当前位置:首页 » 编程语言 » c语言单交叉口信号控制
扩展阅读
webinf下怎么引入js 2023-08-31 21:54:13
堡垒机怎么打开web 2023-08-31 21:54:11

c语言单交叉口信号控制

发布时间: 2023-06-07 11:42:52

Ⅰ 用c语言编程模拟交通路口(十字路口)红绿灯的控制功能

http://hi..com/%BB۵%B1%C1%EC%BE%F8%B6%A5/blog/item/c851ae02e923357d3812bb18.html
这是发表在我的空间上的文章:“我们的系统斗扒仔设计说明书”
这此皮是我去年做过的一个系统,直接拷贝下来空汪之后应该可以直接运行,到时你按照自己的具体要求改动一下就好了。

Ⅱ 如何用c语言编程在单片机上做交通信号灯

硬件电路设计

此电中路设计采用AT89C51单片机,74LS47(数码管驱动)74LS373(数码管驱动输出锁存),8个数码管显示其延时值,四个红、黄、绿指示灯。硬件设计关键在于,延时显示时,要考虑到当个位数字显示时,要确保十位数字显示输出的不变。因此,可加输出锁存器。在延时最后三秒时,要让黄灯进行闪烁,并同时显示数字(这一步在软件设计上很关键)。

(1)电路连接图:

三、软件程序(C语言)

以下是整个设计的软件程序,直接可以编译成*。Hex代码。通过以上电路,下载到单片机,可直接运行。

//*****************************//
//程序名:十字路口交通灯控制
//编写人:黄庭剑
//初写时间:2009年1月2日
//程序功能:南北为车行道,延时60秒;东西方向为人行道,延时20秒,且在最后3秒黄灯显示2秒钟再实现切换.
//CPU说明:AT89C51型单片机;24MHZ晶体振荡器
//完成时间:2009年1月6日
//*****************************//
#include<stdio.h>
#include<reg51.h>
#include<intrins.h>
sfrp0=0x80;
sfrp1=0x90;
sfrp2=0xA0;
sfrp3=0xb0;//这部分内容其实在“#include<reg51.h>”里已经有,但里面定义的必须区分大小写,在这里,因为我程序采用的是小写,reg51.h里对各个端口与寄存器的定义都是大写,所以在编译连接时,会报错,所以,在本设计程序里,我只用到了端口,在这里也就只定义了四个,而没有去改reg51.h里面的内容。其实两者是一样的。
sbitsw=p0^0;
sbitOE=P0^6;
sbitLE=P0^7;//74LS373锁存器控制端定义
chardisplay[]={0x00,0x11,0x22,0x33,0x44,0x55,0x66,0x77,0x88,0x99};//p1口的数码管时间显示调用,利用74L74BCD码,8位驱动输出;
//函数声明begin
voiddelay1(intcount);
voiddelay_long(intnumber1,intnumber2);
voidpeople_car_drive();
//函数声明end
//***********************//延时子程序
voiddelay1(intcount)
{inti;
for(i=count;i>0;i--)
{;}
}
voiddelay_long(intnumber1,intnumber2)
{
inta,b;
for(a=number1;a>0;a--)
{
for(b=number2;b>0;b--)
{_nop_();}
}

}
//**********************//延时子程序
voidpeople_car_drive()
{
intp_1=2,i,j=9,p_2=6;//****************//行人通行时,延时20秒
p2=0x09;//南北红灯亮
p3=0x24;//东西绿灯亮

while(p_1-->0)
{LE=1;
OE=0;
if(p_1==0){OE=1;}//当十位数减到0时,只显示个位数
p1=display[p_1];
delay1(1000);
LE=0;
j=9;
for(i=10;i>0;i--)
{
if(p_1==0&&j==3)break;//减到3时退出循环,让其黄灯闪烁显示
p1=display[j--];
delay_long(16000,2);
if(sw==1)return;
}

}

//*******************************************************************************//

p2=0x12;//南北黄灯闪烁三秒,以提醒行人注意
p3=0x12;
p1=display[3];
delay_long(8000,1);
p2=0x00;
p3=0x00;
delay_long(14000,1);

p2=0x12;
p3=0x12;
p1=display[2];
delay_long(8000,1);
p2=0x00;
p3=0x00;
delay_long(14000,1);

p2=0x12;
p3=0x12;
p1=display[1];
delay_long(8000,1);
p2=0x00;
p3=0x00;
delay_long(14000,1);
//*****************以下是车辆通行时延时60秒//

