当前位置:首页 » 编程语言 » c语言有几种排序算法
扩展阅读
webinf下怎么引入js 2023-08-31 21:54:13
堡垒机怎么打开web 2023-08-31 21:54:11

c语言有几种排序算法

发布时间: 2023-06-01 14:31:07

c语言中排序方法

1、冒泡排序(最常用)
冒泡排序是最简单的排序方法:原理是:从左到右,相邻元素进行比较。每次比较一轮,就会找到序列中最大的一个或最小的一个。这个数就会从序列的最右边冒出来。(注意每一轮都是从a[0]开始比较的)

以从小到大排序为例,第一轮比较后,所有数中最大的那个数就会浮到最右边;第二轮比较后,所有数中第二大的那个数就会浮到倒数第二个位置……就这样一轮一轮地比较,最后实现从小到大排序。

2、鸡尾酒排序
鸡尾酒排序又称双向冒泡排序、鸡尾酒搅拌排序、搅拌排序、涟漪排序、来回排序或快乐小时排序, 是冒泡排序的一种变形。该算法与冒泡排序的不同处在于排序时是以双向在序列中进行排序。
原理:数组中的数字本是无规律的排放,先找到最小的数字,把他放到第一位,然后找到最大的数字放到最后一位。然后再找到第二小的数字放到第二位,再找到第二大的数字放到倒数第二位。以此类推,直到完成排序。

3、选择排序
思路是设有10个元素a[1]-a[10],将a[1]与a[2]-a[10]比较,若a[1]比a[2]-a[10]都小,则不进行交换。若a[2]-a[10]中有一个以上比a[1]小,则将其中最大的一个与a[1]交换,此时a[1]就存放了10个数中最小的一个。同理,第二轮拿a[2]与a[3]-a[10]比较,a[2]存放a[2]-a[10]中最小的数,以此类推。

4、插入排序
插入排序是在一个已经有序的小序列的基础上,一次插入一个元素*
一般来说,插入排序都采用in-place在数组上实现。
具体算法描述如下:
⒈ 从第一个元素开始,该元素可以认为已经被排序
⒉ 取出下一个元素,在已经排序的元素序列中从后向前扫描
⒊ 如果该元素(已排序)大于新元素,将该元素移到下一位置
⒋ 重复步骤3,直到找到已排序的元素小于或者等于新元素的位置
⒌ 将新元素插入到下一位置中
⒍ 重复步骤2~5

② c语言的两种排序

1、选择排序法

要求输入10个整数,从大到小排序输出

输入:2 0 3 -4 8 9 5 1 7 6

输出:9 8 7 6 5 3 2 1 0 -4

代码:

#include<stdio.h>

int main(int argc,const char*argv[]){

int num[10],i,j,k,l,temp;

//用一个数组保存输入的数据

for(i=0;i<=9;i++)

{

scanf("%d",&num<i>);

}

//用两个for嵌套循环来进行数据大小比较进行排序

for(j=0;j<9;j++)

{

for(k=j+1;k<=9;k++)

{

if(num[j]<num[k])//num[j]<num[k]

{

temp=num[j];

num[j]=num[k];

num[k]=temp;

}

}

}

//用一个for循环来输出数组中排序好的数据

for(l=0;l<=9;l++)

{

printf("%d",num[l]);

}

return 0;

}

2、冒泡排序法

要求输入10个整数,从大到小排序输出

输入:2 0 3-4 8 9 5 1 7 6

输出:9 8 7 6 5 3 2 1 0-4

代码:

#include<stdio.h>

int main(int argc,const char*argv[]){

//用一个数组来存数据

int num[10],i,j,k,l,temp;

//用for来把数据一个一个读取进来

for(i=0;i<=9;i++)

{

scanf("%d",&num<i>);

}

//用两次层for循环来比较数据,进行冒泡

for(j=0;j<9;j++)

{

for(k=0;k<9-j;k++)

{

if(num[k]<num[k+1])//num[k]<num[k+1]

{

temp=num[k];

num[k]=num[k+1];

num[k+1]=temp;

}

}

}

//用一个for循环来输出数组中排序好的数据

for(l=0;l<=9;l++)

{

printf("%d",num[l]);

}

return 0;

}

(2)c语言有几种排序算法扩展阅读:

return 0代表程序正常退出。return是C++预定义的语句,它提供了终止函数执行的一种方式。当return语句提供了一个值时,这个值就成为函数的返回值。

return语句用来结束循环,或返回一个函数的值。

1、return 0,说明程序正常退出,返回到主程序继续往下执行。

2、return 1,说明程序异常退出,返回主调函数来处理,继续往下执行。return 0或return 1对程序执行的顺序没有影响,只是大家习惯于使用return(0)退出子程序而已。

