
相关的规则,防止数据脏读、错读的发生。而应用软件所涉及的数据缓存,由于跟数据库缓存不是一码事
情,所以,应用软件的数据缓存虽然可以提高数据的查询效率,但是,却打破了数据一致性的要求,有时候
会发生脏读、错读等情况的发生。所以,有时候,在应用软件上有专门一个功能,用来在必要的时候清除
数据缓存。不过,这个数据缓存的清除,也只是清除本机上的数据缓存,或者说,只是清除这个应用程序
的数据缓存,而不会清除数据库的数据缓存。
二是绝大部分 SQL 语句都是按照这个处理过程处理的。我们 DBA 或者基于 Oracle 数据库的
开发人员了解这些语句的处理过程,对于我们进行涉及到 SQL 语句的开发与调试,是非常有帮助的。有
时候,掌握这些处理原则,可以减少我们排错的时间。特别要注意,数据库是把数据查询权限的审查放在
语法语义的后面进行检查的。所以,有时会若光用数据库的权限控制原则,可能还不能满足应用软件权限
控制的需要。此时,就需要应用软件的前台设置,实现权限管理的要求。而且,有时应用数据库的权限管
理,也有点显得繁琐,会增加服务器处理的工作量。因此,对于记录、字段等的查询权限控制,大部分程
序涉及人员喜欢在应用程序中实现,而不是在数据库上实现。
DBCC DROPCLEANBUFFERS
从缓冲池中删除所有清除缓冲区。
DBCC FREEPROCCACHE
从过程缓存中删除所有元素。
DBCC FREESYSTEMCACHE
从所有缓存中释放所有未使用的缓存条目
SQL语句中的函数、关键字、排序等执行顺序:
1. FROM 子句返回初始结果集。
2. WHERE 子句排除不满足搜索条件的行。
3. GROUP BY 子句将选定的行收集到 GROUP BY 子句中各个唯一值的组中。
4. 选择列表中指定的聚合函数可以计算各组的汇总值。
5. 此外,HAVING 子句排除不满足搜索条件的行。
6. 计算所有的表达式;
7. 使用 order by 对结果集进行排序。
8. 查找你要搜索的字段。