❶ 求用c语言实现FFT变换的程序(见下面)
你好,这是我的回答,希望可以帮到你。
1)结果讨论
一,如果对信号进行同样点数N的FFT变换,采样频率fs越高,则可以分析越高频的信号;与此同时,采样频率越低,对于低频信号的频谱分辨率则越好。
二,假设采样点不在正弦信号的波峰、波谷、以及0电压处,频谱则会产生泄露(leakage)。
三,对于同样的采样率fs,提高FFT的点数N,则可提高频谱的分辨率。
四,如果采样频率fs小于2倍信号频率2*fs(奈圭斯特定理),则频谱分析结果会出错。
五,对于(二)中泄露现象,可以通过在信号后面补零点解决。
2)程序及注解如下
%清除命令窗口及变量
clc;
clear all;
%输入f、N、T、是否补零(补几个零)
f=input('Input frequency of the signal: f\n');
N=input('Input number of pointsl: N\n');
T=input('Input sampling time: T\n');
flag=input('Add zero too sampling signal or not? yes=1 no=0\n');
if(flag)
ZeroNum=input('Input nmber of zeros\n');
else
ZeroNum=0;
end
%生成信号,signal是原信号。signal为采样信号。
fs=1/T;
t=0:0.00001:T*(N+ZeroNum-1);
signal=sin(2*pi*f*t);
t2=0:T:T*(N+ZeroNum-1);
signal2=sin(2*pi*f*t2);
if (flag)
signal2=[signal2 zeros(1, ZeroNum)];
end
%画出原信号及采样信号。
figure;
subplot(2,1,1);
plot(t,signal);
xlabel('Time(s)');
ylabel('Amplitude(volt)');
title('Singnal');
hold on;
subplot(2,1,1);
stem(t2,signal2,'r');
axis([0 T*(N+ZeroNum) -1 1]);
%作FFT变换,计算其幅值,归一化处理,并画出频谱。
Y = fft(signal2,N);
Pyy = Y.* conj(Y) ;
Pyy=(Pyy/sum(Pyy))*2;
f=0:fs/(N-1):fs/2;4
subplot(2,1,2);
bar(f,Pyy(1:N/2));
xlabel('Frequency(Hz)');
ylabel('Amplitude');
title('Frequency compnents of signal');
axis([0 fs/2 0 ceil(max(Pyy))])
grid on;
祝你好运!
我可以帮助你,你先设置我最佳答案后,我网络Hii教你。
❷ 怎样用C语言实现FFT算法啊
1、二维FFT相当于对行和列分别进行一维FFT运算。具体的实现办法如下:
先对各行逐一进行一维FFT,然后再对变换后的新矩阵的各列逐一进行一维FFT。相应的伪代码如下所示:
for (int i=0; i<M; i++)
FFT_1D(ROW[i],N);
for (int j=0; j<N; j++)
FFT_1D(COL[j],M);
其中,ROW[i]表示矩阵的第i行。注意这只是一个简单的记法,并不能完全照抄。还需要通过一些语句来生成各行的数据。同理,COL[i]是对矩阵的第i列的一种简单表示方法。
所以,关键是一维FFT算法的实现。
2、例程:
#include<stdio.h>
#include<math.h>
#include<stdlib.h>
#defineN1000
/*定义复数类型*/
typedefstruct{
doublereal;
doubleimg;
}complex;
complexx[N],*W;/*输入序列,变换核*/
intsize_x=0;/*输入序列的大小,在本程序中仅限2的次幂*/
doublePI;/*圆周率*/
voidfft();/*快速傅里叶变换*/
voidinitW();/*初始化变换核*/
voidchange();/*变址*/
voidadd(complex,complex,complex*);/*复数加法*/
voidmul(complex,complex,complex*);/*复数乘法*/
voidsub(complex,complex,complex*);/*复数减法*/
voidoutput();
intmain(){
inti;/*输出结果*/
system("cls");
PI=atan(1)*4;
printf("Pleaseinputthesizeofx: ");
scanf("%d",&size_x);
printf("Pleaseinputthedatainx[N]: ");
for(i=0;i<size_x;i++)
scanf("%lf%lf",&x[i].real,&x[i].img);
initW();
fft();
output();
return0;
}
/*快速傅里叶变换*/
voidfft(){
inti=0,j=0,k=0,l=0;
complexup,down,proct;
change();
for(i=0;i<log(size_x)/log(2);i++){/*一级蝶形运算*/
l=1<<i;
for(j=0;j<size_x;j+=2*l){/*一组蝶形运算*/
for(k=0;k<l;k++){/*一个蝶形运算*/
mul(x[j+k+l],W[size_x*k/2/l],&proct);
add(x[j+k],proct,&up);
sub(x[j+k],proct,&down);
x[j+k]=up;
x[j+k+l]=down;
}
}
}
}
/*初始化变换核*/
voidinitW(){
inti;
W=(complex*)malloc(sizeof(complex)*size_x);
for(i=0;i<size_x;i++){
W[i].real=cos(2*PI/size_x*i);
W[i].img=-1*sin(2*PI/size_x*i);
}
}
/*变址计算,将x(n)码位倒置*/
voidchange(){
complextemp;
unsignedshorti=0,j=0,k=0;
doublet;
for(i=0;i<size_x;i++){
k=i;j=0;
