当前位置:首页 » 编程语言 » 递归卷积神经网络c语言
扩展阅读
webinf下怎么引入js 2023-08-31 21:54:13
堡垒机怎么打开web 2023-08-31 21:54:11

递归卷积神经网络c语言

发布时间: 2023-02-15 08:35:55

Ⅰ CNN网络简介

卷积神经网络简介(Convolutional Neural Networks,简称CNN)

卷积神经网络是近年发展起来,并引起广泛重视的一种高效识别方法。20世纪60年代,Hubel和Wiesel在研究猫脑皮层中用于局部敏感和方向选择的神经元时发现其独特的网络结构可以有效地降低反馈神经网络的复杂性,继而提出了卷积神经网络(Convolutional

Neural

Networks-简称CNN)。现在,CNN已经成为众多科学领域的研究热点之一,特别是在模式分类领域,由于该网络避免了对图像的复杂前期预处理,可以直接输入原始图像,因而得到了更为广泛的应用。

K.Fukushima在1980年提出的新识别机是卷积神经网络的第一个实现网络。随后,更多的科研工作者对该网络进行了改进。其中,具有代表性的研究成果是Alexander和Taylor提出的“改进认知机”,该方法综合了各种改进方法的优点并避免了耗时的误差反向传播。

一般地,CNN的基本结构包括两层,其一为特征提取层,每个神经元的输入与前一层的局部接受域相连,并提取该局部的特征。一旦该局部特征被提取后,它与其它特征间的位置关系也随之确定下来;其二是特征映射层,网络的每个计算层由多个特征映射组成,每个特征映射是一个平面,平面上所有神经元的权值相等。特征映射结构采用影响函数核小的sigmoid函数作为卷积网络的激活函数,使得特征映射具有位移不变性。此外,由于一个映射面上的神经元共享权值,因而减少了网络自由参数的个数。卷积神经网络中的每一个卷积层都紧跟着一个用来求局部平均与二次提取的计算层,这种特有的两次特征提取结构减小了特征分辨率。

CNN主要用来识别位移、缩放及其他形式扭曲不变性的二维图形。由于CNN的特征检测层通过训练数据进行学习,所以在使用CNN时,避免了显示的特征抽取,而隐式地从训练数据中进行学习;再者由于同一特征映射面上的神经元权值相同,所以网络可以并行学习,这也是卷积网络相对于神经元彼此相连网络的一大优势。卷积神经网络以其局部权值共享的特殊结构在语音识别和图像处理方面有着独特的优越性,其布局更接近于实际的生物神经网络,权值共享降低了网络的复杂性,特别是多维输入向量的图像可以直接输入网络这一特点避免了特征提取和分类过程中数据重建的复杂度。

1. 神经网络

首先介绍神经网络,这一步的详细可以参考资源1。简要介绍下。神经网络的每个单元如下:

其对应的公式如下:

其中,该单元也可以被称作是Logistic回归模型。当将多个单元组合起来并具有分层结构时,就形成了神经网络模型。下图展示了一个具有一个隐含层的神经网络。

其对应的公式如下:

比较类似的,可以拓展到有2,3,4,5,…个隐含层。

神经网络的训练方法也同Logistic类似,不过由于其多层性,还需要利用链式求导法则对隐含层的节点进行求导,即梯度下降+链式求导法则,专业名称为反向传播。关于训练算法,本文暂不涉及。

2 卷积神经网络

在图像处理中,往往把图像表示为像素的向量,比如一个1000×1000的图像,可以表示为一个1000000的向量。在上一节中提到的神经网络中,如果隐含层数目与输入层一样,即也是1000000时,那么输入层到隐含层的参数数据为1000000×1000000=10^12,这样就太多了,基本没法训练。所以图像处理要想练成神经网络大法,必先减少参数加快速度。就跟辟邪剑谱似的,普通人练得很挫,一旦自宫后内力变强剑法变快,就变的很牛了。

2.1 局部感知

卷积神经网络有两种神器可以降低参数数目,第一种神器叫做局部感知野。一般认为人对外界的认知是从局部到全局的,而图像的空间联系也是局部的像素联系较为紧密,而距离较远的像素相关性则较弱。因而,每个神经元其实没有必要对全局图像进行感知,只需要对局部进行感知,然后在更高层将局部的信息综合起来就得到了全局的信息。网络部分连通的思想,也是受启发于生物学里面的视觉系统结构。视觉皮层的神经元就是局部接受信息的(即这些神经元只响应某些特定区域的刺激)。如下图所示:左图为全连接,右图为局部连接。

在上右图中,假如每个神经元只和10×10个像素值相连,那么权值数据为1000000×100个参数,减少为原来的千分之一。而那10×10个像素值对应的10×10个参数,其实就相当于卷积操作。

2.2 参数共享

但其实这样的话参数仍然过多,那么就启动第二级神器,即权值共享。在上面的局部连接中,每个神经元都对应100个参数,一共1000000个神经元,如果这1000000个神经元的100个参数都是相等的,那么参数数目就变为100了。

怎么理解权值共享呢?我们可以这100个参数(也就是卷积操作)看成是提取特征的方式,该方式与位置无关。这其中隐含的原理则是:图像的一部分的统计特性与其他部分是一样的。这也意味着我们在这一部分学习的特征也能用在另一部分上,所以对于这个图像上的所有位置,我们都能使用同样的学习特征。

