1. c语言怎么用自定义函数排序
#include <stdio.h>
#include <string.h>#define NUM 3
struct student
{
char name[20]; /*姓名*/
long num; /*12位学号*/
double sum; /*总分*/
};
void Create_Students(struct student stu[NUM])
{
struct student *p;
printf("请输入学生姓名 学号(12位) 总分:\n");
for( p = stu; p <stu+NUM; p++)
{
scanf("%s %d %lf",p->name,&p->num,&p->sum); }
}
void Order_Students(struct student stu[NUM])//起泡法
{
int i,j;
struct student temp;
for(i=NUM-1;i>=0;i--)
for(j=0;j<i;j++)
if(stu[j].sum<stu[j+1].sum)
{
temp = stu[j];
stu[j] = stu[j+1];
stu[j+1]=temp;
}
}
void main()
{
int i=1;
struct student *p;
struct student stu[NUM];
Create_Students(stu);
Order_Students(stu);
printf("%-20s %-13s %-6s %4s\n","姓名","学号(12位)","总成绩","名次");
for(p=stu;p<stu+NUM;p++,i++)
{
printf("%-20s %-13.0d %-8.2f %2d\n",p->name,p->num,p->sum,i);
}
}//你参考参考,嘿
2. c语言 排序函数
首先这是一种快速排序的算法,你也应该知道,快速排序就是选择序列中的一个元素作为基准,通过循环找到这个基准最终的位置,并把所有小于这个基准的元素移到这个位置的左边,大于基本的元素移到右边,这样再对这个基准的左右两边分别递归调用自己,最终就能得到排序的结果。
再来解释一下这个例子,它选择的基准就是v[(left+right)/2],然后将这个基准雨v[left]交换,现在假设你想从头排序到最后,则你会将left传个0,也就是他将这个基准和V[0]交换了,这个时候开始循环,因为第一个元素是基准,所以从第二个元素开始循环(也就是left+1),然后到if判断部分,如果v[i]<v[left],也就是说这个时候已经至少有一个元素比基准小了,所以基准至少在v[1]或者之后了,所以他把你找到的这个比基准小的v[i]和v[++last]交换,这时候v[i]的位置已经是在基准的正确位置或者之前了,不会在基准之后的,所以这就实现了把比基准小的元素移到基准的正确位置之前,你说的【第一遍执行过程中,第8行last=left=0,那么到了11行时相当于交换v[1]和v[0+1]】这没有错,确实是在自己交换自己,但是这样并不违背前面的思路不是么?当if条件不满足的时候,last是不会增加的,但是i会一直加1,所以last和i就会不同,这只是在将比基准小的元素移到基准之前,每有一个比基准小的,last就加1,这样当你循环一遍之后的last值就是基准应该在的位置,而且这个时候,所有比基本小的元素也都在last之前了,这时候last位置的元素也是比基准小的,这没关系,因为之后还有一句swap[v,last,left],到目前位置,基准的位置找到了,基准左边的元素都比基准小,右边都比基准大,再对基准的左右两边递归调用自己,就完成了序列的排序。
3. 怎样用C语言对一串整行数从大到小排序
方法太多了,当然各种时间排序的时间复杂度和空间复杂度不同、稳定性也不同。最简单的我觉得就是冒泡排序了,也最形像。/*
================================================
功能:选择排序
输入:数组名称(也就是数组首地址)、数组中元素个数
================================================
*/
/*
====================================================
算法思想简单描述: 在要排序的一组数中,选出最小的一个数与第一个位置的数交换;
然后在剩下的数当中再找最小的与第二个位置的数交换,如此循环
到倒数第二个数和最后一个数比较为止。 选择排序是不稳定的。算法复杂度O(n2)--[n的平方]
=====================================================
*/
void select_sort(int *x, int n)
{
int i, j, min, t; for (i=0; i<n-1; i++) /*要选择的次数:0~n-2共n-1次*/
{
min = i; /*假设当前下标为i的数最小,比较后再调整*/