p2=0x24;//南北绿灯亮
p3=0x09;//东西红灯亮

while(p_2-->0)
{LE=1;
OE=0;
if(p_2==0){OE=1;}//当十位数减到0时,只显示个位数
p1=display[p_2];
delay1(1000);
LE=0;
j=9;
for(i=10;i>0;i--)
{
if(p_2==0&&j==3)break;//减到2时退出循环
p1=display[j--];
delay_long(16000,2);
if(sw==1)return;
}
}

p2=0x12;//南北黄灯闪烁三秒,以提醒行人注意
p3=0x12;
p1=display[3];
delay_long(8000,1);
p2=0x00;
p3=0x00;
delay_long(14000,1);

p2=0x12;
p3=0x12;
p1=display[2];
delay_long(8000,1);
p2=0x00;
p3=0x00;
delay_long(14000,1);

p2=0x12;
p3=0x12;
p1=display[1];
delay_long(8000,1);
p2=0x00;
p3=0x00;
delay_long(14000,1);//南北黄灯闪烁三秒完毕
}

voidmain()//主函数入口处
{
p0=0x01;
p1=0x00;
p2=0x00;
p3=0x00;//初始化各端口
{while(1)
{
if(sw==0)
{people_car_drive();}
else
{
p2=0x00;
p3=0x00;//关闭所有交通灯
}
}

}
}

Ⅲ 用C语言编程模拟交通路口(十字路口)红绿灯的控制功能

本系统的设计首先必须了解交通路灯的亮灭规律。设有一个十字路口,1、3 为南,北
方向, 2、4 为东,西方向,初始态为4 个路口的红灯全亮。之后, 1、3 路口的绿灯亮,
2、4 路口的红灯亮, 1、3 路口方向通车。延迟一段时间后, 1、3 路口的绿灯熄灭,而1、
3 路口的黄灯开始闪烁。闪烁若干次后, 1、3 路口的红灯亮, 同时 2、4 路口的绿灯亮, 2、
4 路口方向开始通车。延迟一段时间后, 2、4 路口的绿灯熄灭,而黄灯开始闪烁。闪烁若
干次后,再切换到1、3 路口方向。之后,重复上述过程。对于各组灯的亮灭,我们运用的
是8255A 的输入输出功能。

Ⅳ 请教一个Linux下C语言的进程间的信号问题

linux中的进程通信分为三个部分:低级通信,管道通信和进程间通信IPC(inter process communication)。linux的低级通信主要用来传递进程的控制信号——文件锁和软中断信号机制。linux的进程间通信IPC有三个部分——①信号量,②共享内存和③消息队列。以下是我编写的linux进程通信的C语言实现代码。操作系统为redhat9.0,编辑器为vi,编译器采用gcc。下面所有实现代码均已经通过测试,运行无误。

一.低级通信--信号通信

signal.c

#include
#include
#include

/*捕捉到信号sig之后,执行预先预定的动作函数*/
void sig_alarm(int sig)
{
printf("---the signal received is %d. /n", sig);
signal(SIGINT, SIG_DFL); //SIGINT终端中断信号,SIG_DFL:恢复默认行为,SIN_IGN:忽略信号
}

int main()
{
signal(SIGINT, sig_alarm);//捕捉终端中断信号
while(1)
{
printf("waiting here!/n");
sleep(1);
}
return 0;
}

二.管道通信

pipe.c

#include
#define BUFFER_SIZE 30

int main()
{
int x;
int fd[2];
char buf[BUFFER_SIZE];
char s[BUFFER_SIZE];
pipe(fd);//创建管道
while((x=fork())==-1);//创建管道失败时,进入循环

/*进入子进程,子进程向管道中写入一个字符串*/
if(x==0)
{
sprintf(buf,"This is an example of pipe!/n");
write(fd[1],buf,BUFFER_SIZE);
exit(0);
}

/*进入父进程,父进程从管道的另一端读出刚才写入的字符串*/
else
{
wait(0);//等待子进程结束
read(fd[0],s,BUFFER_SIZE);//读出字符串,并将其储存在char s[]中
printf("%s",s);//打印字符串
}
return 0;
}

三.进程间通信——IPC

①信号量通信

sem.c

#include
#include
#include
#include types.h>
#include ipc.h>
#include sem.h>

/*联合体变量*/
union semun
{
int val; //信号量初始值
struct semid_ds *buf;
unsigned short int *array;
struct seminfo *__buf;
};

/*函数声明,信号量定义*/
static int set_semvalue(void); //设置信号量
static void del_semvalue(void);//删除信号量
static int semaphore_p(void); //执行P操作
static int semaphore_v(void); //执行V操作
static int sem_id; //信号量标识符

int main(int argc, char *argv[])
{
int i;
int pause_time;
char op_char = 'O';
srand((unsigned int)getpid());
sem_id = semget((key_t)1234, 1, 0666 | IPC_CREAT);//创建一个信号量,IPC_CREAT表示创建一个新的信号量

