‘壹’ c语言编程输出杨辉三角形(要求输出10行)
#include<stdio.h>
int main()
{
int n,i,j,a[100];
n=10;
printf(" 1");
printf(" ");
a[1]=a[2]=1;
printf("%3d%3d ",a[1],a[2]);
for(i=3;i<=n;i++)
{
a[1]=a[i]=1;
for(j=i-1;j>1;j--)
a[j]=a[j]+a[j-1];
for(j=1;j<=i;j++)
printf("%3d",a[j]);
printf(" ");
}
return 0;
}
(1)c语言程序设计杨辉三角扩展阅读:
c语言需要说明的是:
1.一个C语言源程序可以由一个或多个源文件组成。
2.每个源文件可由一个或多个函数组成。
3.一个源程序不论由多少个文件组成,都有一个且只能有一个main函数,即主函数。是整个程序的入口。
4.源程序中可以有预处理命令(包括include 命令,ifdef、ifndef命令、define命令),预处理命令通常应放在源文件或源程序的最前面。
5.每一个说明,每一个语句都必须以分号结尾。但预处理命令,函数头和花括号“}”之后不能加分号。结构体、联合体、枚举型的声明的“}”后要加“ ;”。
6.标识符,关键字之间必须至少加一个空格以示间隔。若已有明显的间隔符,也可不再加空格来间隔。
网络-c语言
‘贰’ C语言,输出杨辉三角
修改:#include"stdio.h"
void main()
{
int a[10][10],i,j;
for(i=0;i<=9;i++){
a[i][0]=1;//原代码此处需修改,第一位数为1
a[i][i]=1;
}
for(i=1;i=9;i++)
for(j=1;j<i;j++)//原代码此处需修改
a[i][j]=a[i-1][j-1]+a[i-1][j];
for(i=0;i<=9;i++){
for(j=0;j<=i;j++){printf("%5d ",a[i][j]);}
printf("
");
}return 0;}
(2)c语言程序设计杨辉三角扩展阅读:
杨辉三角概述:
1.每个数等于它上方两数之和。
2.每行数字左右对称,由1开始逐渐变大。
3.第n行的数字有n+1项。
4.第n行数字和为2n。
5.第n行的m个数可表示为C(n-1,m-1),即为从n-1个不同元素中取m-1个元素的组合数。
6.第n行的第m个数和第n-m+1个数相等 ,为组合数性质之一。
7.每个数字等于上一行的左右两个数字之和。可用此性质写出整个杨辉三角。即第n+1行的第i个数等于第n行的第i-1个数和第i个数之和,这也是组合数的性质之一。即C(n+1,i)=C(n,i)+C(n,i-1)。
8.(a+b)n的展开式中的各项系数依次对应杨辉三角的第(n+1)行中的每一项。
9.将第2n+1行第1个数,跟第2n+2行第3个数、第2n+3行第5个数……连成一线,这些数的和是第4n+1个斐波那契数;将第2n行第2个数(n>1),跟第2n-1行第4个数、第2n-2行第6个数……这些数之和是第4n-2个斐波那契数。
10将各行数字相排列,可得11的n-1(n为行数)次方:1=11^0; 11=11^1; 121=11^2……当n>5时会不符合这一条性质,此时应把第n行的最右面的数字"1"放在个位,然后把左面的一个数字的个位对齐到十位。
以此类推,把空位用“0”补齐,然后把所有的数加起来,得到的数正好是11的n-1次方。以n=11为例,第十一行的数为:1,10,45,120,210,252,210,120,45,10,1,结果为 25937424601=1110。
‘叁’ C语言中怎么写杨辉三角啊
杨辉三角,又称贾宪三角形,帕斯卡三角形,是二项式系数在三角形中的一种几何排列。在欧洲,这个表叫做帕斯卡三角形。
这是杨辉三角:
代码如下:
#include <stdio.h>
#include <stdlib.h>
const int length = 10; // 定义杨辉三角的大小
int main(void)
{
int nums[length][length];
int i, j;
/*计算杨辉三角*/
for(i=0; i<length; i++)