t=(log(size_x)/log(2));
while((t--)>0){
j=j<<1;
j|=(k&1);
k=k>>1;
}
if(j>i){
temp=x[i];
x[i]=x[j];
x[j]=temp;
}
}
}
/*输出傅里叶变换的结果*/
voidoutput(){
inti;
printf("Theresultareasfollows ");
for(i=0;i<size_x;i++){
printf("%.4f",x[i].real);
if(x[i].img>=0.0001)printf("+%.4fj ",x[i].img);
elseif(fabs(x[i].img)<0.0001)printf(" ");
elseprintf("%.4fj ",x[i].img);
}
}
voidadd(complexa,complexb,complex*c){
c->real=a.real+b.real;
c->img=a.img+b.img;
}
voidmul(complexa,complexb,complex*c){
c->real=a.real*b.real-a.img*b.img;
c->img=a.real*b.img+a.img*b.real;
}
voidsub(complexa,complexb,complex*c){
c->real=a.real-b.real;
c->img=a.img-b.img;
}
❸ 求FFT的c语言程序
分类: 教育/科学 >> 学习帮助
问题描述:
追20分
解析:
快速傅里叶变换 要用C++ 才行吧 你可以用MATLAB来实现更方便点啊
此FFT 是用VC6.0编写,由FFT.CPP;STDAFX.H和STDAFX.CPP三个文件组成,编译成功。程序可以用文件输入和输出为文件。文件格式为TXT文件。测试结果如下:
输入文件:8.TXT 或手动输入
8 N
1
2
3
4
5
6
7
8
输出结果为:或保存为TXT文件。(8OUT.TXT)
8
(36,0)
(-4,9.65685)
(-4,4)
(-4,1.65685)
(-4,0)
(-4,-1.65685)
(-4,-4)
(-4,-9.65685)
下面为FFT.CPP文件:
FFT.cpp : 定义控制台应用程序的入口点。
#include "stdafx.h"
#include <iostream>
#include <plex>
#include <bitset>
#include <vector>
#include <conio.h>
#include <string>
#include <fstream>
using namespace std;
bool inputData(unsigned long &, vector<plex<double> >&); 手工输入数据
void FFT(unsigned long &, vector<plex<double> >&); FFT变换
void display(unsigned long &, vector<plex<double> >&); 显示结果
bool readDataFromFile(unsigned long &, vector<plex<double> >&); 从文件中读取数据
bool saveResultToFile(unsigned long &, vector<plex<double> >&); 保存结果至文件中
const double PI = 3.1415926;
int _tmain(int argc, _TCHAR* argv[])
{
vector<plex<double> > vecList; 有限长序列
unsigned long ulN = 0; N
char chChoose = ' '; 功能选择
功能循环
while(chChoose != 'Q' && chChoose != 'q')
{
显示选择项
cout << "\nPlease chose a function" << endl;
cout << "\t1.Input data manually, press 'M':" << endl;
cout << "\t2.Read data from file, press 'F':" << endl;
cout << "\t3.Quit, press 'Q'" << endl;
cout << "Please chose:";
输入选择
chChoose = getch();
判断
switch(chChoose)
{
case 'm': 手工输入数据
case 'M':
if(inputData(ulN, vecList))
{
FFT(ulN, vecList);
display(ulN, vecList);
saveResultToFile(ulN, vecList);
}
break;
case 'f': 从文档读取数据
case 'F':
if(readDataFromFile(ulN, vecList))
{
FFT(ulN, vecList);
display(ulN, vecList);
saveResultToFile(ulN, vecList);
}
break;
}
}
return 0;
}
bool Is2Power(unsigned long ul) 判断是否是2的整数次幂
{
if(ul < 2)
return false;
while( ul > 1 )
{
if( ul % 2 )
return false;
ul /= 2;
}
return true;
}
bool inputData(unsigned long & ulN, vector<plex<double> >& vecList)
{
题目
cout<< "\n\n\n==============================Input Data===============================" << endl;
输入N
cout<< "\nInput N:";
cin>>ulN;
if(!Is2Power(ulN)) 验证N的有效性
{
cout<< "N is invalid (N must like 2, 4, 8, .....), please retry." << endl;
return false;
}
输入各元素
vecList.clear(); 清空原有序列
plex<double> c;
for(unsigned long i = 0; i < ulN; i++)