③ c语言排序方法有哪几种

C,语言常用的排序方法有很多种。比如说冒泡排序,直接交换排序,直接选择排序,直接插入排序,二分插入排序,快速排序,归并排序,二叉排序树排序,小学生排序,等等。

④ C语言实现七种排序算法的演示代码是什么

(1)“冒泡法”
冒泡法大家都较熟悉。其原理为从a[0]开始,依次将其和后面的元素比较,若a[0]>a[i],则交换它们,一直比较到a[n]。同理对a[1],a[2],...a[n-1]处理,即完成排序。下面列出其代码:
void
bubble(int
*a,int
n)
/*定义两个参数:数组首地址与数组大小*/
{
int
i,j,temp;
for(i=0;i<n-1;i++)
for(j=i+1;j<n;j++)
/*注意循环的上下限*/
if(a[i]>a[j])
{
temp=a[i];
a[i]=a[j];
a[j]=temp;
}
}
冒泡法原理简单,但其缺点是交换次数多,效率低。
下面介绍一种源自冒泡法但更有效率的方法“选择法”。
(2)“选择法”
选择法循环过程与冒泡法一致,它还定义了记号k=i,然后依次把a[k]同后面元素比较,若a[k]>a[j],则使k=j.最后看看k=i是否还成立,不成立则交换a[k],a[i],这样就比冒泡法省下许多无用的交换,提高了效率。
void
choise(int
*a,int
n)
{
int
i,j,k,temp;
for(i=0;i<n-1;i++)
{
k=i;
/*给记号赋值*/
for(j=i+1;j<n;j++)
if(a[k]>a[j])
k=j;
/*是k总是指向最小元素*/
if(i!=k)
{
/*当k!=i是才交换,否则a[i]即为最小*/
temp=a[i];
a[i]=a[k];
a[k]=temp;
}
}
}
选择法比冒泡法效率更高,但说到高效率,非“快速法”莫属,现在就让我们来了解它。
(3)“快速法”
快速法定义了三个参数,(数组首地址*a,要排序数组起始元素下标i,要排序数组结束元素下标j).
它首先选一个数组元素(一般为a[(i+j)/2],即中间元素)作为参照,把比它小的元素放到它的左边,比它大的放在右边。然后运用递归,在将它左,右两个子数组排序,最后完成整个数组的排序。下面分析其代码:
void
quick(int
*a,int
i,int
j)
{
int
m,n,temp;
int
k;
m=i;
n=j;
k=a[(i+j)/2];
/*选取的参照*/
do
{
while(a[m]<k&&m<j)
m++;
/*
从左到右找比k大的元素*/
while(a[n]>k&&n>i)
n--;
/*
从右到左找比k小的元素*/
if(m<=n)
{
/*若找到且满足条件,则交换*/
temp=a[m];
a[m]=a[n];
a[n]=temp;
m++;
n--;
}
}while(m<=n);
if(m<j)
quick(a,m,j);
/*运用递归*/
if(n>i)
quick(a,i,n);
}
(4)“插入法”
插入法是一种比较直观的排序方法。它首先把数组头两个元素排好序,再依次把后面的元素插入适当的位置。把数组元素插完也就完成了排序。
void
insert(int
*a,int
n)
{
int
i,j,temp;
for(i=1;i<n;i++)
{
temp=a[i];
/*temp为要插入的元素*/
j=i-1;
while(j>=0&&temp<a[j])
{
/*从a[i-1]开始找比a[i]小的数,同时把数组元素向后移*/
a[j+1]=a[j];
j--;
}
a[j+1]=temp;
/*插入*/
}
}
(5)“shell法”
shell法是一个叫
shell
的美国人与1969年发明的。它首先把相距k(k>=1)的那几个元素排好序,再缩小k值(一般取其一半),再排序,直到k=1时完成排序。下面让我们来分析其代码:
void
shell(int
*a,int
n)
{
int
i,j,k,x;
k=n/2;
/*间距值*/
while(k>=1)
{
for(i=k;i<n;i++)
{
x=a[i];
j=i-k;
while(j>=0&&x<a[j])
{
a[j+k]=a[j];
j-=k;
}
a[j+k]=x;
}
k/=2;
/*缩小间距值*/
}
}
上面我们已经对几种排序法作了介绍,现在让我们写个主函数检验一下。
#include<stdio.h>
/*别偷懒,下面的"..."代表函数体,自己加上去哦!*/
void
bubble(int
*a,int
n)
{
...
}
void
choise(int
*a,int
n)
{
...
}
void
quick(int
*a,int
i,int
j)
{
...
}
void
insert(int
*a,int
n)
{
...
}
void
shell(int
*a,int
n)
{
...
}
/*为了打印方便,我们写一个print吧。*/[code]
void
print(int
*a,int
n)
{
int
i;
for(i=0;i<n;i++)
printf("%5d",a[i]);
printf("\n");
}
main()
{
/*为了公平,我们给每个函数定义一个相同数组*/
int
a1[]={13,0,5,8,1,7,21,50,9,2};
int
a2[]={13,0,5,8,1,7,21,50,9,2};
int
a3[]={13,0,5,8,1,7,21,50,9,2};
int
a4[]={13,0,5,8,1,7,21,50,9,2};
int
a5[]={13,0,5,8,1,7,21,50,9,2};
printf("the
original
list:");
print(a1,10);
printf("according
to
bubble:");
bubble(a1,10);
print(a1,10);
printf("according
to
choise:");
choise(a2,10);
print(a2,10);
printf("according
to
quick:");
quick(a3,0,9);
print(a3,10);
printf("according
to
insert:");
insert(a4,10);
print(a4,10);
printf("according
to
shell:");
shell(a5,10);
print(a5,10);
}

