在系统为一个程序分配的空间中,分成许多段,比如有代码段,存放程序可执行代码,有数据段,可以分配变量,有常量段,专门存放常量,是只读的。常量变量可以位于数据段中,仍然是变量,只是程序没有改动权限。在程序执行到main之前,系统负责将常量区存储的常量赋值给常量。
‘贰’ c++中内存是如何对齐的
有虚函数的话就有虚表,虚表保存虚函数地址,一个地址占用的长度根据编译器不同有可能不同,vs里面是8个字节,在devc++里面是4个字节。类和结构体的对齐方式相同,有两条规则
1、数据成员对齐规则:结构(struct)(或联合(union))的数据成员,第一个数据成员放在offset为0的地方,以后每个数据成员的对齐按照#pragma pack指定的数值和这个数据成员自身长度中,比较小的那个进行。
2、结构(或联合)的整体对齐规则:在数据成员完成各自对齐之后,结构(或联合)本身也要进行对齐,对齐将按照#pragma pack指定的数值和结构(或联合)最大数据成员长度中,比较小的那个进行
下面是我收集的关于内存对齐的一篇很好的文章:
在最近的项目中,我们涉及到了“内存对齐”技术。对于大部分程序员来说,“内存对齐”对他们来说都应该是“透明的”。“内存对齐”应该是编译器的 “管辖范围”。编译器为程序中的每个“数据单元”安排在适当的位置上。但是C语言的一个特点就是太灵活,太强大,它允许你干预“内存对齐”。如果你想了解更加底层的秘密,“内存对齐”对你就不应该再透明了。
一、内存对齐的原因
大部分的参考资料都是如是说的:
1、平台原因(移植原因):不是所有的硬件平台都能访问任意地址上的任意数据的;某些硬件平台只能在某些地址处取某些特定类型的数据,否则抛出硬件异常。
2、性能原因:数据结构(尤其是栈)应该尽可能地在自然边界上对齐。原因在于,为了访问未对齐的内存,处理器需要作两次内存访问;而对齐的内存访问仅需要一次访问。
二、对齐规则
每个特定平台上的编译器都有自己的默认“对齐系数”(也叫对齐模数)。程序员可以通过预编译命令#pragma pack(n),n=1,2,4,8,16来改变这一系数,其中的n就是你要指定的“对齐系数”。
规则:
1、数据成员对齐规则:结构(struct)(或联合(union))的数据成员,第一个数据成员放在offset为0的地方,以后每个数据成员的对齐按照#pragma pack指定的数值和这个数据成员自身长度中,比较小的那个进行。
2、结构(或联合)的整体对齐规则:在数据成员完成各自对齐之后,结构(或联合)本身也要进行对齐,对齐将按照#pragma pack指定的数值和结构(或联合)最大数据成员长度中,比较小的那个进行。
3、结合1、2颗推断:当#pragma pack的n值等于或超过所有数据成员长度的时候,这个n值的大小将不产生任何效果。
三、试验
我们通过一系列例子的详细说明来证明这个规则吧!
我试验用的编译器包括GCC 3.4.2和VC6.0的C编译器,平台为Windows XP + Sp2。
我们将用典型的struct对齐来说明。首先我们定义一个struct:
#pragma pack(n) /* n = 1, 2, 4, 8, 16 */
struct test_t {
int a;
char b;
short c;
char d;
};
#pragma pack(n)
首先我们首先确认在试验平台上的各个类型的size,经验证两个编译器的输出均为:
sizeof(char) = 1
sizeof(short) = 2
sizeof(int) = 4
我们的试验过程如下:通过#pragma pack(n)改变“对齐系数”,然后察看sizeof(struct test_t)的值。
1、1字节对齐(#pragma pack(1))
输出结果:sizeof(struct test_t) = 8 [两个编译器输出一致]
分析过程:
1) 成员数据对齐
#pragma pack(1)
struct test_t {
int a; /* 长度4 < 1 按1对齐;起始offset=0 0%1=0;存放位置区间[0,3] */
char b; /* 长度1 = 1 按1对齐;起始offset=4 4%1=0;存放位置区间[4] */
short c; /* 长度2 > 1 按1对齐;起始offset=5 5%1=0;存放位置区间[5,6] */
char d; /* 长度1 = 1 按1对齐;起始offset=7 7%1=0;存放位置区间[7] */
};
#pragma pack()
成员总大小=8
2) 整体对齐
整体对齐系数 = min((max(int,short,char), 1) = 1
整体大小(size)=$(成员总大小) 按 $(整体对齐系数) 圆整 = 8 /* 8%1=0 */ [注1]
2、2字节对齐(#pragma pack(2))
输出结果:sizeof(struct test_t) = 10 [两个编译器输出一致]
分析过程:
1) 成员数据对齐
#pragma pack(2)
struct test_t {
int a; /* 长度4 > 2 按2对齐;起始offset=0 0%2=0;存放位置区间[0,3] */
char b; /* 长度1 < 2 按1对齐;起始offset=4 4%1=0;存放位置区间[4] */
short c; /* 长度2 = 2 按2对齐;起始offset=6 6%2=0;存放位置区间[6,7] */
char d; /* 长度1 < 2 按1对齐;起始offset=8 8%1=0;存放位置区间[8] */