/*如果有参数,设置信号量,修改字符*/
if (argc > 1)
{
if (!set_semvalue())
{
fprintf(stderr, "Failed to initialize semaphore/n");
exit(EXIT_FAILURE);
}
op_char = 'X';
sleep(5);
}
for(i = 0; i < 10; i++)
{

/*执行P操作*/
if (!semaphore_p())
exit(EXIT_FAILURE);
printf("%c", op_char);
fflush(stdout);
pause_time = rand() % 3;
sleep(pause_time);
printf("%c", op_char);
fflush(stdout);

/*执行V操作*/
if (!semaphore_v())
exit(EXIT_FAILURE);
pause_time = rand() % 2;
sleep(pause_time);
}
printf("/n%d - finished/n", getpid());
if (argc > 1)
{
sleep(10);
del_semvalue(); //删除信号量
}
exit(EXIT_SUCCESS);
}

/*设置信号量*/
static int set_semvalue(void)
{
union semun sem_union;
sem_union.val = 1;
if (semctl(sem_id, 0, SETVAL, sem_union) == -1)
return(0);

return(1);
}

/*删除信号量*/
static void del_semvalue(void)
{
union semun sem_union;
if (semctl(sem_id, 0, IPC_RMID, sem_union) == -1)
fprintf(stderr, "Failed to delete semaphore/n");
}

/*执行P操作*/
static int semaphore_p(void)
{
struct sembuf sem_b;
sem_b.sem_num = 0;
sem_b.sem_op = -1; /* P() */
sem_b.sem_flg = SEM_UNDO;
if (semop(sem_id, &sem_b, 1) == -1)
{
fprintf(stderr, "semaphore_p failed/n");
return(0);
}
return(1);
}

/*执行V操作*/
static int semaphore_v(void)
{
struct sembuf sem_b;
sem_b.sem_num = 0;
sem_b.sem_op = 1; /* V() */
sem_b.sem_flg = SEM_UNDO;
if (semop(sem_id, &sem_b, 1) == -1)
{
fprintf(stderr, "semaphore_v failed/n");
return(0);
}
return(1);
}

②消息队列通信

send.c

#include
#include
#include
#include
#include
#include types.h>
#include ipc.h>
#include msg.h>
#define MAX_TEXT 512

/*用于消息收发的结构体--my_msg_type:消息类型,some_text:消息正文*/
struct my_msg_st
{
long int my_msg_type;
char some_text[MAX_TEXT];
};

int main()
{
int running = 1;//程序运行标识符
struct my_msg_st some_data;
int msgid;//消息队列标识符
char buffer[BUFSIZ];

/*创建与接受者相同的消息队列*/
msgid = msgget((key_t)1234, 0666 | IPC_CREAT);
if (msgid == -1)
{
fprintf(stderr, "msgget failed with error: %d/n", errno);
exit(EXIT_FAILURE);
}

/*向消息队列中发送消息*/
while(running)
{
printf("Enter some text: ");
fgets(buffer, BUFSIZ, stdin);
some_data.my_msg_type = 1;
strcpy(some_data.some_text, buffer);
if (msgsnd(msgid, (void *)&some_data, MAX_TEXT, 0) == -1)
{
fprintf(stderr, "msgsnd failed/n");
exit(EXIT_FAILURE);
}
if (strncmp(buffer, "end", 3) == 0)
{
running = 0;
}
}
exit(EXIT_SUCCESS);
}

receive.c

#include
#include
#include
#include
#include
#include types.h>
#include ipc.h>
#include msg.h>

/*用于消息收发的结构体--my_msg_type:消息类型,some_text:消息正文*/
struct my_msg_st
{
long int my_msg_type;
char some_text[BUFSIZ];
};

int main()
{
int running = 1;//程序运行标识符
int msgid; //消息队列标识符
struct my_msg_st some_data;
long int msg_to_receive = 0;//接收消息的类型--0表示msgid队列上的第一个消息

/*创建消息队列*/
msgid = msgget((key_t)1234, 0666 | IPC_CREAT);
if (msgid == -1)
{
fprintf(stderr, "msgget failed with error: %d/n", errno);
exit(EXIT_FAILURE);
}