⑤ 数据结构C语言--三种以上的排序算法

快速排序:
void QSort(int a[], int l, int r) //单关迹键坦键字交换法快排
{
int i = l, j = r, mid = (i + j) / 2; //二分[i,j]区间

while (i <= j) //让a[mid]左边都比a[mid]小,右边都比a[mid]大
{
while (a[i] < a[mid]) //找到一个元素a[i]比a[mid]小
i++;
while (a[j] > a[mid]) //找到一个元素a[j]比a[mid]大
j--;
if (i <= j) //交换a[i]和a[j],并让指针向中间靠拢
Swap(a[i++], a[j--]);
}

if (i < r)
QSort(a, i, r); //对右区间[i,r]递归排序
if (l < j)
QSort(a, l, j); //对左区间[l,j]递归排序
}

归并排序亮橡:
void Merge(int a[], int l, int m, int r) //将a中区间[l, r]合并为有序
{
int x[101], y[101]; //循环变量
int i, j, k;
int l1 = m - l + 1, l2 = r - m; //l1表示区间[l, m]的长度,l2表示区间[m + 1, r]的长度

for (i = 1; i <= l1; i++) //将a中区间[l, m]复制到x中
{
x[i] = a[l + i - 1];
}

for (i = 1; i <= l2; i++) //将a中区间[m + 1, r]复制到y中
{
y[i] = a[m + i];
}

x[l1 + 1] = MaxInt; //设置一个很大的数作为结束标志
y[l2 + 1] = MaxInt;
i = 1;
j = 1;

for (k = l; k <= r; k++) //将两个区间合并成为一个有序区间
{
if (x[i] <= y[j])
{
a[k] = x[i++];
}
else
{
a[k] = y[j++];
}
}
}

void MergeSort(int a[], int l, int r) //对a数组的[l, r]区间排序
{
int m;

if (l < r)
{
m = (l + r) / 2; //二分区间[l, r]

MergeSort(a, l, m); //递归二分区间[l, m]
MergeSort(a, m + 1, r); //递归二分区间[m + 1, r]

Merge(a, l, m, r); //合并姿桐区间[l, m]和[m + 1, r]
}
}

二叉排序树排序:
struct BinaryTree //二叉树结构
{
int data, p, l, r; //data数值域,p父节点编号,l左儿子编号,r右儿子编号
};

int root = 0;

void Init(BinaryTree a[], int &n) //读入数据域,并初始化树
{
cin >> n;

for (int i = 1; i <= n; i++)
{
cin >> a[i].data;
a[i].p = a[i].l = a[i].r = -1;
}
}

void Insert(BinaryTree a[], int i) //在二叉查找树中插入编号为 i 的节点
{
int parent = -1, x = a[1].p; //parent 始终指向 x 的父节点编号

while (x != -1) //向下搜索,直到找到最下一层
{
parent = x;
if (a[i].data < a[x].data)
x = a[x].l;
else
x = a[x].r;
}