for (j=i+1; j<n; j++)/*循环找出最小的数的下标是哪个*/
{
if (*(x+j) < *(x+min))
{
min = j; /*如果后面的数比前面的小,则记下它的下标*/
}
}
if (min != i) /*如果min在循环中改变了,就需要交换数据*/
{
t = *(x+i);
*(x+i) = *(x+min);
*(x+min) = t;
}
}
}
/*
================================================
功能:直接插入排序
输入:数组名称(也就是数组首地址)、数组中元素个数
================================================
*/
/*
====================================================
算法思想简单描述: 在要排序的一组数中,假设前面(n-1) [n>=2] 个数已经是排
好顺序的,现在要把第n个数插到前面的有序数中,使得这n个数
也是排好顺序的。如此反复循环,直到全部排好顺序。
直接插入排序是稳定的。算法时间复杂度O(n2)--[n的平方]
=====================================================
*/
void insert_sort(int *x, int n)
{
int i, j, t; for (i=1; i<n; i++) /*要选择的次数:1~n-1共n-1次*/
{
/*
暂存下标为i的数。注意:下标从1开始,原因就是开始时
第一个数即下标为0的数,前面没有任何数,单单一个,认为
它是排好顺序的。
*/
t=*(x+i);
for (j=i-1; j>=0 && t<*(x+j); j--) /*注意:j=i-1,j--,这里就是下标为i的数,在它前面有序列中找插入位置。*/
{
*(x+j+1) = *(x+j); /*如果满足条件就往后挪。最坏的情况就是t比下标为0的数都小,它要放在最前面,j==-1,退出循环*/
} *(x+j+1) = t; /*找到下标为i的数的放置位置*/
}
}
/*
================================================
功能:冒泡排序
输入:数组名称(也就是数组首地址)、数组中元素个数
================================================
*/
/*
====================================================
算法思想简单描述: 在要排序的一组数中,对当前还未排好序的范围内的全部数,自上
而下对相邻的两个数依次进行比较和调整,让较大的数往下沉,较
小的往上冒。即:每当两相邻的数比较后发现它们的排序与排序要
求相反时,就将它们互换。
下面是一种改进的冒泡算法,它记录了每一遍扫描后最后下沉数的
位置k,这样可以减少外层循环扫描的次数。 冒泡排序是稳定的。算法时间复杂度O(n2)--[n的平方]
=====================================================
*/void bubble_sort(int *x, int n)
{
int j, k, h, t;
for (h=n-1; h>0; h=k) /*循环到没有比较范围*/
{
for (j=0, k=0; j<h; j++) /*每次预置k=0,循环扫描后更新k*/
{
if (*(x+j) > *(x+j+1)) /*大的放在后面,小的放到前面*/
{
t = *(x+j);
*(x+j) = *(x+j+1);
*(x+j+1) = t; /*完成交换*/
k = j; /*保存最后下沉的位置。这样k后面的都是排序排好了的。*/
}
}
}
}
/*
================================================
功能:希尔排序
输入:数组名称(也就是数组首地址)、数组中元素个数
================================================
*/
/*
====================================================
算法思想简单描述:
在直接插入排序算法中,每次插入一个数,使有序序列只增加1个节点,
并且对插入下一个数没有提供任何帮助。如果比较相隔较远距离(称为
增量)的数,使得数移动时能跨过多个元素,则进行一次比较就可能消除
多个元素交换。D.L.shell于1959年在以他名字命名的排序算法中实现
了这一思想。算法先将要排序的一组数按某个增量d分成若干组,每组中
记录的下标相差d.对每组中全部元素进行排序,然后再用一个较小的增量
对它进行,在每组中再进行排序。当增量减到1时,整个要排序的数被分成
一组,排序完成。
下面的函数是一个希尔排序算法的一个实现,初次取序列的一半为增量,