{
cout << "Input x(" << i << "):";
cin >> c;
vecList.push_back(c);
}
return true;
}
bool readDataFromFile(unsigned long & ulN, vector<plex<double> >& vecList) 从文件中读取数据
{
题目
cout<< "\n\n\n===============Read Data From File==============" << endl;
输入文件名
string strfilename;
cout << "Input filename:" ;
cin >> strfilename;
打开文件
cout << "open file " << strfilename << "......." <<endl;
ifstream loadfile;
loadfile.open(strfilename.c_str());
if(!loadfile)
{
cout << "\tfailed" << endl;
return false;
}
else
{
cout << "\tsucceed" << endl;
}
vecList.clear();
读取N
loadfile >> ulN;
if(!loadfile)
{
cout << "can't get N" << endl;
return false;
}
else
{
cout << "N = " << ulN << endl;
}
读取元素
plex<double> c;
for(unsigned long i = 0; i < ulN; i++)
{
loadfile >> c;
if(!loadfile)
{
cout << "can't get enough infomation" << endl;
return false;
}
else
cout << "x(" << i << ") = " << c << endl;
vecList.push_back(c);
}
关闭文件
loadfile.close();
return true;
}
bool saveResultToFile(unsigned long & ulN, vector<plex<double> >& vecList) 保存结果至文件中
{
询问是否需要将结果保存至文件
char chChoose = ' ';
cout << "Do you want to save the result to file? (y/n):";
chChoose = _getch();
if(chChoose != 'y' && chChoose != 'Y')
{
return true;
}
输入文件名
string strfilename;
cout << "\nInput file name:" ;
cin >> strfilename;
cout << "Save result to file " << strfilename << "......" << endl;
打开文件
ofstream savefile(strfilename.c_str());
if(!savefile)
{
cout << "can't open file" << endl;
return false;
}
写入N
savefile << ulN << endl;
写入元素
for(vector<plex<double> >::iterator i = vecList.begin(); i < vecList.end(); i++)
{
savefile << *i << endl;
}
写入完毕
cout << "save succeed." << endl;
关闭文件
savefile.close();
return true;
}
void FFT(unsigned long & ulN, vector<plex<double> >& vecList)
{
得到幂数
unsigned long ulPower = 0; 幂数
unsigned long ulN1 = ulN - 1;
while(ulN1 > 0)
{
ulPower++;
ulN1 /= 2;
}
反序
bitset<sizeof(unsigned long) * 8> bsIndex; 二进制容器
unsigned long ulIndex; 反转后的序号
unsigned long ulK;
for(unsigned long p = 0; p < ulN; p++)
{
ulIndex = 0;
ulK = 1;
bsIndex = bitset<sizeof(unsigned long) * 8>(p);
for(unsigned long j = 0; j < ulPower; j++)
{
ulIndex += bsIndex.test(ulPower - j - 1) ? ulK : 0;
ulK *= 2;
}
if(ulIndex > p)
{
plex<double> c = vecList[p];
vecList[p] = vecList[ulIndex];
vecList[ulIndex] = c;
}
}
计算旋转因子
vector<plex<double> > vecW;
for(unsigned long i = 0; i < ulN / 2; i++)
{
vecW.push_back(plex<double>(cos(2 * i * PI / ulN) , -1 * sin(2 * i * PI / ulN)));
}
for(unsigned long m = 0; m < ulN / 2; m++)
{
cout<< "\nvW[" << m << "]=" << vecW[m];
}
计算FFT
unsigned long ulGroupLength = 1; 段的长度
unsigned long ulHalfLength = 0; 段长度的一半
unsigned long ulGroupCount = 0; 段的数量
plex<double> cw; WH(x)
plex<double> c1; G(x) + WH(x)
plex<double> c2; G(x) - WH(x)
for(unsigned long b = 0; b < ulPower; b++)
{
ulHalfLength = ulGroupLength;
ulGroupLength *= 2;