a[i].p = parent; //把第 i 号节点的父亲指向parent
if (parent != -1) //判断树是否为空
{
if (a[i].data < a[parent].data) //向父节点插入儿子
a[parent].l = i;
else
a[parent].r = i;
}
else //为空就以 i 节点为根节点
a[root].p = i;
}

void BuildTree(BinaryTree a[], int n) //建立二叉查找树
{
root = 1;
for (int i = 1; i <= n; i++) //依次插入 n 个节点到二叉查找树
{
Insert(a, i);
}
a[root].p = -1;
}

void Sort(BinaryTree a[], int i) //中序遍历输出
{
if (a[i].l > -1) //递归遍历左儿子
Sort(a, a[i].l);
cout << a[i].data << " "; //输出节点
if (a[i].r > -1) //递归遍历右儿子
Sort(a, a[i].r);
}

堆排序:
void Heap(int a[], int n, int p) //维护最大(最小)堆,维护以P为根的堆
{
int l = p * 2, r = l + 1, t = p; //左儿子编号为2P,右儿子为2P+1,初始化根节点P为最大

if ((l <= n) && (a[l] > a[p])) //找一个最大的数,维护最大堆(改为<就是维护最小堆)
t = l;
if ((r <= n) && (a[r] > a[t])) //找一个最大的数,维护最大堆(改为<就是维护最小堆)
t = r;
if (p != t) //如果根节点不是最大,和最大的交换,再递归维护堆
{
Swap(a[p], a[t]);
Heap(a, n, t);
}
}

void HeapSort(int a[], int n)
{
int i;

for (i = n / 2; i >= 1; i--) //n / 2开始必然是根节点,依次调用Heap,建立一个最大堆
Heap(a, n, i);

for (i = n; i >= 2; i--) //每次将堆顶和当前堆最后一个节点(i)交换,然后将[1, i - 1]重新堆化
{
Swap(a[i], a[1]);
Heap(a, i - 1, 1);
}
}

插入排序:
void InsertionSort(int a[], int l, int r) //对区间[l, r]执行插入排序
{
int i, j, t;

for (i = l + 1; i <= r; i++)
{
j = i - 1;
t = a[i];

while ((j >= l) && (a[j] > t)) //后移操作,并找到正确的位置
{
a[j + 1] = a[j];
j--;
}

a[j + 1] = t;
}
}

以上所有的Swap函数的意思都是交换两个变量。

⑥ 基于C语言的几种排序算法的分析

相关知识介绍(所有定义只为帮助读者理解相关概念,并非严格定义):
1、稳定排序和非稳定排序
简单地说就是所有相等的数经过某种排序方法后,仍能保持它们在排序之前的相对次序,我们就
说这种排序方法是稳定的。反之,就是非稳定的。
比如:一组数排序前是a1,a2,a3,a4,a5,其中a2=a4,经过某种排序后为a1,a2,a4,a3,a5,
则我们说这种排序是稳定的,因为a2排序前在a4的前面,排序后它还是在a4的前面。假如变成a1,a4,
a2,a3,a5就不是稳定的了。
2、内排序和外排序
在排序过程中,所有需要排序的数都在内存,并在内存中调整它们的存储顺序,称为内排序;
在排序过程中,只有部分数被调入内存,并借助内存调整数在外存中的存放顺序排序方法称为外排序。
3、算法的时间复杂度和空间复杂度
所谓算法的时间复杂度,是指执行算法所需要的计算工作量。
一个算法的空间复杂度,一般是指执行这个算法所需要的内存空间。
================================================================================
*/
/*
================================================
功能:选择排序
输入:数组名称(也就是数组首地址)、数组中元素个数
================================================
*/
/*
====================================================
算法思想简单描述:
在要排序的一组数中,选出最小的一个数与第一个位置的数交换;
然后在剩下的数当中再找最小的与第二个位置的数交换,如此循环
到倒数第二个数和最后一个数比较为止。
选择排序是不稳定的。算法复杂度O(n2)--[n的平方]
=====================================================
*/
void select_sort(int *x, int n)
{
int i, j, min, t;
for (i=0; i<n-1; i++) /*要选择的次数:0~n-2共n-1次*/
{
min = i; /*假设当前下标为i的数最小,比较后再调整*/
for (j=i+1; j<n; j++)/*循环找出最小的数的下标是哪个*/
{
if (*(x+j) < *(x+min))
{
min = j; /*如果后面的数比前面的小,则记下它的下标*/
}
}
if (min != i) /*如果min在循环中改变了,就需要交换数据*/
{
t = *(x+i);
*(x+i) = *(x+min);
*(x+min) = t;
}
}
}