更直观一些,当从一个大尺寸图像中随机选取一小块,比如说 8×8 作为样本,并且从这个小块样本中学习到了一些特征,这时我们可以把从这个

8×8 样本中学习到的特征作为探测器,应用到这个图像的任意地方中去。特别是,我们可以用从 8×8

样本中所学习到的特征跟原本的大尺寸图像作卷积,从而对这个大尺寸图像上的任一位置获得一个不同特征的激活值。

如下图所示,展示了一个33的卷积核在55的图像上做卷积的过程。每个卷积都是一种特征提取方式,就像一个筛子,将图像中符合条件(激活值越大越符合条件)的部分筛选出来。

2.3 多卷积核

上面所述只有100个参数时,表明只有1个100*100的卷积核,显然,特征提取是不充分的,我们可以添加多个卷积核,比如32个卷积核,可以学习32种特征。在有多个卷积核时,如下图所示:

上图右,不同颜色表明不同的卷积核。每个卷积核都会将图像生成为另一幅图像。比如两个卷积核就可以将生成两幅图像,这两幅图像可以看做是一张图像的不同的通道。如下图所示,下图有个小错误,即将w1改为w0,w2改为w1即可。下文中仍以w1和w2称呼它们。

下图展示了在四个通道上的卷积操作,有两个卷积核,生成两个通道。其中需要注意的是,四个通道上每个通道对应一个卷积核,先将w2忽略,只看w1,那么在w1的某位置(i,j)处的值,是由四个通道上(i,j)处的卷积结果相加然后再取激活函数值得到的。

所以,在上图由4个通道卷积得到2个通道的过程中,参数的数目为4×2×2×2个,其中4表示4个通道,第一个2表示生成2个通道,最后的2×2表示卷积核大小。

2.4 Down-pooling

在通过卷积获得了特征 (features)

之后,下一步我们希望利用这些特征去做分类。理论上讲,人们可以用所有提取得到的特征去训练分类器,例如 softmax

分类器,但这样做面临计算量的挑战。例如:对于一个 96X96

像素的图像,假设我们已经学习得到了400个定义在8X8输入上的特征,每一个特征和图像卷积都会得到一个 (96 − 8 + 1) × (96 − 8+ 1) = 7921 维的卷积特征,由于有 400 个特征,所以每个样例 (example) 都会得到一个 892 × 400 =3,168,400 维的卷积特征向量。学习一个拥有超过 3 百万特征输入的分类器十分不便,并且容易出现过拟合 (over-fitting)。

为了解决这个问题,首先回忆一下,我们之所以决定使用卷积后的特征是因为图像具有一种“静态性”的属性,这也就意味着在一个图像区域有用的特征极有可能在另一个区域同样适用。因此,为了描述大的图像,一个很自然的想法就是对不同位置的特征进行聚合统计,例如,人们可以计算图像一个区域上的某个特定特征的平均值(或最大值)。这些概要统计特征不仅具有低得多的维度 (相比使用所有提取得到的特征),同时还会改善结果(不容易过拟合)。这种聚合的操作就叫做池(pooling),有时也称为平均池化或者最大池化 (取决于计算池化的方法)。

至此,卷积神经网络的基本结构和原理已经阐述完毕。

2.5 多层卷积

在实际应用中,往往使用多层卷积,然后再使用全连接层进行训练,多层卷积的目的是一层卷积学到的特征往往是局部的,层数越高,学到的特征就越全局化。

3 ImageNet-2010网络结构

ImageNetLSVRC是一个图片分类的比赛,其训练集包括127W+张图片,验证集有5W张图片,测试集有15W张图片。本文截取2010年AlexKrizhevsky的CNN结构进行说明,该结构在2010年取得冠军,top-5错误率为15.3%。值得一提的是,在今年的ImageNetLSVRC比赛中,取得冠军的GoogNet已经达到了top-5错误率6.67%。可见,深度学习的提升空间还很巨大。

下图即为Alex的CNN结构图。需要注意的是,该模型采用了2-GPU并行结构,即第1、2、4、5卷积层都是将模型参数分为2部分进行训练的。在这里,更进一步,并行结构分为数据并行与模型并行。数据并行是指在不同的GPU上,模型结构相同,但将训练数据进行切分,分别训练得到不同的模型,然后再将模型进行融合。而模型并行则是,将若干层的模型参数进行切分,不同的GPU上使用相同的数据进行训练,得到的结果直接连接作为下一层的输入。

上图模型的基本参数为:

输入:224×224大小的图片,3通道

第一层卷积:5×5大小的卷积核96个,每个GPU上48个。

第一层max-pooling:2×2的核。

第二层卷积:3×3卷积核256个,每个GPU上128个。

第二层max-pooling:2×2的核。

第三层卷积:与上一层是全连接,3*3的卷积核384个。分到两个GPU上个192个。

第四层卷积:3×3的卷积核384个,两个GPU各192个。该层与上一层连接没有经过pooling层。

第五层卷积:3×3的卷积核256个,两个GPU上个128个。

第五层max-pooling:2×2的核。

第一层全连接:4096维,将第五层max-pooling的输出连接成为一个一维向量,作为该层的输入。

第二层全连接:4096维

Softmax层:输出为1000,输出的每一维都是图片属于该类别的概率。

4 DeepID网络结构

DeepID网络结构是香港中文大学的Sun

Yi开发出来用来学习人脸特征的卷积神经网络。每张输入的人脸被表示为160维的向量,学习到的向量经过其他模型进行分类,在人脸验证试验上得到了97.45%的正确率,更进一步的,原作者改进了CNN,又得到了99.15%的正确率。

