当前位置:首页 » 编程语言 » hivesqlunion
扩展阅读
webinf下怎么引入js 2023-08-31 21:54:13
堡垒机怎么打开web 2023-08-31 21:54:11

hivesqlunion

发布时间: 2023-03-30 23:45:21

① Hive sql语句执行顺序

Hive 中 sql 语句的执行顺序如下:

from .. where .. join .. on .. select .. group by .. select .. having .. distinct .. order by .. limit .. union/union all

下面我们通过一个 sql 语句分析下:

上面这条 sql 语句是可以成功执行的,我们看下它在 MR 中的执行顺序:

Map 阶段

Rece 阶段

上面这个执行顺序到底对不对呢,我们可以通过 explain 执行计划来看下,内容过多,我们分阶段来看。

我们看到 Stage-5 是根,也就是最先执行 Stage-5,Stage-2 依赖 Stage-5,Stage-0 依赖 Stage-2。

图中标 ① 处是表扫描操作,注意先扫描的 b 表,也就是 left join 后面的表,然后进行过滤操作(图中标 ② 处),我们 sql 语句中是对 a 表进行的过滤,但是 Hive 也会自动对 b 表进行相同的过滤操作,这样可以减少关联的数据量。

先扫描 a 表(图中标 ① 处);接下来进行过滤操作 idno > �'(图中标 ② 处);然后进行 left join,关联的 key 是 idno(图中标 ③ 处);执行完关联操作之后会进行输出操作,输出的是三个字段,包括 select 的两个字段加 group by 的一个字段(图中标 ④ 处);然后进行 group by 操作,分组方式是 hash(图中标 ⑤ 处);然后进行排序操作,按照 idno 进行正向排序(图中标 ⑥ 处)。

首先进行 group by 操作,注意此时的分组方式是 mergepartial 合并分组(图中标 ① 处);然后进行 select 操作,此时输出的字段只有两个了,输出的行数是 30304 行(图中标 ② 处);接下来执行 having 的过滤操作,过滤出 count_user>1 的字段,输出的行数是 10101 行(图中标 ③ 处);然后进行 limit 限制输出的行数(图中标 ④ 处);图中标 ⑤ 处表示是否对文件压缩,false 不压缩。

限制最终输出的行数为 10 行。

通过上面对 SQL 执行计划的分析,总结以下几点:

② Hive优化的十大方法

Hive用的好,才能从数据中挖掘出更多的信息来。用过hive的朋友,我想或多或少都有类似的经历:一天下来,没跑几次hive,就到下班时间了。Hive在极大数据或者数据不平衡等情况下,表现往往一般,因此也出现了presto、spark-sql等替代品。这里重点讲解hive的优化方式,例如

一. 表连接优化

二. 用insert into替换union all
如果union all的部分个数大于2,或者每个union部分数据量大,应该拆成多个insert into 语句,实际测试过程中,执行时间能提升50%。示例参考如下:

可以改写为:

三. order by & sort by
order by : 对查询结果进行全局排序消耗时间长,需要set hive.mapred.mode=nostrict
sort by : 局部排序,并非全局有序,提高效率。

四. transform+python
一种嵌入在hive取数流程中的自定义函数,通过transform语句可以把在hive中不方便实现的功能在python中实现,然后写入hive表中。示例语法如下:

如果除python脚本外还有其它依赖资源,可以使用ADD ARVHIVE。

五. limit 语句快速出结果
一般情况下,Limit语句还是需要执行整个查询语句,然后再返回部分结果。有一个配置属性可以开启,避免这种情况—对数据源进行抽样

缺点:有可能部分数据永远不会被处理到

六. 本地模式
对于小数据集,为查询触发执行任务消耗的时间>实际执行job的时间,因此可以通过本地模式,在单台机器上(或某些时候在单个进程上)处理所有的任务。

可以通过设置属性hive.exec.mode.local.auto的值为true,来让Hive在适当的时候自动启动这个优化,也可以将这个配置写在$HOME/.hiverc文件中。
当一个job满足如下条件才能真正使用本地模式:

七. 并行执行
Hive会将一个查询转化为一个或多个阶段,包括:MapRece阶段、抽样阶段、合并阶段、limit阶段等。默认情况下,一次只执行一个阶段。 不过,如果某些阶段不是互相依赖,是可以并行执行的。

会比较耗系统资源。

八. 调整mapper和recer的个数

假设input目录下有1个文件a,大小为780M,那么hadoop会将该文件a分隔成7个块(6个128m的块和1个12m的块),从而产生7个map数
假设input目录下有3个文件a,b,c,大小分别为10m,20m,130m,那么hadoop会分隔成4个块(10m,20m,128m,2m),从而产生4个map数。
即如果文件大于块大小(128m),那么会拆分,如果小于块大小,则把该文件当成一个块。
map执行时间:map任务启动和初始化的时间+逻辑处理的时间。

减少map数
若有大量小文件(小于128M),会产生多个map,处理方法是:

前面三个参数确定合并文件块的大小,大于文件块大小128m的,按照128m来分隔,小于128m,大于100m的,按照100m来分隔,把那些小于100m的(包括小文件和分隔大文件剩下的)进行合并。

set hive.input.format=org.apache.hadoop.hive.ql.io.CombineHiveInputFormat; – 执行前进行小文件合并。

增加map数
当input的文件都很大,任务逻辑复杂,map执行非常慢的时候,可以考虑增加Map数,来使得每个map处理的数据量减少,从而提高任务的执行效率。
set mapred.rece.tasks=?

一般根据输入文件的总大小,用它的estimation函数来自动计算rece的个数:rece个数 = InputFileSize / bytes per recer

九. 严格模式

十. 数据倾斜
表现:
任务进度长时间维持在99%(或100%),查看任务监控页面,发现只有少量(1个或几个)rece子任务未完成。因为其处理的数据量和其他rece差异过大。单一rece的记录数与平均记录数差异过大,通常可能达到3倍甚至更多。 最长时长远大于平均时长。

原因:

解决方案:参数调节

③ union和union all 的写法

union和union all 都是将两个相同列数的表 从上到下拼接起来:例如下图

使用union或者union all 之后的结果是

1、在mysql中都可以使用 union 或者union all,在hive sql中 只能使瞎御用union all

2、Union 使用后,将相同的两行或者几行数据去重保留一行,union all的败乎使用结果是将相同的几行数据也保留下来,例如

3、Union使用时,需要列数相同,类型可以不同,union all 则都需要相同

4、Union和union all 的sql 基本写法

Select * from A

Union

Selec * from B

结果如表A1

Select * from A

Union all

Selec * from B

结果如表A2

5、Union和union all 的group by写法:求出每个人都有磨枯岩多少钱

Select

Name,

sum(Money)

from

(Select Name,sum(Money ) as m from C group by Money

Union

Select Name,Cote as m from D)tab

Group by Name

结果如图,union 在C表里面先进行了group by 求和,然后再拼接求和

Select

Name,

sum(Money)

from

(Select Name,sum(Money ) as m from C

Union all

Select Name,Cote as Money from D)tab

Group by Name

Union all 先进行拼接,再求和,它的结果也是上图

④ 数据分析课程笔记 - 19 - HiveSQL 常用优化技巧

大家好呀,这节课学习 HiveSQL 的常用优化技巧。由于 Hive 主要用来处理非常大的数据,运行过程由于通常要经过 MapRece 的过程,因此不像 MySQL 一样很快出结果。而使用不同方法写出来的 HiveSQL 语句执行效率也是不一样的,因此为了减少等待的时间,提高服务器的运行效率,我们需要在 HiveSQL 的语句上进行一些优化。