/*
================================================
功能:直接插入排序
输入:数组名称(也就是数组首地址)、数组中元素个数
================================================
*/
/*
====================================================
算法思想简单描述:
在要排序的一组数中,假设前面(n-1) [n>=2] 个数已经是排
好顺序的,现在要把第n个数插到前面的有序数中,使得这n个数
也是排好顺序的。如此反复循环,直到全部排好顺序。
直接插入排序是稳定的。算法时间复杂度O(n2)--[n的平方]
=====================================================
*/
void insert_sort(int *x, int n)
{
int i, j, t;
for (i=1; i<n; i++) /*要选择的次数:1~n-1共n-1次*/
{
/*
暂存下标为i的数。注意:下标从1开始,原因就是开始时
第一个数即下标为0的数,前面没有任何数,单单一个,认为
它是排好顺序的。
*/
t=*(x+i);
for (j=i-1; j>=0 && t<*(x+j); j--) /*注意:j=i-1,j--,这里就是下标为i的数,在它前面有序列中找插入位置。*/
{
*(x+j+1) = *(x+j); /*如果满足条件就往后挪。最坏的情况就是t比下标为0的数都小,它要放在最前面,j==-1,退出循环*/
}
*(x+j+1) = t; /*找到下标为i的数的放置位置*/
}
}

/*
================================================
功能:冒泡排序
输入:数组名称(也就是数组首地址)、数组中元素个数
================================================
*/
/*
====================================================
算法思想简单描述:
在要排序的一组数中,对当前还未排好序的范围内的全部数,自上
而下对相邻的两个数依次进行比较和调整,让较大的数往下沉,较
小的往上冒。即:每当两相邻的数比较后发现它们的排序与排序要
求相反时,就将它们互换。
下面是一种改进的冒泡算法,它记录了每一遍扫描后最后下沉数的
位置k,这样可以减少外层循环扫描的次数。
冒泡排序是稳定的。算法时间复杂度O(n2)--[n的平方]
=====================================================
*/
void bubble_sort(int *x, int n)
{
int j, k, h, t;
for (h=n-1; h>0; h=k) /*循环到没有比较范围*/
{
for (j=0, k=0; j<h; j++) /*每次预置k=0,循环扫描后更新k*/
{
if (*(x+j) > *(x+j+1)) /*大的放在后面,小的放到前面*/
{
t = *(x+j);
*(x+j) = *(x+j+1);
*(x+j+1) = t; /*完成交换*/
k = j; /*保存最后下沉的位置。这样k后面的都是排序排好了的。*/
}
}
}
}

/*
================================================
功能:希尔排序
输入:数组名称(也就是数组首地址)、数组中元素个数
================================================
*/
/*
====================================================
算法思想简单描述:
在直接插入排序算法中,每次插入一个数,使有序序列只增加1个节点,
并且对插入下一个数没有提供任何帮助。如果比较相隔较远距离(称为
增量)的数,使得数移动时能跨过多个元素,则进行一次比较就可能消除
多个元素交换。D.L.shell于1959年在以他名字命名的排序算法中实现
了这一思想。算法先将要排序的一组数按某个增量d分成若干组,每组中
记录的下标相差d.对每组中全部元素进行排序,然后再用一个较小的增量
对它进行,在每组中再进行排序。当增量减到1时,整个要排序的数被分成
一组,排序完成。
下面的函数是一个希尔排序算法的一个实现,初次取序列的一半为增量,
以后每次减半,直到增量为1。
希尔排序是不稳定的。
=====================================================
*/
void shell_sort(int *x, int n)
{
int h, j, k, t;
for (h=n/2; h>0; h=h/2) /*控制增量*/
{
for (j=h; j<n; j++) /*这个实际上就是上面的直接插入排序*/
{
t = *(x+j);
for (k=j-h; (k>=0 && t<*(x+k)); k-=h)
{
*(x+k+h) = *(x+k);
}
*(x+k+h) = t;
}
}
}