如下图所示,该结构与ImageNet的具体参数类似,所以只解释一下不同的部分吧。

上图中的结构,在最后只有一层全连接层,然后就是softmax层了。论文中就是以该全连接层作为图像的表示。在全连接层,以第四层卷积和第三层max-pooling的输出作为全连接层的输入,这样可以学习到局部的和全局的特征。

Ⅱ 如何用PyTorch实现递归神经网络

从 Siri 到谷歌翻译,深度神经网络已经在机器理解自然语言方面取得了巨大突破。这些模型大多数将语言视为单调的单词或字符序列,并使用一种称为循环神经网络(recurrent neural network/RNN)的模型来处理该序列。但是许多语言学家认为语言最好被理解为具有树形结构的层次化词组,一种被称为递归神经网络(recursive neural network)的深度学习模型考虑到了这种结构,这方面已经有大量的研究。虽然这些模型非常难以实现且效率很低,但是一个全新的深度学习框架 PyTorch 能使它们和其它复杂的自然语言处理模型变得更加容易。

虽然递归神经网络很好地显示了 PyTorch 的灵活性,但它也广泛支持其它的各种深度学习框架,特别的是,它能够对计算机视觉(computer vision)计算提供强大的支撑。PyTorch 是 Facebook AI Research 和其它几个实验室的开发人员的成果,该框架结合了 Torch7 高效灵活的 GPU 加速后端库与直观的 Python 前端,它的特点是快速成形、代码可读和支持最广泛的深度学习模型。

开始 SPINN

链接中的文章(https://github.com/jekbradbury/examples/tree/spinn/snli)详细介绍了一个递归神经网络的 PyTorch 实现,它具有一个循环跟踪器(recurrent tracker)和 TreeLSTM 节点,也称为 SPINN——SPINN 是深度学习模型用于自然语言处理的一个例子,它很难通过许多流行的框架构建。这里的模型实现部分运用了批处理(batch),所以它可以利用 GPU 加速,使得运行速度明显快于不使用批处理的版本。

SPINN 的意思是堆栈增强的解析器-解释器神经网络(Stack-augmented Parser-Interpreter Neural Network),由 Bowman 等人于 2016 年作为解决自然语言推理任务的一种方法引入,该论文中使用了斯坦福大学的 SNLI 数据集。

该任务是将语句对分为三类:假设语句 1 是一幅看不见的图像的准确标题,那么语句 2(a)肯定(b)可能还是(c)绝对不是一个准确的标题?(这些类分别被称为蕴含(entailment)、中立(neutral)和矛盾(contradiction))。例如,假设一句话是“两只狗正跑过一片场地”,蕴含可能会使这个语句对变成“户外的动物”,中立可能会使这个语句对变成“一些小狗正在跑并试图抓住一根棍子”,矛盾能会使这个语句对变成“宠物正坐在沙发上”。

特别地,研究 SPINN 的初始目标是在确定语句的关系之前将每个句子编码(encoding)成固定长度的向量表示(也有其它方式,例如注意模型(attention model)中将每个句子的每个部分用一种柔焦(soft focus)的方法相互比较)。

数据集是用句法解析树(syntactic parse tree)方法由机器生成的,句法解析树将每个句子中的单词分组成具有独立意义的短语和子句,每个短语由两个词或子短语组成。许多语言学家认为,人类通过如上面所说的树的分层方式来组合词意并理解语言,所以用相同的方式尝试构建一个神经网络是值得的。下面的例子是数据集中的一个句子,其解析树由嵌套括号表示:

( ( The church ) ( ( has ( cracks ( in ( the ceiling ) ) ) ) . ) )

这个句子进行编码的一种方式是使用含有解析树的神经网络构建一个神经网络层 Rece,这个神经网络层能够组合词语对(用词嵌入(word embedding)表示,如 GloVe)、 和/或短语,然后递归地应用此层(函数),将最后一个 Rece 产生的结果作为句子的编码:

X = Rece(“the”, “ceiling”)
Y = Rece(“in”, X)
... etc.

但是,如果我希望网络以更类似人类的方式工作,从左到右阅读并保留句子的语境,同时仍然使用解析树组合短语?或者,如果我想训练一个网络来构建自己的解析树,让解析树根据它看到的单词读取句子?这是一个同样的但方式略有不同的解析树的写法:

The church ) has cracks in the ceiling ) ) ) ) . ) )

或者用第 3 种方式表示,如下:

WORDS: The church has cracks in the ceiling .
PARSES: S S R S S S S S R R R R S R R

我所做的只是删除开括号,然后用“S”标记“shift”,并用“R”替换闭括号用于“rece”。但是现在可以从左到右读取信息作为一组指令来操作一个堆栈(stack)和一个类似堆栈的缓冲区(buffer),能得到与上述递归方法完全相同的结果:

1. 将单词放入缓冲区。
2. 从缓冲区的前部弹出“The”,将其推送(push)到堆栈上层,紧接着是“church”。
3. 弹出前 2 个堆栈值,应用于 Rece,然后将结果推送回堆栈。
4. 从缓冲区弹出“has”,然后推送到堆栈,然后是“cracks”,然后是“in”,然后是“the”,然后是“ceiling”。
5. 重复四次:弹出 2 个堆栈值,应用于 Rece,然后推送结果。
6. 从缓冲区弹出“.”,然后推送到堆栈上层。
7. 重复两次:弹出 2 个堆栈值,应用于 Rece,然后推送结果。
8. 弹出剩余的堆栈值,并将其作为句子编码返回。