for(unsigned long j = 0; j < ulN; j += ulGroupLength)
{
for(unsigned long k = 0; k < ulHalfLength; k++)
{
cw = vecW[k * ulN / ulGroupLength] * vecList[j + k + ulHalfLength];
c1 = vecList[j + k] + cw;
c2 = vecList[j + k] - cw;
vecList[j + k] = c1;
vecList[j + k + ulHalfLength] = c2;
}
}
}
}
void display(unsigned long & ulN, vector<plex<double> >& vecList)
{
cout << "\n\n===========================Display The Result=========================" << endl;
for(unsigned long d = 0; d < ulN;d++)
{
cout << "X(" << d << ")\t\t\t = " << vecList[d] << endl;
}
}
下面为STDAFX.H文件:
stdafx.h : 标准系统包含文件的包含文件,
或是常用但不常更改的项目特定的包含文件
#pragma once
#include <iostream>
#include <tchar.h>
TODO: 在此处引用程序要求的附加头文件
下面为STDAFX.CPP文件:
stdafx.cpp : 只包括标准包含文件的源文件
FFT.pch 将成为预编译头
stdafx.obj 将包含预编译类型信息
#include "stdafx.h"
TODO: 在 STDAFX.H 中
引用任何所需的附加头文件,而不是在此文件中引用
❹ 怎么用C语言实现FFT算法 呀
float ar[1024],ai[1024];/* 原始数据实部,虚部 */
float a[2050];
void fft(int nn) /* nn数据长度 */
{
int n1,n2,i,j,k,l,m,s,l1;
float t1,t2,x,y;
float w1,w2,u1,u2,z;
float fsin[10]={0.000000,1.000000,0.707107,0.3826834,0.1950903,0.09801713,0.04906767,0.02454123,0.01227154,0.00613588,};
float fcos[10]={-1.000000,0.000000,0.7071068,0.9238796,0.9807853,0.99518472,0.99879545,0.9996988,0.9999247,0.9999812,};
switch(nn)
{
case 1024: s=10; break;
case 512: s=9; break;
case 256: s=8; break;
}
n1=nn/2; n2=nn-1;
j=1;
for(i=1;i<=nn;i++)
{
a[2*i]=ar[i-1];
a[2*i+1]=ai[i-1];
}
for(l=1;l<n2;l++)
{
if(l<j)
{
t1=a[2*j];
t2=a[2*j+1];
a[2*j]=a[2*l];
a[2*j+1]=a[2*l+1];
a[2*l]=t1;
a[2*l+1]=t2;
}
k=n1;
while (k<j)
{
j=j-k;
k=k/2;
}
j=j+k;
}
for(i=1;i<=s;i++)
{
u1=1;
u2=0;
m=(1<<i);
k=m>>1;
w1=fcos[i-1];
w2=-fsin[i-1];
for(j=1;j<=k;j++)
{
for(l=j;l<nn;l=l+m)
{
l1=l+k;
t1=a[2*l1]*u1-a[2*l1+1]*u2;
t2=a[2*l1]*u2+a[2*l1+1]*u1;
a[2*l1]=a[2*l]-t1;
a[2*l1+1]=a[2*l+1]-t2;
a[2*l]=a[2*l]+t1;
a[2*l+1]=a[2*l+1]+t2;
}
z=u1*w1-u2*w2;
u2=u1*w2+u2*w1;
u1=z;
}
}
for(i=1;i<=nn/2;i++)
{
ar[i]=4*a[2*i+2]/nn; /* 实部 */
ai[i]=-4*a[2*i+3]/nn; /* 虚部 */
a[i]=4*sqrt(ar[i]*ar[i]+ai[i]*ai[i]); /* 幅值 */
}
}
(http://..com/question/284943905.html?an=0&si=2)
❺ 二阶滤波器用C语言怎么写
这个可比你想象的复杂多了,s是个复变量,1/(s+1)极点在-1,要想用C语言写,必须理解清楚下面几个问题:
1、输入必须是个有限序列,比如(x+yi),x和y分别是两个长度为N的数组
2、要过滤的频率,必须是个整型值,或者是个整型区间
3、输出结果同样是两个长度为N的数组(p+qi)
4、整个程序需要使用最基本的复数运算,这一点C语言本身不提供,必须手工写复函数运算库
5、实现的时候具体算法还需要编,这里才是你问题的核心。
我可以送你一段FFT的程序,自己琢磨吧,和MATLAB的概念差别很大:
#include <assert.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <windows.h>
#include "complex.h"
extern "C" {
// Discrete Fourier Transform (Basic Version, Without Any Enhancement)
// return - Without Special Meaning, constantly, zero
int DFT (long count, CComplex * input, CComplex * output)
{
assert(count);
assert(input);
assert(output);
CComplex F, X, T, W; int n, i;
long N = abs(count); long Inversing = count < 0? 1: -1;
for(n = 0; n < N ; n++){ // compute from line 0 to N-1