/*
================================================
功能:快速排序
输入:数组名称(也就是数组首地址)、数组中起止元素的下标
================================================
*/
/*
====================================================
算法思想简单描述:
快速排序是对冒泡排序的一种本质改进。它的基本思想是通过一趟
扫描后,使得排序序列的长度能大幅度地减少。在冒泡排序中,一次
扫描只能确保最大数值的数移到正确位置,而待排序序列的长度可能只
减少1。快速排序通过一趟扫描,就能确保某个数(以它为基准点吧)
的左边各数都比它小,右边各数都比它大。然后又用同样的方法处理
它左右两边的数,直到基准点的左右只有一个元素为止。它是由
C.A.R.Hoare于1962年提出的。
显然快速排序可以用递归实现,当然也可以用栈化解递归实现。下面的
函数是用递归实现的,有兴趣的朋友可以改成非递归的。
快速排序是不稳定的。最理想情况算法时间复杂度O(nlog2n),最坏O(n2)
=====================================================
*/
void quick_sort(int *x, int low, int high)
{
int i, j, t;
if (low < high) /*要排序的元素起止下标,保证小的放在左边,大的放在右边。这里以下标为low的元素为基准点*/
{
i = low;
j = high;
t = *(x+low); /*暂存基准点的数*/
while (i<j) /*循环扫描*/
{
while (i<j && *(x+j)>t) /*在右边的只要比基准点大仍放在右边*/
{
j--; /*前移一个位置*/
}
if (i<j)
{
*(x+i) = *(x+j); /*上面的循环退出:即出现比基准点小的数,替换基准点的数*/
i++; /*后移一个位置,并以此为基准点*/
}
while (i<j && *(x+i)<=t) /*在左边的只要小于等于基准点仍放在左边*/
{
i++; /*后移一个位置*/
}
if (i<j)
{
*(x+j) = *(x+i); /*上面的循环退出:即出现比基准点大的数,放到右边*/
j--; /*前移一个位置*/
}
}
*(x+i) = t; /*一遍扫描完后,放到适当位置*/
quick_sort(x,low,i-1); /*对基准点左边的数再执行快速排序*/
quick_sort(x,i+1,high); /*对基准点右边的数再执行快速排序*/
}
}

/*
================================================
功能:堆排序
输入:数组名称(也就是数组首地址)、数组中元素个数
================================================
*/
/*
====================================================
算法思想简单描述:
堆排序是一种树形选择排序,是对直接选择排序的有效改进。
堆的定义如下:具有n个元素的序列(h1,h2,...,hn),当且仅当
满足(hi>=h2i,hi>=2i+1)或(hi<=h2i,hi<=2i+1)(i=1,2,...,n/2)
时称之为堆。在这里只讨论满足前者条件的堆。
由堆的定义可以看出,堆顶元素(即第一个元素)必为最大项。完全二叉树可以
很直观地表示堆的结构。堆顶为根,其它为左子树、右子树。
初始时把要排序的数的序列看作是一棵顺序存储的二叉树,调整它们的存储顺序,
使之成为一个堆,这时堆的根节点的数最大。然后将根节点与堆的最后一个节点
交换。然后对前面(n-1)个数重新调整使之成为堆。依此类推,直到只有两个节点
的堆,并对它们作交换,最后得到有n个节点的有序序列。
从算法描述来看,堆排序需要两个过程,一是建立堆,二是堆顶与堆的最后一个元素
交换位置。所以堆排序有两个函数组成。一是建堆的渗透函数,二是反复调用渗透函数
实现排序的函数。
堆排序是不稳定的。算法时间复杂度O(nlog2n)。
*/
/*
功能:渗透建堆
输入:数组名称(也就是数组首地址)、参与建堆元素的个数、从第几个元素开始
*/
void sift(int *x, int n, int s)
{
int t, k, j;
t = *(x+s); /*暂存开始元素*/
k = s; /*开始元素下标*/
j = 2*k + 1; /*右子树元素下标*/
while (j<n)
{
if (j<n-1 && *(x+j) < *(x+j+1))/*判断是否满足堆的条件:满足就继续下一轮比较,否则调整。*/
{
j++;
}
if (t<*(x+j)) /*调整*/
{
*(x+k) = *(x+j);
k = j; /*调整后,开始元素也随之调整*/
j = 2*k + 1;
}
else /*没有需要调整了,已经是个堆了,退出循环。*/
{
break;
}
}
*(x+k) = t; /*开始元素放到它正确位置*/
}