我还想保留句子的语境,以便在对句子的后半部分应用 Rece 层时考虑系统已经读取的句子部分的信息。所以我将用一个三参数函数替换双参数的 Rece 函数,该函数的输入值为一个左子句、一个右子句和当前句的上下文状态。该状态由神经网络的第二层(称为循环跟踪器(Tracker)的单元)创建。Tracker 在给定当前句子上下文状态、缓冲区中的顶部条目 b 和堆栈中前两个条目 s1\s2 时,在堆栈操作的每个步骤(即,读取每个单词或闭括号)后生成一个新状态:

context[t+1] = Tracker(context[t], b, s1, s2)

容易设想用你最喜欢的编程语言来编写代码做这些事情。对于要处理的每个句子,它将从缓冲区加载下一个单词,运行跟踪器,检查是否将单词推送入堆栈或执行 Rece 函数,执行该操作;然后重复,直到对整个句子完成处理。通过对单个句子的应用,该过程构成了一个大而复杂的深度神经网络,通过堆栈操作的方式一遍又一遍地应用它的两个可训练层。但是,如果你熟悉 TensorFlow 或 Theano 等传统的深度学习框架,就知道它们很难实现这样的动态过程。你值得花点时间回顾一下,探索为什么 PyTorch 能有所不同。

图论

图 1:一个函数的图结构表示

深度神经网络本质上是有大量参数的复杂函数。深度学习的目的是通过计算以损失函数(loss)度量的偏导数(梯度)来优化这些参数。如果函数表示为计算图结构(图 1),则向后遍历该图可实现这些梯度的计算,而无需冗余工作。每个现代深度学习框架都是基于此反向传播(backpropagation)的概念,因此每个框架都需要一个表示计算图的方式。

在许多流行的框架中,包括 TensorFlow、Theano 和 Keras 以及 Torch7 的 nngraph 库,计算图是一个提前构建的静态对象。该图是用像数学表达式的代码定义的,但其变量实际上是尚未保存任何数值的占位符(placeholder)。图中的占位符变量被编译进函数,然后可以在训练集的批处理上重复运行该函数来产生输出和梯度值。

这种静态计算图(static computation graph)方法对于固定结构的卷积神经网络效果很好。但是在许多其它应用中,有用的做法是令神经网络的图结构根据数据而有所不同。在自然语言处理中,研究人员通常希望通过每个时间步骤中输入的单词来展开(确定)循环神经网络。上述 SPINN 模型中的堆栈操作很大程度上依赖于控制流程(如 for 和 if 语句)来定义特定句子的计算图结构。在更复杂的情况下,你可能需要构建结构依赖于模型自身的子网络输出的模型。

这些想法中的一些(虽然不是全部)可以被生搬硬套到静态图系统中,但几乎总是以降低透明度和增加代码的困惑度为代价。该框架必须在其计算图中添加特殊的节点,这些节点代表如循环和条件的编程原语(programming primitive),而用户必须学习和使用这些节点,而不仅仅是编程代码语言中的 for 和 if 语句。这是因为程序员使用的任何控制流程语句将仅运行一次,当构建图时程序员需要硬编码(hard coding)单个计算路径。

例如,通过词向量(从初始状态 h0 开始)运行循环神经网络单元(rnn_unit)需要 TensorFlow 中的特殊控制流节点 tf.while_loop。需要一个额外的特殊节点来获取运行时的词长度,因为在运行代码时它只是一个占位符。

# TensorFlow
# (this code runs once, ring model initialization)
# “words” is not a real list (it’s a placeholder variable) so
# I can’t use “len”
cond = lambda i, h: i < tf.shape(words)[0]
cell = lambda i, h: rnn_unit(words[i], h)
i = 0
_, h = tf.while_loop(cond, cell, (i, h0))

基于动态计算图(dynamic computation graph)的方法与之前的方法有根本性不同,它有几十年的学术研究历史,其中包括了哈佛的 Kayak、自动微分库(autograd)以及以研究为中心的框架 Chainer和 DyNet。在这样的框架(也称为运行时定义(define-by-run))中,计算图在运行时被建立和重建,使用相同的代码为前向通过(forward pass)执行计算,同时也为反向传播(backpropagation)建立所需的数据结构。这种方法能产生更直接的代码,因为控制流程的编写可以使用标准的 for 和 if。它还使调试更容易,因为运行时断点(run-time breakpoint)或堆栈跟踪(stack trace)将追踪到实际编写的代码,而不是执行引擎中的编译函数。可以在动态框架中使用简单的 Python 的 for 循环来实现有相同变量长度的循环神经网络。

# PyTorch (also works in Chainer)
# (this code runs on every forward pass of the model)
# “words” is a Python list with actual values in it
h = h0
for word in words:
h = rnn_unit(word, h)

PyTorch 是第一个 define-by-run 的深度学习框架,它与静态图框架(如 TensorFlow)的功能和性能相匹配,使其能很好地适合从标准卷积神经网络(convolutional network)到最疯狂的强化学习(reinforcement learning)等思想。所以让我们来看看 SPINN 的实现。