以后每次减半,直到增量为1。 希尔排序是不稳定的。
=====================================================
*/
void shell_sort(int *x, int n)
{
int h, j, k, t; for (h=n/2; h>0; h=h/2) /*控制增量*/
{
for (j=h; j<n; j++) /*这个实际上就是上面的直接插入排序*/
{
t = *(x+j);
for (k=j-h; (k>=0 && t<*(x+k)); k-=h)
{
*(x+k+h) = *(x+k);
}
*(x+k+h) = t;
}
}
}/*
================================================
功能:快速排序
输入:数组名称(也就是数组首地址)、数组中起止元素的下标
================================================
*/
/*
====================================================
算法思想简单描述: 快速排序是对冒泡排序的一种本质改进。它的基本思想是通过一趟
扫描后,使得排序序列的长度能大幅度地减少。在冒泡排序中,一次
扫描只能确保最大数值的数移到正确位置,而待排序序列的长度可能只
减少1。快速排序通过一趟扫描,就能确保某个数(以它为基准点吧)
的左边各数都比它小,右边各数都比它大。然后又用同样的方法处理
它左右两边的数,直到基准点的左右只有一个元素为止。它是由
C.A.R.Hoare于1962年提出的。
显然快速排序可以用递归实现,当然也可以用栈化解递归实现。下面的
函数是用递归实现的,有兴趣的朋友可以改成非递归的。 快速排序是不稳定的。最理想情况算法时间复杂度O(nlog2n),最坏O(n2)
=====================================================
*/
void quick_sort(int *x, int low, int high)
{
int i, j, t; if (low < high) /*要排序的元素起止下标,保证小的放在左边,大的放在右边。这里以下标为low的元素为基准点*/
{
i = low;
j = high;
t = *(x+low); /*暂存基准点的数*/ while (i<j) /*循环扫描*/
{
while (i<j && *(x+j)>t) /*在右边的只要比基准点大仍放在右边*/
{
j--; /*前移一个位置*/
} if (i<j)
{
*(x+i) = *(x+j); /*上面的循环退出:即出现比基准点小的数,替换基准点的数*/
i++; /*后移一个位置,并以此为基准点*/
} while (i<j && *(x+i)<=t) /*在左边的只要小于等于基准点仍放在左边*/
{
i++; /*后移一个位置*/
} if (i<j)
{
*(x+j) = *(x+i); /*上面的循环退出:即出现比基准点大的数,放到右边*/
j--; /*前移一个位置*/
}
} *(x+i) = t; /*一遍扫描完后,放到适当位置*/
quick_sort(x,low,i-1); /*对基准点左边的数再执行快速排序*/
quick_sort(x,i+1,high); /*对基准点右边的数再执行快速排序*/
}
}
/*
================================================
功能:堆排序
输入:数组名称(也就是数组首地址)、数组中元素个数
================================================
*/
/*
====================================================
算法思想简单描述: 堆排序是一种树形选择排序,是对直接选择排序的有效改进。
堆的定义如下:具有n个元素的序列(h1,h2,...,hn),当且仅当
满足(hi>=h2i,hi>=2i+1)或(hi<=h2i,hi<=2i+1)(i=1,2,...,n/2)
时称之为堆。在这里只讨论满足前者条件的堆。 由堆的定义可以看出,堆顶元素(即第一个元素)必为最大项。完全二叉树可以
很直观地表示堆的结构。堆顶为根,其它为左子树、右子树。
初始时把要排序的数的序列看作是一棵顺序存储的二叉树,调整它们的存储顺序,
使之成为一个堆,这时堆的根节点的数最大。然后将根节点与堆的最后一个节点
交换。然后对前面(n-1)个数重新调整使之成为堆。依此类推,直到只有两个节点
的堆,并对它们作交换,最后得到有n个节点的有序序列。 从算法描述来看,堆排序需要两个过程,一是建立堆,二是堆顶与堆的最后一个元素
交换位置。所以堆排序有两个函数组成。一是建堆的渗透函数,二是反复调用渗透函数
实现排序的函数。 堆排序是不稳定的。算法时间复杂度O(nlog2n)。*/
/*
功能:渗透建堆
输入:数组名称(也就是数组首地址)、参与建堆元素的个数、从第几个元素开始