};
#pragma pack()
成员总大小=9
2) 整体对齐
整体对齐系数 = min((max(int,short,char), 2) = 2
整体大小(size)=$(成员总大小) 按 $(整体对齐系数) 圆整 = 10 /* 10%2=0 */
3、4字节对齐(#pragma pack(4))
输出结果:sizeof(struct test_t) = 12 [两个编译器输出一致]
分析过程:
1) 成员数据对齐
#pragma pack(4)
struct test_t {
int a; /* 长度4 = 4 按4对齐;起始offset=0 0%4=0;存放位置区间[0,3] */
char b; /* 长度1 < 4 按1对齐;起始offset=4 4%1=0;存放位置区间[4] */
short c; /* 长度2 < 4 按2对齐;起始offset=6 6%2=0;存放位置区间[6,7] */
char d; /* 长度1 < 4 按1对齐;起始offset=8 8%1=0;存放位置区间[8] */
};
#pragma pack()
成员总大小=9
2) 整体对齐
整体对齐系数 = min((max(int,short,char), 4) = 4
整体大小(size)=$(成员总大小) 按 $(整体对齐系数) 圆整 = 12 /* 12%4=0 */
4、8字节对齐(#pragma pack(8))
输出结果:sizeof(struct test_t) = 12 [两个编译器输出一致]
分析过程:
1) 成员数据对齐
#pragma pack(8)
struct test_t {
int a; /* 长度4 < 8 按4对齐;起始offset=0 0%4=0;存放位置区间[0,3] */
char b; /* 长度1 < 8 按1对齐;起始offset=4 4%1=0;存放位置区间[4] */
short c; /* 长度2 < 8 按2对齐;起始offset=6 6%2=0;存放位置区间[6,7] */
char d; /* 长度1 < 8 按1对齐;起始offset=8 8%1=0;存放位置区间[8] */
};
#pragma pack()
成员总大小=9
2) 整体对齐
整体对齐系数 = min((max(int,short,char), 8) = 4
整体大小(size)=$(成员总大小) 按 $(整体对齐系数) 圆整 = 12 /* 12%4=0 */
5、16字节对齐(#pragma pack(16))
输出结果:sizeof(struct test_t) = 12 [两个编译器输出一致]
分析过程:
1) 成员数据对齐
#pragma pack(16)
struct test_t {
int a; /* 长度4 < 16 按4对齐;起始offset=0 0%4=0;存放位置区间[0,3] */
char b; /* 长度1 < 16 按1对齐;起始offset=4 4%1=0;存放位置区间[4] */
short c; /* 长度2 < 16 按2对齐;起始offset=6 6%2=0;存放位置区间[6,7] */
char d; /* 长度1 < 16 按1对齐;起始offset=8 8%1=0;存放位置区间[8] */
};
#pragma pack()
成员总大小=9
2) 整体对齐
整体对齐系数 = min((max(int,short,char), 16) = 4
整体大小(size)=$(成员总大小) 按 $(整体对齐系数) 圆整 = 12 /* 12%4=0 */
四、结论
8字节和16字节对齐试验证明了“规则”的第3点:“当#pragma pack的n值等于或超过所有数据成员长度的时候,这个n值的大小将不产生任何效果”。另外内存对齐是个很复杂的东西,上面所说的在有些时候也可能不正确。呵呵^_^
[注1]
什么是“圆整”?
举例说明:如上面的8字节对齐中的“整体对齐”,整体大小=9 按 4 圆整 = 12
圆整的过程:从9开始每次加一,看是否能被4整除,这里9,10,11均不能被4整除,到12时可以,则圆整结束。
‘叁’ C语言里面的字节对齐的计算方法能讲解1下吗
首先你要知道为什么会出现字节对齐,这是一种用空间换时间的做法,因为对齐之后可以提高取数的效率。结构体的大小一般是4或者8的倍数,具体是以最大的变量类型的大小为基数的。也就是说在内存中,数据一般是放在一个4的整数倍的起始地址。
sturct S
{
char c;
short s;
int i;
}
它的大小是8个字节,因为前面两个占了4字节。如果写成下面这种形式,它就是12字节了
struct S
{
char c;
int i;
short s;
}
因为为了提高存取效率,所以第一个成员变量占了四个字节的空间,最后一个成员也占了四个字节
你非要说计算方法的话要根据具体情况来算了,首先看结构体中哪一个变量所占的字节数最大,然后后面的对齐计算都以这个为基数(我这里以4字节为例)。接着,你把每一个成员变量的大小依次相加(按照结构体定义中的顺序,从第一个加到最后一个)。当你加到某一个变量的时候,发现超过了4个字节,那么就把这个变量之前的内容当作是一个整体,它们一共点4个字节,后面的再继续这个过程
‘肆’ C语言有关内存对齐的问题
//比如有这样的结构体
structA
{
chara;//占1个字节
intb;//占4个字节
};
//那这个结构体一共要占5个字节的内存吗?