代码

在开始构建网络之前,我需要设置一个数据加载器(data loader)。通过深度学习,模型可以通过数据样本的批处理进行操作,通过并行化(parallelism)加快训练,并在每一步都有一个更平滑的梯度变化。我想在这里可以做到这一点(稍后我将解释上述堆栈操作过程如何进行批处理)。以下 Python 代码使用内置于 PyTorch 的文本库的系统来加载数据,它可以通过连接相似长度的数据样本自动生成批处理。运行此代码之后,train_iter、dev_iter 和 test_itercontain 循环遍历训练集、验证集和测试集分块 SNLI 的批处理。

from torchtext import data, datasets
TEXT = datasets.snli.ParsedTextField(lower=True)
TRANSITIONS = datasets.snli.ShiftReceField()
LABELS = data.Field(sequential=False)train, dev, test = datasets.SNLI.splits(
TEXT, TRANSITIONS, LABELS, wv_type='glove.42B')TEXT.build_vocab(train, dev, test)
train_iter, dev_iter, test_iter = data.BucketIterator.splits(
(train, dev, test), batch_size=64)

你可以在 train.py中找到设置训练循环和准确性(accuracy)测量的其余代码。让我们继续。如上所述,SPINN 编码器包含参数化的 Rece 层和可选的循环跟踪器来跟踪句子上下文,以便在每次网络读取单词或应用 Rece 时更新隐藏状态;以下代码代表的是,创建一个 SPINN 只是意味着创建这两个子模块(我们将很快看到它们的代码),并将它们放在一个容器中以供稍后使用。

import torchfrom torch import nn
# subclass the Mole class from PyTorch’s neural network package
class SPINN(nn.Mole):
def __init__(self, config):
super(SPINN, self).__init__()
self.config = config self.rece = Rece(config.d_hidden, config.d_tracker)
if config.d_tracker is not None:
self.tracker = Tracker(config.d_hidden, config.d_tracker)

当创建模型时,SPINN.__init__ 被调用了一次;它分配和初始化参数,但不执行任何神经网络操作或构建任何类型的计算图。在每个新的批处理数据上运行的代码由 SPINN.forward 方法定义,它是用户实现的方法中用于定义模型向前过程的标准 PyTorch 名称。上面描述的是堆栈操作算法的一个有效实现,即在一般 Python 中,在一批缓冲区和堆栈上运行,每一个例子都对应一个缓冲区和堆栈。我使用转移矩阵(transition)包含的“shift”和“rece”操作集合进行迭代,运行 Tracker(如果存在),并遍历批处理中的每个样本来应用“shift”操作(如果请求),或将其添加到需要“rece”操作的样本列表中。然后在该列表中的所有样本上运行 Rece 层,并将结果推送回到它们各自的堆栈。

def forward(self, buffers, transitions):
# The input comes in as a single tensor of word embeddings;
# I need it to be a list of stacks, one for each example in
# the batch, that we can pop from independently. The words in
# each example have already been reversed, so that they can
# be read from left to right by popping from the end of each
# list; they have also been prefixed with a null value.
buffers = [list(torch.split(b.squeeze(1), 1, 0))
for b in torch.split(buffers, 1, 1)]
# we also need two null values at the bottom of each stack,
# so we can from the nulls in the input; these nulls
# are all needed so that the tracker can run even if the
# buffer or stack is empty
stacks = [[buf[0], buf[0]] for buf in buffers]
if hasattr(self, 'tracker'):
self.tracker.reset_state()
for trans_batch in transitions:
if hasattr(self, 'tracker'):
# I described the Tracker earlier as taking 4
# arguments (context_t, b, s1, s2), but here I
# provide the stack contents as a single argument
# while storing the context inside the Tracker
# object itself.
tracker_states, _ = self.tracker(buffers, stacks)
else:
tracker_states = itertools.repeat(None)
lefts, rights, trackings = [], [], []
batch = zip(trans_batch, buffers, stacks, tracker_states)
for transition, buf, stack, tracking in batch:
if transition == SHIFT:
stack.append(buf.pop())
elif transition == REDUCE:
rights.append(stack.pop())
lefts.append(stack.pop())
trackings.append(tracking)
if rights:
reced = iter(self.rece(lefts, rights, trackings))
for transition, stack in zip(trans_batch, stacks):
if transition == REDUCE:
stack.append(next(reced))
return [stack.pop() for stack in stacks]

在调用 self.tracker 或 self.rece 时分别运行 Tracker 或 Rece 子模块的向前方法,该方法需要在样本列表上应用前向操作。在主函数的向前方法中,在不同的样本上进行独立的操作是有意义的,即为批处理中每个样本提供分离的缓冲区和堆栈,因为所有受益于批处理执行的重度使用数学和需要 GPU 加速的操作都在 Tracker 和 Rece 中进行。为了更干净地编写这些函数,我将使用一些 helper(稍后将定义)将这些样本列表转化成批处理张量(tensor),反之亦然。

我希望 Rece 模块自动批处理其参数以加速计算,然后解批处理(unbatch)它们,以便可以单独推送和弹出。用于将每对左、右子短语表达组合成父短语(parent phrase)的实际组合函数是 TreeLSTM,它是普通循环神经网络单元 LSTM 的变型。该组合函数要求每个子短语的状态实际上由两个张量组成,一个隐藏状态 h 和一个存储单元(memory cell)状态 c,而函数是使用在子短语的隐藏状态操作的两个线性层(nn.Linear)和将线性层的结果与子短语的存储单元状态相结合的非线性组合函数 tree_lstm。在 SPINN 中,这种方式通过添加在 Tracker 的隐藏状态下运行的第 3 个线性层进行扩展。