{
nums[i][0] = 1;
nums[i][i] = 1;
for(j=1; j<i; j++)
nums[i][j] = nums[i-1][j-1] + nums[i-1][j];
}
/*打印输出*/
for(i=0; i<length; i++)
{
for(j=0; j<length-i-1; j++)
printf(" ");
for(j=0; j<=i; j++)
printf("%-5d ", nums[i][j]);
putchar('
');
}
getchar();// 暂停
return EXIT_SUCCESS;
}
‘肆’ 用c语言编写程序 输出杨辉三角
程序:
#include<stdio.h>
int main()
int n,i,j,a[100];
n=10;
printf(" 1");
printf(" ");
a[1]=a[2]=1;
printf("%3d%3d ",a[1],a[2]);
for(i=3;i<=n;i++)
{
a[1]=a[i]=1;
for(j=i-1;j>1;j--)
a[j]=a[j]+a[j-1];
for(j=1;j<=i;j++)
printf("%3d",a[j]);
printf(" ");
}
return 0;
}
应用
与杨辉三角联系最紧密的是二项式乘方展开式的系数规律,即二项式定理。例如在杨辉三角中,第3行的三个数恰好对应着两数和的平方的展开式的每一项的系数(性质 8),第4行的四个数恰好依次对应两数和的立方的展开式的每一项的系数。
以上内容参考:网络-杨辉三角
‘伍’ c语言的杨辉三角程序
c语言的杨辉三角程序如下:
#include<stdio.h>
#include<stdlib.h>
intmain()
{
ints=1,h;//数值和高度
inti,j;//循环计数
scanf("%d",&h);//输入层数
printf("1
");//输出第一个1
for(i=2;i<=h;s=1,i++)//行数i从2到层高
printf("1");//第一个1
for(j=1;j<=i-2;j++)//列位置j绕过第一个直接开始循环
//printf("%d",(s=(i-j)/j*s));
printf("%d",(s=(i-j)*s/j));
getchar();//暂停等待
}
(5)c语言程序设计杨辉三角扩展阅读:
杨辉三角概述
前提:每行端点与结尾的数为1.
每个数等于它上方两数之和。
每行数字左右对称,由1开始逐渐变大。
第n行的数字有n项。
第n行数字和为2n。
第n行的m个数可表示为 C(n-1,m-1),即为从n-1个不同元素中取m-1个元素的组合数。
第n行的第m个数和第n-m+1个数相等 ,为组合数性质之一。
每个数字等于上一行的左右两个数字之和。可用此性质写出整个杨辉三角。即第n+1行的第i个数等于第n行的第i-1个数和第i个数之和,这也是组合数的性质之一。即 C(n+1,i)=C(n,i)+C(n,i-1)。
(a+b)n的展开式中的各项系数依次对应杨辉三角的第(n+1)行中的每一项。
将第2n+1行第1个数,跟第2n+2行第3个数、第2n+3行第5个数……连成一线,这些数的和是第4n+1个斐波那契数;将第2n行第2个数(n>1),跟第2n-1行第4个数、第2n-2行第6个数……这些数之和是第4n-2个斐波那契数。
‘陆’ C语言中怎么写杨辉三角啊
#include <stdio.h>
//设定杨辉三角的行数N
#define N 10
int main()
{
int i, j;
int a[N][N];
printf("\n");
//令两斜边的所有数值为1
for (i = 0; i < N; i++)
{
a[i][0] = 1;
a[i][i] = 1;
}
//令杨辉三角内部的数值等于其两肩数字之和
for (i = 2; i < N; i++)
for (j = 1; j < i; j++)
a[i][j] = a[i - 1][j - 1] + a[i - 1][j];
for (i = 0; i < N; i++)
{
for (j = 0; j <= i; j++)
printf("%5d", a[i][j]);
printf("\n");
}
}