F = CComplex(0.0f, 0.0f); // clear a line
for(i = 0; i < N; i++) {
T = input[i];
W = HarmonicPI2(Inversing * n * i, N);
X = T * W;
F += X; // fininshing a line
}//next i
// save data to outpus
memcpy(output + n, &F, sizeof(F));
}//next n
return 0;
}//end DFT
int fft (long count, CComplex * input, CComplex * output)
{
assert(count);
assert(input);
assert(output);
int N = abs(count); long Inversing = count < 0? -1: 1;
if (N % 2 || N < 5) return DFT(count, input, output);
long N2 = N / 2;
CComplex * iEven = new CComplex[N2]; memset(iEven, 0, sizeof(CComplex) * N2);
CComplex * oEven = new CComplex[N2]; memset(oEven, 0, sizeof(CComplex) * N2);
CComplex * iOdd = new CComplex[N2]; memset(iOdd , 0, sizeof(CComplex) * N2);
CComplex * oOdd = new CComplex[N2]; memset(oOdd , 0, sizeof(CComplex) * N2);
int i = 0; CComplex W;
for(i = 0; i < N2; i++) {
iEven[i] = input[i * 2];
iOdd [i] = input[i * 2 + 1];
}//next i
fft(N2 * Inversing, iEven, oEven);
fft(N2 * Inversing, iOdd, oOdd );
for(i = 0; i < N2; i++) {
W = HarmonicPI2(Inversing * (- i), N);
output[i] = oEven[i] + W * oOdd[i];
output[i + N2] = oEven[i] - W * oOdd[i];
}//next i
return 0;
}//end FFT
void __stdcall FFT(
long N, // Serial Length, N > 0 for DFT, N < 0 for iDFT - inversed Discrete Fourier Transform
double * inputReal, double * inputImaginary, // inputs
double * AmplitudeFrequences, double * PhaseFrequences) // outputs
{
if (N == 0) return;
if (!inputReal && !inputImaginary) return;
short n = abs(N);
CComplex * input = new CComplex[n]; memset(input, 0, sizeof(CComplex) * n);
CComplex * output= new CComplex[n]; memset(output,0, sizeof(CComplex) * n);
double rl = 0.0f, im = 0.0f; int i = 0;
for (i = 0; i < n; i++) {
rl = 0.0f; im = 0.0f;
if (inputReal) rl = inputReal[i];
if (inputImaginary) im = inputImaginary[i];
input[i] = CComplex(rl, im);
}//next i
int f = fft(N, input, output);
double factor = n;
//factor = sqrt(factor);
if (N > 0)
factor = 1.0f;
else
factor = 1.0f / factor;
//end if
for (i = 0; i < n; i++) {
if (AmplitudeFrequences) AmplitudeFrequences[i] = output[i].getReal() * factor;
if (PhaseFrequences) PhaseFrequences[i] = output[i].getImaginary() * factor;
}//next i
delete [] output;
delete [] input;
return ;
}//end FFT
int __cdecl main(int argc, char * argv[])
{
fprintf(stderr, "%s usage:\n", argv[0]);
fprintf(stderr, "Public Declare Sub FFT Lib \"wfft.exe\" \
(ByVal N As Long, ByRef inputReal As Double, ByRef inputImaginary As Double, \
ByRef freqAmplitude As Double, ByRef freqPhase As Double)");
return 0;
}//end main
};//end extern "C"
❻ C语言 FFTW 二维
ELEM这个数答塌配组是为了确定二维数组的每个值的确定位置,因衫弊为你申请的in和out都是1维数组(不考虑实部虚部那个0和1)所以要确定在你开辟的这个1维数组中所对应的二维数组是哪个数就用到了ELEM,举个例子,比如你算二维数组[r,c]这个位置的值,其实是在一维数组的第r*N+c个数,所以就得到了in[r*N+c][0],清指也就是在做fft之前的fftw_complex表示,楼主可能混淆fftw_complex和文中ELEM数组了,ELEM并不是fftw_complex数组的表示,只是为了找到确定数组位置的一个中间数组而已,希望回答能让你满意