/*
功能:堆排序
输入:数组名称(也就是数组首地址)、数组中元素个数
*/
void heap_sort(int *x, int n)
{
int i, k, t;
int *p;
for (i=n/2-1; i>=0; i--)
{
sift(x,n,i); /*初始建堆*/
}
for (k=n-1; k>=1; k--)
{
t = *(x+0); /*堆顶放到最后*/
*(x+0) = *(x+k);
*(x+k) = t;
sift(x,k,0); /*剩下的数再建堆*/
}
}

void main()
{
#define MAX 4
int *p, i, a[MAX];
/*录入测试数据*/
p = a;
printf("Input %d number for sorting :\n",MAX);
for (i=0; i<MAX; i++)
{
scanf("%d",p++);
}
printf("\n");
/*测试选择排序*/

p = a;
select_sort(p,MAX);
/**/

/*测试直接插入排序*/
/*
p = a;
insert_sort(p,MAX);
*/

/*测试冒泡排序*/
/*
p = a;
insert_sort(p,MAX);
*/
/*测试快速排序*/
/*
p = a;
quick_sort(p,0,MAX-1);
*/
/*测试堆排序*/
/*
p = a;
heap_sort(p,MAX);
*/
for (p=a, i=0; i<MAX; i++)
{
printf("%d ",*p++);
}
printf("\n");
system("pause");
}

⑦ c语言各种排序算法

1:桶排序;
2:堆排序;
3:冒泡排序;
4:快速排序
5:选择排序;
6:插入排序;
7:希尔排序;
8:归并排序;
9:基数排序;
10:计数排序;

⑧ C语言冒泡排序法是什么

冒泡排序法,是C语言常用的排序算法之一,意思是对一组数字进行从大到小或者从小到大排序的一种算法。

具体方法是:

相邻数值两两交换。从第一个数值开始,如果相邻两个数的排列顺序与我们的期望不同,则将两个数的位置进行交换(对调);如果其与我们的期望一致,则不用交换。重复这样的过程,一直到最后没有数值需要交换,则排序完成。

C语言常见的排序算法:

1、冒泡排序

基本思想:比较相邻的两个数,如果前者比后者大,则进行交换。每一轮排序结束,选出一个未排序中最大的数放到数组后面。

2、快速排序

基本思想:选取一个基准元素,通常为数组最后一个元素(或者第一个元素)。从前向后遍历数组,当遇到小于基准元素的元素时,把它和左边第一个大于基准元素的元素进行交换。在利用分治策略从已经分好的两组中分别进行以上步骤,直到排序完成。

3、直接插入排序

基本思想:和交换排序不同的是它不用进行交换操作,而是用一个临时变量存储当前值。当前面的元素比后面大时,先把后面的元素存入临时变量,前面元素的值放到后面元素位置,再到最后把其值插入到合适的数组位置。

4、直接选择排序

基本思想:依次选出数组最小的数放到数组的前面。首先从数组的第二个元素开始往后遍历,找出最小的数放到第一个位置。再从剩下数组中找出最小的数放到第二个位置。以此类推,直到数组有序。

以上内容参考 网络-排序算法、网络-c语言冒泡排序


⑨ C语言排序算法一共多少种

  1. 选择排序

#include<iostream>
usingnamespacestd;
voidselect_sort(intarr[],intnum);
voidoutput_array(intarr[],intnum);
intmain()
{
inta[10];
for(inti=0;i<10;i++)
{
cin>>a[i];
}
select_sort(a,10);
output_array(a,10);
return0;
}
voidselect_sort(intarray[],intn)//形参array是数组名
{
inti,j,k,t;
for(i=0;i<n-1;i++)
{
k=i;//先设第i个就为最小
for(j=i+1;j<n;j++)
if(array[j]<array[k])
k=j;//通过循环,得到k为最小
t=array[k];//交换a[i]和a[k]
array[k]=array[i];
array[i]=t;
}
return;
}
voidoutput_array(intarr[],intnum)
{
inti;
for(i=0;i<num;i++)
{
cout<<arr[i];
cout<<endl;
}
return;
}

2.冒泡排序

#include<stdio.h>
intmain()
{
inti,j,a[10],t;
for(i=0;i<10;i++)
scanf("%d",&a[i]);
for(i=0;i<10;i++)
for(j=i+1;j<10;j++)
if(a[i]>a[j])
{
t=a[j];
a[j]=a[i];
a[i]=t;
}
for(i=0;i<10;i++)
printf("%d",a[i]);
return0;
}

3.堆排序

#include<iostream>
usingnamespacestd;
voidpaii(inta[20],inti,intm)
{
intk,t;
t=a[i];
k=2*i+1;
while(k<m)
{
if((k<m-1)&&(a[k]<a[k+1]))
k++;
if(t<a[k])
{
a[i]=a[k];
i=k;
k=2*i+1;
}
elsebreak;
}
a[i]=t;
}
voidipai(inta[20],intn)
{
inti,k;
for(i=n/2-1;i>=0;i--)
paii(a,i,n);
for(i=n-1;i>=1;i--)
{
k=a[0];
a[0]=a[i];
a[i]=k;
paii(a,0,i);
}}
intmain()
{
inta[10],i;
for(i=0;i<10;i++)
cin>>a[i];
ipai(a,10);
for(i=0;i<10;i++)
cout<<a[i]<<endl;
}