本节课的主要内容

引言
1、技巧一:列裁剪和分区裁剪
(1)列裁剪
(2)分区裁剪
2、技巧二:排序技巧——sort by代替order by
3、技巧三:去重技巧——用group by来替换distinct
4、技巧四:聚合技巧——grouping sets、cube、rollup
(1)grouping sets
(2)cube
(3)rollup
5、技巧五:换个思路解题
6、技巧六:union all时可以开启并发执行
7、技巧七:表连接优化
8、技巧八:遵循严格模式

Hive 作为大数据领域常用的数据仓库组件,在平时设计和查询时要特别注意效率。影响Hive效率的几乎从不是数据量过大,而是数据倾斜、数据冗余、job 或 I/O 过多、MapRece 分配不合理等等。对 Hive 的调优既包含对HiveSQL 语句本身的优化,也包含 Hive 配置项和 MR 方面的调整。

列裁剪就是在查询时只读取需要的列。当列很多或者数据量很大时,如果select 所有的列或者不指定分区,导致的全表扫描和全分区扫描效率都很低。Hive中与列裁剪优化相关的配置项是 hive.optimize.cp ,默认是 true 。

分区裁剪就是在查询时只读需要的分区。Hive中与分区裁剪优化相关的则是 hive.optimize.pruner ,默认是 true 。

HiveSQL中的 order by 与其他 SQL 语言中的功能一样,就是将结果按某个字段全局排序,这会导致所有map端数据都进入一个 rece 中,在数据量大时可能会长时间计算不完。

如果使用 sort by ,那么就会视情况启动多个 recer 进行排序,并且保证每个 recer 内局部有序。为了控制 map 端数据分配到 rece 的 key,往往还要配合 distribute by 一同使用。如果不加 distribute by 的话,map 端数据就会随机分配给 recer。

这里需要解释一下, distribute by 和 sort by 结合使用是如何相较于 order by 提升运行效率的。

假如我们要对一张很大的用户信息表按照年龄进行分组,优化前的写法是直接 order by age 。使用 distribute by 和 sort by 结合进行优化的时候, sort by 后面还是 age 这个排序字段, distribute by 后面选择一个没有重复值的均匀字段,比如 user_id 。

这样做的原因是,通常用户的年龄分布是不均匀的,比如20岁以下和50岁以上的人非常少,中间几个年龄段的人又非常多,在 Map 阶段就会造成有些任务很大,有些任务很小。那通过 distribute by 一个均匀字段,就可以让系统均匀地进行“分桶”,对每个桶进行排序,最后再组合,这样就能从整体上提升 MapRece 的效率。

取出 user_trade 表中全部支付用户:

原有写法的执行时长:

优化写法的执行时长:

考虑对之前的案例进行优化:

注意: 在极大的数据量(且很多重复值)时,可以先 group by 去重,再 count() 计数,效率高于直接 count(distinct **) 。

如果我们想知道用户的性别分布、城市分布、等级分布,你会怎么写?

通常写法:

缺点 :要分别写三次SQL,需要执行三次,重复工作,且费时。

那该怎么优化呢?

注意 :这个聚合结果相当于纵向地堆在一起了(Union all),分类字段用不同列来进行区分,也就是每一行数据都包含 4 列,前三列是分类字段,最后一列是聚合计算的结果。

GROUPING SETS() :在 group by 查询中,根据不同的维度组合进行聚合,等价于将不同维度的 group by 结果集进行 union all。聚合规则在括号中进行指定。

如果我们想知道用户的性别分布以及每个性别的城市分布,你会怎么写?

那该怎么优化呢?

注意: 第二列为NULL的,就是性别的用户分布,其余有城市的均为每个性别的城市分布。

cube:根据 group by 维度的所有组合进行聚合

注意 :跑完数据后,整理很关键!!!

rollup:以最左侧的维度为主,进行层级聚合,是cube的子集。

如果我想同时计算出,每个月的支付金额,以及每年的总支付金额,该怎么办?