图 2:TreeLSTM 组合函数增加了第 3 个输入(x,在这种情况下为 Tracker 状态)。在下面所示的 PyTorch 实现中,5 组的三种线性变换(由蓝色、黑色和红色箭头的三元组表示)组合为三个 nn.Linear 模块,而 tree_lstm 函数执行位于框内的所有计算。图来自 Chen et al. (2016)。

Ⅲ 卷积层在神经网络中如何运算

卷积神经网络(Convolutional Neural Networks, CNN)的核心是进行卷积运算操作。在实际应用中往往采用多层网络结构,因此又被称为深度卷积神经网络。本文将从单个卷积的计算出发,带大家掌握卷积层在神经网络中的运算方法。

2.1 单个卷积的计算

要想了解卷积层在神经网络中的计算过程,我们首先需要了解单个“卷积”是如何运作的。

想必大家在学习CNN的过程中都见过下图( 出处在此 ,这上面有各种各样的卷积gif图):

input_shape=(5,5),kernelsize=(3,3),padding=‘same’,stride=1,output_shape=(5,5)

在此图中:

在此次计算中:

Ps: 在实际应用中,每一个输出的特征图还会配备一个偏置s,在上图中无表示。

2.2 卷积层在神经网络中的运算

了解完单个卷积是如何计算的之后,我们就可以从神经网络的角度来看‘卷积层’的运算过程了。下图展示的是输入三通图像(8*8*3)经一层卷积结构,输出两通特征图(8*8*2)的计算过程:

卷积参数:input_shape=(8,8,3),kernelsize=(3,3),padding=‘same’,stride=1,output_shape=(8,8,2)

在此图中:

在此次卷积层的运算中:

首先我们来关注一下输入和输出,他俩的尺度都是(8*8),而输入是3通道,输出是2通道(深度学习中不管干啥一定要先看输入输出,对一层是这样,对整个模型也是这样)。

其次就准备进入我们最熟悉的卷积核计算了,可是在此之前我们得知道,这个运算过程中到底发生了几次卷积核计算呢?有的朋友可能要说,卷积的一大特性就是‘权值共享’,有几通输出就有几个卷积核,每个卷积核把输入特征图从头扫到尾。然而这个其实是不对的!

实际上,在卷积核计算数量问题上,应该是“ 有几通道的输出就有几套卷积核,每套内的卷积核数量与输入通道数相等 ”,就像我在上图中所画的:

至此,这一个卷积层的运算就全部完成了。

2.3 “可训练参数”验证

毕竟空口无凭,下面我来通过“ 可训练参数 ”的数量,来为大家验证一下卷积层是不是按我说的这么运算的。大家应该知道,一个卷积层内的“可训练参数”,其实就是指的卷积核里的那些值,以及要加的偏置量,那么如果按照前面描述的计算方法来看,一个卷积层内的“可训练参数有多少呢”?我们可知:

由此可得到:

那么按理说可训练参数量应为:

让我们用keras的summary()来验证一下:

很棒!

记住,普通卷积层的可训练参数量为:

Ps: 还有一个衡量模型大小、复杂度的量叫做“理论计算量FLOPs”(floating point operations)。它通常只考虑Conv、FC等参数层的乘、加操作的数量,并且“纯加”操作也会被忽略(例如bias)。卷积层运算中的FLOPs计算公式为:

Ps: 这里还要为大家明确一个“感受野”的概念,简单来讲就是卷积神经网络中的某一层特征图上的一个点,对应到原图上可以关联到多少个点,我们用一张图来解释一下:

上图展示的是一个3层一维卷积,kernel_size=3,我们可以看到:顶层左一的像素与底层左起7个像素值有关,这时候就代表它的感受野有7。我们可以显而易见的得出以下两个结论:

这个感受野在后续的卷积的拆分讲解中还要用到。

Ⅳ cnn卷积神经网络用什么语言来写pascial

200+
这个是hinton matlab代码的C++改写版. convnetjs - Star,SAE,首选的肯定是LIBSVM这个库;RBM#47. DeepLearn Toolbox - Star,包括了CNN;C++SVM方面,Java。
2。
下面主要一些DeepLearning的GitHub项目吧;SdA#47:2200+
实现了卷积神经网络,还实现了Rasmussen的共轭梯度Conjugate Gradient算法,DBN,C/CRBM/CDBN#47:Python。
3,CAE等主流模型,实现的模型有DBN#47,可以用来做分类,语言是Python;LR等,从算法与实现上都比较全:800+
实现了深度学习网络. rbm-mnist - Star,应该是应用最广的机器学习库了,强化学习等. Deep Learning(yusugomo) - Star,Scala:1000+
Matlab实现中最热的库存,提供了5种语言的实现。
5;dA#47:500+
这是同名书的配套代码。
4. Neural-Networks-And-Deep-Learning - Star!
1,回归

Ⅳ 一文看懂四种基本的神经网络架构

原文链接:
http://blackblog.tech/2018/02/23/Eight-Neural-Network/

更多干货就在我的个人博客 http://blackblog.tech 欢迎关注

刚刚入门神经网络,往往会对众多的神经网络架构感到困惑,神经网络看起来复杂多样,但是这么多架构无非也就是三类,前馈神经网络,循环网络,对称连接网络,本文将介绍四种常见的神经网络,分别是CNN,RNN,DBN,GAN。通过这四种基本的神经网络架构,我们来对神经网络进行一定的了解。