*/
void sift(int *x, int n, int s)
{
int t, k, j; t = *(x+s); /*暂存开始元素*/
k = s; /*开始元素下标*/
j = 2*k + 1; /*右子树元素下标*/ while (j<n)
{
if (j<n-1 && *(x+j) < *(x+j+1))/*判断是否满足堆的条件:满足就继续下一轮比较,否则调整。*/
{
j++;
} if (t<*(x+j)) /*调整*/
{
*(x+k) = *(x+j);
k = j; /*调整后,开始元素也随之调整*/
j = 2*k + 1;
}
else /*没有需要调整了,已经是个堆了,退出循环。*/
{
break;
}
}
*(x+k) = t; /*开始元素放到它正确位置*/
}
/*
功能:堆排序
输入:数组名称(也就是数组首地址)、数组中元素个数
*/
void heap_sort(int *x, int n)
{
int i, k, t;
int *p; for (i=n/2-1; i>=0; i--)
{
sift(x,n,i); /*初始建堆*/
}
for (k=n-1; k>=1; k--)
{
t = *(x+0); /*堆顶放到最后*/
*(x+0) = *(x+k);
*(x+k) = t;
sift(x,k,0); /*剩下的数再建堆*/
}
}
void main()
{
#define MAX 4
int *p, i, a[MAX];
/*录入测试数据*/
p = a;
printf("Input %d number for sorting :\n",MAX);
for (i=0; i<MAX; i++)
{
scanf("%d",p++);
}
printf("\n"); /*测试选择排序*/
p = a;
select_sort(p,MAX);
/**/
/*测试直接插入排序*/ /*
p = a;
insert_sort(p,MAX);
*/
/*测试冒泡排序*/ /*
p = a;
insert_sort(p,MAX);
*/ /*测试快速排序*/ /*
p = a;
quick_sort(p,0,MAX-1);
*/ /*测试堆排序*/ /*
p = a;
heap_sort(p,MAX);
*/ for (p=a, i=0; i<MAX; i++)
{
printf("%d ",*p++);
}
printf("\n");
system("pause");
}
4. C语言的全排列问题!急!
这其实是一个递归
递归函数
意思是这样的
比如有n个数
1
2.。。。n
把1
从第一个开始
往后
与每个数开始交换
然后
第一个数就算定了
后面的
第2个到第n个当成一个整体
再进行这个函数递归
也就是说
第二个到第n个进行全排列
这样下去
当全排列到最后一组数
即第n个数一个的时候
递归退出条件就出来了
就可以输出全排列的值了
当然
最后别忘记把交换的数还原
再进行下一次交换
递归哦
所以最后一局的交换也是很重要的
听完我的解释
再好好琢磨一下
相信你一定会明白的
要是还是不懂可以继续追问我
5. c语言中排序方法
1、冒泡排序(最常用)
冒泡排序是最简单的排序方法:原理是:从左到右,相邻元素进行比较。每次比较一轮,就会找到序列中最大的一个或最小的一个。这个数就会从序列的最右边冒出来。(注意每一轮都是从a[0]开始比较的)
以从小到大排序为例,第一轮比较后,所有数中最大的那个数就会浮到最右边;第二轮比较后,所有数中第二大的那个数就会浮到倒数第二个位置……就这样一轮一轮地比较,最后实现从小到大排序。
2、鸡尾酒排序
鸡尾酒排序又称双向冒泡排序、鸡尾酒搅拌排序、搅拌排序、涟漪排序、来回排序或快乐小时排序, 是冒泡排序的一种变形。该算法与冒泡排序的不同处在于排序时是以双向在序列中进行排序。
原理:数组中的数字本是无规律的排放,先找到最小的数字,把他放到第一位,然后找到最大的数字放到最后一位。然后再找到第二小的数字放到第二位,再找到第二大的数字放到倒数第二位。以此类推,直到完成排序。
3、选择排序
思路是设有10个元素a[1]-a[10],将a[1]与a[2]-a[10]比较,若a[1]比a[2]-a[10]都小,则不进行交换。若a[2]-a[10]中有一个以上比a[1]小,则将其中最大的一个与a[1]交换,此时a[1]就存放了10个数中最小的一个。同理,第二轮拿a[2]与a[3]-a[10]比较,a[2]存放a[2]-a[10]中最小的数,以此类推。
4、插入排序
插入排序是在一个已经有序的小序列的基础上,一次插入一个元素*
一般来说,插入排序都采用in-place在数组上实现。
具体算法描述如下:
⒈ 从第一个元素开始,该元素可以认为已经被排序
⒉ 取出下一个元素,在已经排序的元素序列中从后向前扫描
⒊ 如果该元素(已排序)大于新元素,将该元素移到下一位置
⒋ 重复步骤3,直到找到已排序的元素小于或者等于新元素的位置
⒌ 将新元素插入到下一位置中
⒍ 重复步骤2~5