那应该如何优化呢?

条条大路通罗马,写SQL亦是如此,能达到同样效果的SQL有很多种,要学会思路转换,灵活应用。

来看一个我们之前做过的案例:

有没有别的写法呢?

Hive 中互相没有依赖关系的 job 间是可以并行执行的,最典型的就是
多个子查询union all。在集群资源相对充足的情况下,可以开启并
行执行。参数设置: set hive.exec.parallel=true;

时间对比:

所谓严格模式,就是强制不允许用户执行3种有风险的 HiveSQL 语句,一旦执行会直接报错。

要开启严格模式,需要将参数 hive.mapred.mode 设为 strict 。

好啦,这节课的内容就是这些。以上优化技巧需要大家在平时的练习和使用中有意识地去注意自己的语句,不断改进,就能掌握最优的写法。

⑤ HiveSQL核心技能之表连接

目标:
1、掌握HQL中的各种连接及其组合使用;
2、掌握数据分析中业务指标思路转换的技巧;
3、区分好full join 和 union all 的使用场景;
4、在多表连接时,注意各种细节和业务逻辑;
5、复杂表连接要学会分步骤处理

需注意:
1、表连接时,必须进行重命名;
2、on后面使用的连接条件必须起到 唯一键值 的作用(有时会有多个字段组合);
3、inner可省略不写,效果是一样的
4、表连接时不能使用 a join b join c这种方式,不然会极度浪费电脑的资源和延长查询时间,要在子查询的表里先做好筛选之后在连接;

1)找出在2019年购买后又退款的用户(记得要去重)

注意:一定要先去重,再做表连接,养成良好的习惯(虽然可以先连接再去重,但是那么做会使执行效率很低)

2)在2017年和2018年都购买的用户

3)在2017年、2018年、2019年都有交易的用户

进行左连接之后,以左表为全集,返回能够匹配上的右边表的匹配结果,没有匹配上的则显示NULL。

拓展:
right join:以右表为全集,返回能够匹配上的左边表的匹配结果,没有匹配上的则显示NULL,可以由left join改写出同样的结果。

4)在2019年购买,但是没有退款的用户

5)在2019年由购买的用户的学历分布

6)在2017年和2018年都购买,但是没有在2019年购买的用户

查询两个表的所有用户时使用full join是一个比较好的方法(需要用到coalesce函数:

注:coalesce函数,coalesce(expression1,expression2,...,expression n),依次参考各参数表达式,遇到非null值即停止并返回该值,如果所有的表达式都是空值,最终将返回一个空值。

注:表合并时字段名称必须一致,字段顺序必须一致,而且不用填写连接条件

7)2017-2019年由交易的所有用户数

union all 和 union 的区别:
union all 不会去重,不会排序,效率较快;union 会去重且排序,效率较慢。
如果表很大时,推荐先去重,再进行 union all ,不能直接对表进行 union all,不然效率很慢。

8)2019年每个用户的支付和退款金额汇总

也可以使用 full join 的方式:

9)2019年每个支付用户的支付金额和退款金额

10)首次激活时间在2017年,但是一直没有支付的用户年龄段分布

步骤总结:
1、先筛选出年份为2017注册的用户;
2、没有支付的人;
3、年龄段分布
注意:由于age也是在user_info的表格里,第三步用的字段需要在第一步进行预处理,所以在限制时间的时候需要同时对年龄段进行预处理,这样在第三步的时候才会由年龄段这个字段;需要注意对 case when 的字段进行重命名才能进行后续的操作

11)2018、2019年交易的用户,其激活时间段分布

步骤总结:
1. 取出2018和2019年所有的交易用户的交集
2. 取出所有用户的激活时间
3. 统计时间分布

⑥ HIVE优化(四)-union all

1.参数优化纳肆州,小于6M自动合并
2.加功能,雹判改成洞蔽分区表,做join写成任务流
3.mapjoin
4.加索引
5.先where 再join
6.加小型的sql