神经网络是机器学习中的一种模型,是一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。
一般来说,神经网络的架构可以分为三类:

前馈神经网络:
这是实际应用中最常见的神经网络类型。第一层是输入,最后一层是输出。如果有多个隐藏层,我们称之为“深度”神经网络。他们计算出一系列改变样本相似性的变换。各层神经元的活动是前一层活动的非线性函数。

循环网络:
循环网络在他们的连接图中定向了循环,这意味着你可以按照箭头回到你开始的地方。他们可以有复杂的动态,使其很难训练。他们更具有生物真实性。
循环网络的目的使用来处理序列数据。在传统的神经网络模型中,是从输入层到隐含层再到输出层,层与层之间是全连接的,每层之间的节点是无连接的。但是这种普通的神经网络对于很多问题却无能无力。例如,你要预测句子的下一个单词是什么,一般需要用到前面的单词,因为一个句子中前后单词并不是独立的。
循环神经网路,即一个序列当前的输出与前面的输出也有关。具体的表现形式为网络会对前面的信息进行记忆并应用于当前输出的计算中,即隐藏层之间的节点不再无连接而是有连接的,并且隐藏层的输入不仅包括输入层的输出还包括上一时刻隐藏层的输出。

对称连接网络:
对称连接网络有点像循环网络,但是单元之间的连接是对称的(它们在两个方向上权重相同)。比起循环网络,对称连接网络更容易分析。这个网络中有更多的限制,因为它们遵守能量函数定律。没有隐藏单元的对称连接网络被称为“Hopfield 网络”。有隐藏单元的对称连接的网络被称为玻尔兹曼机。

其实之前的帖子讲过一些关于感知机的内容,这里再复述一下。
首先还是这张图
这是一个M-P神经元

一个神经元有n个输入,每一个输入对应一个权值w,神经元内会对输入与权重做乘法后求和,求和的结果与偏置做差,最终将结果放入激活函数中,由激活函数给出最后的输出,输出往往是二进制的,0 状态代表抑制,1 状态代表激活。

可以把感知机看作是 n 维实例空间中的超平面决策面,对于超平面一侧的样本,感知器输出 1,对于另一侧的实例输出 0,这个决策超平面方程是 w⋅x=0。 那些可以被某一个超平面分割的正反样例集合称为线性可分(linearly separable)样例集合,它们就可以使用图中的感知机表示。
与、或、非问题都是线性可分的问题,使用一个有两输入的感知机能容易地表示,而异或并不是一个线性可分的问题,所以使用单层感知机是不行的,这时候就要使用多层感知机来解决疑惑问题了。

如果我们要训练一个感知机,应该怎么办呢?
我们会从随机的权值开始,反复地应用这个感知机到每个训练样例,只要它误分类样例就修改感知机的权值。重复这个过程,直到感知机正确分类所有的样例。每一步根据感知机训练法则来修改权值,也就是修改与输入 xi 对应的权 wi,法则如下:

这里 t 是当前训练样例的目标输出,o 是感知机的输出,η 是一个正的常数称为学习速率。学习速率的作用是缓和每一步调整权的程度,它通常被设为一个小的数值(例如 0.1),而且有时会使其随着权调整次数的增加而衰减。

多层感知机,或者说是多层神经网络无非就是在输入层与输出层之间加了多个隐藏层而已,后续的CNN,DBN等神经网络只不过是将重新设计了每一层的类型。感知机可以说是神经网络的基础,后续更为复杂的神经网络都离不开最简单的感知机的模型,

谈到机器学习,我们往往还会跟上一个词语,叫做模式识别,但是真实环境中的模式识别往往会出现各种问题。比如:
图像分割:真实场景中总是掺杂着其它物体。很难判断哪些部分属于同一个对象。对象的某些部分可以隐藏在其他对象的后面。
物体光照:像素的强度被光照强烈影响。
图像变形:物体可以以各种非仿射方式变形。例如,手写也可以有一个大的圆圈或只是一个尖头。
情景支持:物体所属类别通常由它们的使用方式来定义。例如,椅子是为了让人们坐在上面而设计的,因此它们具有各种各样的物理形状。
卷积神经网络与普通神经网络的区别在于,卷积神经网络包含了一个由卷积层和子采样层构成的特征抽取器。在卷积神经网络的卷积层中,一个神经元只与部分邻层神经元连接。在CNN的一个卷积层中,通常包含若干个特征平面(featureMap),每个特征平面由一些矩形排列的的神经元组成,同一特征平面的神经元共享权值,这里共享的权值就是卷积核。卷积核一般以随机小数矩阵的形式初始化,在网络的训练过程中卷积核将学习得到合理的权值。共享权值(卷积核)带来的直接好处是减少网络各层之间的连接,同时又降低了过拟合的风险。子采样也叫做池化(pooling),通常有均值子采样(mean pooling)和最大值子采样(max pooling)两种形式。子采样可以看作一种特殊的卷积过程。卷积和子采样大大简化了模型复杂度,减少了模型的参数。
卷积神经网络由三部分构成。第一部分是输入层。第二部分由n个卷积层和池化层的组合组成。第三部分由一个全连结的多层感知机分类器构成。
这里举AlexNet为例:

·输入:224×224大小的图片,3通道
·第一层卷积:11×11大小的卷积核96个,每个GPU上48个。
·第一层max-pooling:2×2的核。
·第二层卷积:5×5卷积核256个,每个GPU上128个。
·第二层max-pooling:2×2的核。
·第三层卷积:与上一层是全连接,3*3的卷积核384个。分到两个GPU上个192个。
·第四层卷积:3×3的卷积核384个,两个GPU各192个。该层与上一层连接没有经过pooling层。
·第五层卷积:3×3的卷积核256个,两个GPU上个128个。
·第五层max-pooling:2×2的核。
·第一层全连接:4096维,将第五层max-pooling的输出连接成为一个一维向量,作为该层的输入。
·第二层全连接:4096维
·Softmax层:输出为1000,输出的每一维都是图片属于该类别的概率。

卷积神经网络在模式识别领域有着重要应用,当然这里只是对卷积神经网络做了最简单的讲解,卷积神经网络中仍然有很多知识,比如局部感受野,权值共享,多卷积核等内容,后续有机会再进行讲解。

传统的神经网络对于很多问题难以处理,比如你要预测句子的下一个单词是什么,一般需要用到前面的单词,因为一个句子中前后单词并不是独立的。RNN之所以称为循环神经网路,即一个序列当前的输出与前面的输出也有关。具体的表现形式为网络会对前面的信息进行记忆并应用于当前输出的计算中,即隐藏层之间的节点不再无连接而是有连接的,并且隐藏层的输入不仅包括输入层的输出还包括上一时刻隐藏层的输出。理论上,RNN能够对任何长度的序列数据进行处理。
这是一个简单的RNN的结构,可以看到隐藏层自己是可以跟自己进行连接的。

那么RNN为什么隐藏层能够看到上一刻的隐藏层的输出呢,其实我们把这个网络展开来开就很清晰了。

从上面的公式我们可以看出,循环层和全连接层的区别就是循环层多了一个权重矩阵 W。
如果反复把式2带入到式1,我们将得到:

在讲DBN之前,我们需要对DBN的基本组成单位有一定的了解,那就是RBM,受限玻尔兹曼机。
首先什么是玻尔兹曼机?
[图片上传失败...(image-d36b31-1519636788074)]
如图所示为一个玻尔兹曼机,其蓝色节点为隐层,白色节点为输入层。
玻尔兹曼机和递归神经网络相比,区别体现在以下几点:
1、递归神经网络本质是学习一个函数,因此有输入和输出层的概念,而玻尔兹曼机的用处在于学习一组数据的“内在表示”,因此其没有输出层的概念。
2、递归神经网络各节点链接为有向环,而玻尔兹曼机各节点连接成无向完全图。

而受限玻尔兹曼机是什么呢?
最简单的来说就是加入了限制,这个限制就是将完全图变成了二分图。即由一个显层和一个隐层构成,显层与隐层的神经元之间为双向全连接。

h表示隐藏层,v表示显层
在RBM中,任意两个相连的神经元之间有一个权值w表示其连接强度,每个神经元自身有一个偏置系数b(对显层神经元)和c(对隐层神经元)来表示其自身权重。
具体的公式推导在这里就不展示了

DBN是一个概率生成模型,与传统的判别模型的神经网络相对,生成模型是建立一个观察数据和标签之间的联合分布,对P(Observation|Label)和 P(Label|Observation)都做了评估,而判别模型仅仅而已评估了后者,也就是P(Label|Observation)。
DBN由多个限制玻尔兹曼机(Restricted Boltzmann Machines)层组成,一个典型的神经网络类型如图所示。这些网络被“限制”为一个可视层和一个隐层,层间存在连接,但层内的单元间不存在连接。隐层单元被训练去捕捉在可视层表现出来的高阶数据的相关性。

生成对抗网络其实在之前的帖子中做过讲解,这里在说明一下。
生成对抗网络的目标在于生成,我们传统的网络结构往往都是判别模型,即判断一个样本的真实性。而生成模型能够根据所提供的样本生成类似的新样本,注意这些样本是由计算机学习而来的。
GAN一般由两个网络组成,生成模型网络,判别模型网络。
生成模型 G 捕捉样本数据的分布,用服从某一分布(均匀分布,高斯分布等)的噪声 z 生成一个类似真实训练数据的样本,追求效果是越像真实样本越好;判别模型 D 是一个二分类器,估计一个样本来自于训练数据(而非生成数据)的概率,如果样本来自于真实的训练数据,D 输出大概率,否则,D 输出小概率。
举个例子:生成网络 G 好比假币制造团伙,专门制造假币,判别网络 D 好比警察,专门检测使用的货币是真币还是假币,G 的目标是想方设法生成和真币一样的货币,使得 D 判别不出来,D 的目标是想方设法检测出来 G 生成的假币。
传统的判别网络:

生成对抗网络:

下面展示一个cDCGAN的例子(前面帖子中写过的)
生成网络

判别网络

最终结果,使用MNIST作为初始样本,通过学习后生成的数字,可以看到学习的效果还是不错的。

本文非常简单的介绍了四种神经网络的架构,CNN,RNN,DBN,GAN。当然也仅仅是简单的介绍,并没有深层次讲解其内涵。这四种神经网络的架构十分常见,应用也十分广泛。当然关于神经网络的知识,不可能几篇帖子就讲解完,这里知识讲解一些基础知识,帮助大家快速入(zhuang)门(bi)。后面的帖子将对深度自动编码器,Hopfield 网络长短期记忆网络(LSTM)进行讲解。