4.快速排序

#include<iostream>
usingnamespacestd;
voidQuicksort(inta[],intlow,inthigh)
{
if(low>=high)
{
return;
}
intfirst=low;
intlast=high;
intkey=a[first];
while(first<last)
{
while(first<last&&a[last]>=key)
--last;
a[first]=a[last];
while(first<last&&a[first]<=key)
++first;
a[last]=a[first];
}
a[first]=key;
Quicksort(a,low,first-1);
Quicksort(a,last+1,high);
}


intmain()
{
inti,a[100],x,n=0;
while(cin>>x)
{
a[n]=x;
n++;
}
n--;
Quicksort(a,0,n);
for(i=0;i<=n;i++)
cout<<a[i]<<"";
cout<<endl;
return0;
}

5. 基数排序

#include<stdio.h>
#include<stdlib.h>
intmain(){
intdata[10]={73,22,93,43,55,14,82,65,39,81};//对十个数进行排序
inttemp[10][10]={0};//构造一个临时二维数组,其值为0
intorder[10]={0};//构造一维数组,其值为0
inti,j,k,n,lsd;
k=0;n=1;
for(i=0;i<10;i++)printf("%d",data[i]);//在排序前,对这10个数打印一遍
putchar(' ');
while(n<=10){
for(i=0;i<10;i++){
lsd=((data[i]/n)%10);//lsd先对个位取余,然后再对十位取余,注意循环
temp[lsd][order[lsd]]=data[i];//temp[3][0]=73,temp[2][0]=22,temp[3][1]=93,temp[3][2]=43,⋯⋯
order[lsd]++;//需要区分的是lsd和order[lsd],这两个不是一样的概念嗷
}
printf(" 重新排列:");
for(i=0;i<10;i++){
if(order[i]!=0)
for(j=0;j<order[i];j++){


data[k]=temp[i][j];
printf("%d",data[k]);
k++;
}
order[i]=0;
}
n*=10;//第二次用十位
k=0;
}
putchar(' ');
printf(" 排序后:");
for(i=0;i<10;i++)printf("%d",data[i]);
return0;
}

6.希尔排序

#include<iostream>
usingnamespacestd;
voidshell_sort(inta[],intn);
intmain()
{
intn,a[10000];
cin>>n;
for(inty=0;y<n;y++)
cin>>a[y];
shell_sort(a,n);
for(inti=0;i<n;i++)
cout<<a[i]<<"";
cout<<endl;
}

voidshell_sort(inta[],intn)
{
intgap,k,temp;//定义增量;
for(gap=3;gap>0;gap--)//设置初始增量,递减;
{
for(inti=0;i<gap;i++)//按增量分组;
{
for(intj=i+gap;j<n;j=j+gap)//每组分别比较大小;
{
if(a[j]<a[j-gap])
{
temp=a[j];
k=j-gap;
while(k>=0&&a[k]>temp)
{
a[k+gap]=a[k];
k=k-gap;
}

a[k+gap]=temp;
}
}
}
}
}

7.归并排序

#include<iostream>
usingnamespacestd;
voidMergeSort(intp[],ints,intm,intt)
{
intq[100];//q[100]用来存放排好的序列
inti=s;
intj=m+1;
intk=s;
while(i<=m&&j<=t)
{
if(p[i]<=p[j])
q[k++]=p[i++];
else
q[k++]=p[j++];
}
if(i<=m)
while(i<=m)
q[k++]=p[i++];
elsewhile(j<=t)
q[k++]=p[j++];
for(intn=s;n<=t;n++)
p[n]=q[n];
}
voidMerge(intp[],ints,intt)
{
if(s<t)
{
intm=(s+t)/2;//将数组分成两半
Merge(p,s,m);//递归拆分左数组
Merge(p,m+1,t);//递归拆分右数组
MergeSort(p,s,m,t);//合并数组
}
}
intmain()
{
intn;
intp[100];
cin>>n;
for(inti=0;i<n;i++)
cin>>p[i];
Merge(p,0,n-1);
for(intj=0;j<n;j++)
cout<<p[j]<<"";
cout<<endl;
return0;
}

排序方法基本就这些,还有双向冒泡这种拓展的排序方法,还有直接排序如桶排序