⑦ hive技巧union all代替union

union因为要进行重复值扫描,所以效率低。如果合并没有刻意要删除重复行,那么就使用union all 两个要联合的sql语句 字段个数必须一样,而且字段类型要“相容”(芹磨一致); 如果我们需要将两个select语句数纳的结果作为一个整体显示出来嫌毕斗

⑧ Hive sql及窗口函数

hive函数:

1、根据指定条件返回结果:case when then else end as

2、基本类型转换:CAST()

3、nvl:处理空字段:三个str时,是否为空可以指定返回不同的值

4、sql通配符: https://www.w3school.com.cn/sql/sql_wildcards.asp

5、count(1)与COUNT(*):返回行数

如果表没有主键,那么count(1)比count(*)快;

如果有主键,那么count(主键,联合主键)比count(*)快;

count(1)跟count(主键)一样,只扫描主键。count(*)跟count(非主键)一样,扫描整个表。明显前者更快一些。

性能问题:

1.任何情况下SELECT COUNT(*) FROM tablename是最优选择,(指没有where的情况);

2.尽量减少SELECT COUNT(*) FROM tablename WHERE COL = ‘value’ 这种查询;

3.杜绝SELECT COUNT(COL) FROM tablename WHERE COL2 = ‘value’ 的出现。

count(expression):查询 is_reply=0 的数量: SELECT COUNT(IF(is_reply=0,1,NULL)) count FROM t_iov_help_feedback;

6、distinct与group by

distinct去重所有distinct之后所有的字段,如果有一个字段值不一致就不作为一条

group by是根据某一字段分组,然后查询出该条数据的所需字段,可以搭配 where max(time)或者Row_Number函数使用,求出最大的一条数据

7、使用with 临时表名 as() 的形式,简单的临时表直接嵌套进sql中,复杂的和需要复用的表写到临时表中,关联的时候先找到关联字段,过滤条件最好在临时表中先过滤后关联

处理json的函数:

split(json_array_string(schools), '\\|\\|') AS schools

get_json_object(school, '$.id') AS school_id,

字符串函数:

1、instr(’源字符串’ , ‘目标字符串’ ,’开始位置’,’第几次出现’)

instr(sourceString,destString,start,appearPosition)

1.sourceString代表源字符串; destString代表要从源字符串中查找的子串;

2.start代表查找的开始位置,这个参数可选的,默认为1;

3.appearPosition代表想从源字符中查找出第几次出现的destString,这个参数也是可选的, 默认为1

4.如果start的值为负数,则代表从右往左进行查找,但是位置数据仍然从左向右计算。

5.返回值为:查找到的字符串的位置。如果没有查找到,返回0。

最简单例子: 在abcd中查找a的位置,从第一个字母开始查,查找第一次出现时的位置

select instr(‘abcd’,’a’,1,1) from al; —1

应用于模糊查询:instr(字段名/列名, ‘查找字段’)

select code,name,dept,occupation from staff where instr(code, ‘001’)> 0;

等同于 select code, name, dept, occupation from staff where code like ‘%001%’ ;

应用于判断包含关系:

select ccn,mas_loc from mas_loc where instr(‘FH,FHH,FHM’,ccn)>0;

等同于 select ccn,mas_loc from mas_loc where ccn in (‘FH’,’FHH’,’FHM’);

2、substr(string A,int start,int len)和 substring(string A,int start,int len),用法一样

substr(time,1,8) 表示将time从第1位开始截取,截取的长度为8位

第一种用法:

substr(string A,int start)和 substring(string A,int start),用法一样

功效:返回字符串A从下标start位置到结尾的字符串

第二种用法:

substr(string A,int start,int len)和 substring(string A,int start,int len),用法一样

功效:返回字符串A从下标start位置开始,长度为len的字符串

3、get_json_object(form_data,'$.学生姓名') as student_name

json_tuple 函数的作用:用来解析json字符串中的多个字段

4、split(full_name, '\\.') [5] AS zq;  取的是数组里的第六个

日期(时间)函数:

1、to_date(event_time) 返回日期部分

2、date_sub:返回当前日期的相对时间

当前日期:select curdate() 

当前日期前一天:select  date_sub(curdate(),interval 1 day)

当前日期后一天:select date_sub(curdate(),interval -1 day)

date_sub(from_unixtime(unix_timestamp(), 'yyyy-MM-dd HH:mm:ss'), 14)  将现在的时间总秒数转为标准格式时间,返回14天之前的时间

时间戳>>>>日期:

from_unixtime(unix_timestamp(), 'yyyy-MM-dd HH:mm:ss') 将现在的时间总秒数转为标准格式时间

from_unixtime(get_json_object(get_json_object(form_data,'$.挽单时间'),'$.$date')/1000) as retain_time

unix_timestamp('2019-08-15 16:40:00','yyyy-MM-dd HH:mm:ss')  --1565858400

日期>>>>时间戳:unix_timestamp()

date_format:yyyy-MM-dd HH:mm:ss 时间转格式化时间

select date_format('2019-10-07 13:24:20', 'yyyyMMdd000000')-- 20191007000000select date_format('2019-10-07', 'yyyyMMdd000000')-- 20191007000000

1.日期比较函数: datediff语法: datediff(string enddate,string startdate) 

返回值: int 

说明: 返回结束日期减去开始日期的天数。 

举例:  hive> select datediff('2016-12-30','2016-12-29');  1

2.日期增加函数: date_add语法: date_add(string startdate, intdays) 

返回值: string 

说明: 返回开始日期startdate增加days天后的日期。 

举例:  hive>select date_add('2016-12-29',10);  2017-01-08

3.日期减少函数: date_sub语法: date_sub (string startdate,int days) 

返回值: string 

说明: 返回开始日期startdate减少days天后的日期。 

举例:  hive>select date_sub('2016-12-29',10);  2016-12-19

4.查询近30天的数据

select * from table where datediff(current_timestamp,create_time)<=30;

create_time 为table里的字段,current_timestamp 返回当前时间 2018-06-01 11:00:00

3、trunc()函数的用法:当前日期的各种第一天,或者对数字进行不四舍五入的截取

日期:

1.select trunc(sysdate) from al  --2011-3-18  今天的日期为2011-3-18

2.select trunc(sysdate, 'mm')   from   al  --2011-3-1    返回当月第一天.

上月1号    trunc(add_months(current_date(),-1),'MM')

3.select trunc(sysdate,'yy') from al  --2011-1-1       返回当年第一天

4.select trunc(sysdate,'dd') from al  --2011-3-18    返回当前年月日

5.select trunc(sysdate,'yyyy') from al  --2011-1-1   返回当年第一天

6.select trunc(sysdate,'d') from al  --2011-3-13 (星期天)返回当前星期的第一天

7.select trunc(sysdate, 'hh') from al   --2011-3-18 14:00:00   当前时间为14:41  

8.select trunc(sysdate, 'mi') from al  --2011-3-18 14:41:00   TRUNC()函数没有秒的精确

数字:TRUNC(number,num_digits) Number 需要截尾取整的数字。Num_digits 的默认值为 0。TRUNC()函数截取时不进行四舍五入

11.select trunc(123.458,1) from al --123.4

12.select trunc(123.458,-1) from al --120

4、round():四舍五入:

select round(1.455, 2)  #结果是:1.46,即四舍五入到十分位,也就是保留两位小数

select round(1.5)  #默认四舍五入到个位,结果是:2

select round(255, -1)  #结果是:260,即四舍五入到十位,此时个位是5会进位

floor():地板数

ceil()天花板数

5、

6.日期转年函数: year语法:   year(string date) 