/*接收消息*/
while(running)
{
if (msgrcv(msgid, (void *)&some_data, BUFSIZ,msg_to_receive, 0) == -1)
{
fprintf(stderr, "msgrcv failed with error: %d/n", errno);
exit(EXIT_FAILURE);
}
printf("You wrote: %s", some_data.some_text);
if (strncmp(some_data.some_text, "end", 3) == 0)
{
running = 0;
}
}

/*删除消息队列*/
if (msgctl(msgid, IPC_RMID, 0) == -1)
{
fprintf(stderr, "msgctl(IPC_RMID) failed/n");
exit(EXIT_FAILURE);
}
exit(EXIT_SUCCESS);
}

③共享内存通信

share.h

#define TEXT_SZ 2048 //申请共享内存大小
struct shared_use_st
{
int written_by_you; //written_by_you为1时表示有数据写入,为0时表示数据已经被消费者提走
char some_text[TEXT_SZ];
};

procer.c

#include
#include
#include
#include
#include types.h>
#include ipc.h>
#include shm.h>
#include "share.h"

int main()
{
int running = 1; //程序运行标志位
void *shared_memory = (void *)0;
struct shared_use_st *shared_stuff;
char buffer[BUFSIZ];
int shmid; //共享内存标识符

/*创建共享内存*/
shmid = shmget((key_t)1234, sizeof(struct shared_use_st), 0666 | IPC_CREAT);
if (shmid == -1)
{
fprintf(stderr, "shmget failed/n");
exit(EXIT_FAILURE);
}

/*将共享内存连接到一个进程的地址空间中*/
shared_memory = shmat(shmid, (void *)0, 0);//指向共享内存第一个字节的指针
if (shared_memory == (void *)-1)
{
fprintf(stderr, "shmat failed/n");
exit(EXIT_FAILURE);
}
printf("Memory attached at %X/n", (int)shared_memory);
shared_stuff = (struct shared_use_st *)shared_memory;

/*生产者写入数据*/
while(running)
{
while(shared_stuff->written_by_you == 1)
{
sleep(1);
printf("waiting for client.../n");
}
printf("Enter some text: ");
fgets(buffer, BUFSIZ, stdin);
strncpy(shared_stuff->some_text, buffer, TEXT_SZ);
shared_stuff->written_by_you = 1;
if (strncmp(buffer, "end", 3) == 0)
{
running = 0;
}
}

/*该函数用来将共享内存从当前进程中分离,仅使得当前进程不再能使用该共享内存*/
if (shmdt(shared_memory) == -1)
{
fprintf(stderr, "shmdt failed/n");
exit(EXIT_FAILURE);
}
printf("procer exit./n");
exit(EXIT_SUCCESS);
}

customer.c

#include
#include
#include
#include
#include types.h>
#include ipc.h>
#include shm.h>
#include "share.h"

int main()
{
int running = 1;//程序运行标志位
void *shared_memory = (void *)0;
struct shared_use_st *shared_stuff;
int shmid; //共享内存标识符
srand((unsigned int)getpid());

/*创建共享内存*/
shmid = shmget((key_t)1234, sizeof(struct shared_use_st), 0666 | IPC_CREAT);
if (shmid == -1)
{
fprintf(stderr, "shmget failed/n");
exit(EXIT_FAILURE);
}

/*将共享内存连接到一个进程的地址空间中*/
shared_memory = shmat(shmid, (void *)0, 0);//指向共享内存第一个字节的指针
if (shared_memory == (void *)-1)
{
fprintf(stderr, "shmat failed/n");
exit(EXIT_FAILURE);
}
printf("Memory attached at %X/n", (int)shared_memory);
shared_stuff = (struct shared_use_st *)shared_memory;
shared_stuff->written_by_you = 0;

/*消费者读取数据*/
while(running)
{
if (shared_stuff->written_by_you)
{
printf("You wrote: %s", shared_stuff->some_text);
sleep( rand() % 4 );
shared_stuff->written_by_you = 0;
if (strncmp(shared_stuff->some_text, "end", 3) == 0)
{
running = 0;
}
}
}

/*该函数用来将共享内存从当前进程中分离,仅使得当前进程不再能使用该共享内存*/
if (shmdt(shared_memory) == -1)
{
fprintf(stderr, "shmdt failed/n");
exit(EXIT_FAILURE);
}

/*将共享内存删除,所有进程均不能再访问该共享内存*/
if (shmctl(shmid, IPC_RMID, 0) == -1)
{
fprintf(stderr, "shmctl(IPC_RMID) failed/n");
exit(EXIT_FAILURE);
}
exit(EXIT_SUCCESS);
}

摘自:

Ⅳ 用单片机8051设计一个十字路口的红、绿、黄交通信号灯控制系统,用C语言设计程序

三个仿真实例供参考