返回值: int

说明: 返回日期中的年。

举例:

hive>   select year('2011-12-08 10:03:01') from al;

2011

hive>   select year('2012-12-08') fromal;

2012

7.日期转月函数: month语法: month   (string date) 

返回值: int

说明: 返回日期中的月份。

举例:

hive>   select month('2011-12-08 10:03:01') from al;

12

hive>   select month('2011-08-08') fromal;

8

8.日期转天函数: day语法: day   (string date) 

返回值: int

说明: 返回日期中的天。

举例:

hive>   select day('2011-12-08 10:03:01') from al;

8

hive>   select day('2011-12-24') fromal;

24

9.日期转小时函数: hour语法: hour   (string date) 

返回值: int

说明: 返回日期中的小时。

举例:

hive>   select hour('2011-12-08 10:03:01') from al;

10

10.日期转分钟函数: minute语法: minute   (string date) 

返回值: int

说明: 返回日期中的分钟。

举例:

hive>   select minute('2011-12-08 10:03:01') from al;

3

11.日期转秒函数: second语法: second   (string date) 

返回值: int

说明: 返回日期中的秒。

举例:

hive>   select second('2011-12-08 10:03:01') from al;

1

12.日期转周函数: weekofyear语法:   weekofyear (string date) 

返回值: int

说明: 返回日期在当前的周数。

举例:

hive>   select weekofyear('2011-12-08 10:03:01') from al;

49

查看hive表在hdfs中的位置:show create table 表名;

在hive中hive2hive,hive2hdfs:

HDFS、本地、hive -----> Hive:使用 insert into | overwrite、loaddata local inpath "" into table student;

Hive ----> Hdfs、本地:使用:insert overwrite | local

网站访问量统计:

uv:每用户访问次数

ip:每ip(可能很多人)访问次数

PV:是指页面的浏览次数

VV:是指你访问网站的次数

sql:

基本函数:

count、max、min、sum、avg、like、rlike('2%'、'_2%'、%2%'、'[2]')(java正则)

and、or、not、in   

where、group by、having、{ join on 、full join}  、order by(desc降序)

sort by需要与distribut by集合结合使用:

hive (default)> set maprece.job.reces=3;  //先设置rece的数量 

insert overwrite local directory '/opt/mole/datas/distribute-by'

row format delimited fields terminated by '\t'

先按照部门编号分区,再按照员工编号降序排序。

select * from emp distribute by deptno sort by empno desc;

外部表  create external table if not exists dept

分区表:create table dept_partition ( deptno int, dname string, loc string )  partitioned by ( month string )

load data local inpath '/opt/mole/datas/dept.txt' into table default.dept_partition partition(month='201809'); 

 alter table dept_partition add/drop partition(month='201805') ,partition(month='201804');

多分区联合查询:union

select * from dept_partition2 where month='201809' and day='10';

show partitions dept_partition;

desc formatted dept_partition;

二级分区表:create table dept_partition2 ( deptno int, dname string, loc string ) partitioned by (month string, day string) row format delimited fields terminated by '\t';

分桶抽样查询:分区针对的是数据的存储路径;分桶针对的是数据文件

create table stu_buck(id int, name string) clustered by(id) into 4 bucketsrow format delimited fields terminated by '\t';

设置开启分桶与rece为1:

set hive.enforce.bucketing=true;

set maprece.job.reces=-1;

分桶抽样:select * from stu_bucktablesample(bucket x out of y on id);

抽取,桶数/y,x是从哪个桶开始抽取,y越大 抽样数越少,y与抽样数成反比,x必须小于y

给空字段赋值:

如果员工的comm为NULL,则用-1代替或用其他字段代替  :select nvl(comm,-1) from emp;

case when:如何符合记为1,用于统计、分组统计

select dept_id, sum(case sex when '男' then 1 else 0 end) man , sum(case sex when '女' then 1 else 0 end) woman from emp_sex group by dept_id;

用于组合归类汇总(行转列):UDAF:多转一

concat:拼接查询结果

collect_set(col):去重汇总,产生array类型字段,类似于distinct

select t.base, concat_ws('|',collect_set(t.name))   from (select concat_ws(',',xingzuo,blood_type) base,name  from person_info) t group by t.base;

解释:先第一次查询得到一张没有按照(星座血型)分组的表,然后分组,使用collect_set将名字组合成数组,然后使用concat将数组变成字符串

用于拆分数据:(列转行):UDTF:一转多

explode(col):将hive一列中复杂的array或者map结构拆分成多行。

lateral view  侧面显示:用于和UDTF一对多函数搭配使用

用法:lateral view udtf(expression) tablealias as cate

cate:炸开之后的列别名

temptable :临时表表名

解释:用于和split, explode等UDTF一起使用,它能够将一列数据拆成多行数据,在此基础上可以对拆分后的数据进行聚合。

开窗函数:

Row_Number,Rank,Dense_Rank  over:针对统计查询使用

Row_Number:返回从1开始的序列

Rank:生成分组中的排名序号,会在名词s中留下空位。3 3 5

dense_rank:生成分组中的排名序号,不会在名词中留下空位。3 3 4

over:主要是分组排序,搭配窗口函数使用

结果:

SUM、AVG、MIN、MAX、count

preceding:往前

following:往后

current row:当前行

unbounded:unbounded preceding 从前面的起点, unbounded following:到后面的终点

sum:直接使用sum是总的求和,结合over使用可统计至每一行的结果、总的结果、当前行+之前多少行/之后多少行、当前行到往后所有行的求和。

over(rowsbetween 3/current )  当前行到往后所有行的求和

ntile:分片,结合over使用,可以给数据分片,返回分片号

使用场景:统计出排名前百分之或n分之一的数据。

lead,lag,FIRST_VALUE,LAST_VALUE

lag与lead函数可以返回上下行的数据

lead(col,n,dafault) 用于统计窗口内往下第n行值

第一个参数为列名,第二个参数为往下第n行(可选,默认为1),第三个参数为默认值(当往下第n行为NULL时候,取默认值,如不指定,则为NULL)

LAG(col,n,DEFAULT) 用于统计窗口内往上第n行值

第一个参数为列名,第二个参数为往上第n行(可选,默认为1),第三个参数为默认值(当往上第n行为NULL时候,取默认值,如不指定,则为NULL)

使用场景:通常用于统计某用户在某个网页上的停留时间

FIRST_VALUE:取分组内排序后,截止到当前行,第一个值

LAST_VALUE:取分组内排序后,截止到当前行,最后一个值

范围内求和: https://blog.csdn.net/happyrocking/article/details/105369558

cume_dist,percent_rank

–CUME_DIST :小于等于当前值的 行数 / 分组内总行数

–比如,统计小于等于当前薪水的人数,占总人数的比例

percent_rank:分组内当前行的RANK值-1/分组内总行数-1

总结:

在Spark中使用spark sql与hql一致,也可以直接使用sparkAPI实现。

HiveSql窗口函数主要应用于求TopN,分组排序TopN、TopN求和,前多少名前百分之几。

与Flink窗口函数不同。

Flink中的窗口是用于将无线数据流切分为有限块处理的手段。

window分类:

CountWindow:按照指定的数据条数生成一个 Window,与时间无关。

TimeWindow:按照时间生成 Window。

1. 滚动窗口(Tumbling Windows):时间对齐,窗口长度固定,不重叠::常用于时间段内的聚合计算

2.滑动窗口(Sliding Windows):时间对齐,窗口长度固定,可以有重叠::适用于一段时间内的统计(某接口最近 5min 的失败率来报警)

3. 会话窗口(Session Windows)无时间对齐,无长度,不重叠::设置session间隔,超过时间间隔则窗口关闭。