//不是的,系统会把它填充成8个字节,这就是字节对齐
//那系统为什么要这样做呢,这涉及到存取的效率问题
//从硬件角度看,32位的CPU通过总线访问内存,一个总线周期访问32位内存数据
//刚刚好4个字节,所以4字节对齐的存取效率是较高的
//这就是牺牲空间换取效率了
//当然不对齐CPU也能访问,就是要花点功夫而已
‘伍’ 什么是C语言结构体字节对齐,为什么要对齐
对齐跟数据在内存中的位置有关。如果一个变量的内存地址正好位于它长度的整数倍,他就被称做自然对齐。比如在32位cpu下,假设一个整型变量的地址为0x00000004,那它就是自然对齐的。
需要字节对齐的根本原因在于CPU访问数据的效率问题。假设上面整型变量的地址不是自然对齐,比如为0x00000002,则CPU如果取它的值的话需要访问两次内存,第一次取从0x00000002-0x00000003的一个short,第二次取从0x00000004-0x00000005的一个short然后组合得到所要的数据,如果变量在0x00000003地址上的话则要访问三次内存,第一次为char,第二次为short,第三次为char,然后组合得到整型数据。而如果变量在自然对齐位置上,则只要一次就可以取出数据。一些系统对对齐要求非常严格,比如sparc系统,如果取未对齐的数据会发生错误,举个例:
char ch[8];
char *p = &ch[1];
int i = *(int *)p;
运行时会报segment error,而在x86上就不会出现错误,只是效率下降。
‘陆’ C语言内存对齐问题.
为了有助于加快计算机的取数速度,编译器默认会对结构体进行处理(实际上其它地方的数据变量也是如此),让宽度为2的基本数据类型(short等)都位于能被2整除的地址上,让宽度为4的基数据类型(int等)都位于能被4整除的地址上,以此类推。这样,两个数中间就可能需要加入填充字节,所以整个结构体的sizeof值就增长了。
字节对齐的细节和编译器实现相关,但一般而言,满足三个准则:
1) 结构体变量的首地址能够被其最宽基本类型成员的大小所整除;
2) 结构体每个成员相对于结构体首地址的偏移量(offset)都是成员大小的整数倍,如有
需要编译器会在成员之间加上填充字节(internal adding);
3) 结构体的总大小为结构体最宽基本类型成员大小的整数倍,如有需要编译器会在最末一
个成员之后加上填充字节(trailing padding)。
你这里struct的首地址要能被double的8字节整除,
char占1字节
int要被此时的地址整除,那么需要补上3字节,所以这里一共该是8字节
short2字节的,一共10字节,不满足3),不能整除int,故添加2字节
最后是double 8字节,这里地址应该是首地址+12不能被8整除,所以+4字节。最后一共24B!
问题解决求采纳!
‘柒’ c语言结构体对齐的问题。
这是个好问题!
为什么会有对齐的问题呢?简单的说就是为了提高访问内存的效率,这和CPU内部的机制有关,如果你想深入理解,需要阅读 Intel 开发者手册。对齐采用的总体原则是这样的:4字节变量的存放要对齐到可以被4整除的地址上,8字节变量的存放要对齐到可以被8整除的地址上。其他变量类推就行了。如果没对齐编译器就会将某个变量的存储往后推迟几个字节,以保证对齐后再存放。
具体到这个问题就是可以先假设结构体变量从地址0处开始存放,那么第一种情况就是这样的了:
cat 存放的位置是地址0-地址3
a数组存放的位置是地址4-地址23
dog存放的位置是地址24到地址31
这里可以看到它们都符合对齐的原则(即每个变量开始存放的地址可以除尽它们所占的字节数),所以是32
第二种情况是这样的:
cat仍然存放到地址0-地址3处
a数组是地址4到地址27处
存放dog时编译器计算除下一个地址28并不能除尽double的字节数8,于是它要将地址进行递增。29,30,31仍然不能除尽8,知道递增到32时可以将8除尽了,所以dog变量会被存放在地址32到地址39处,从地址0到地址39正好40个字节,这就解释了第二种情况了。
ps. 其实你这个问题还有一种变种就是一个结构体里在套一个结构体,这时会牵扯到内部的结构体对齐的问题。等你以后遇见了再给我提问吧,我给你解释。
‘捌’ 在arm中c语言编程,定义的多字节变量和结构体,最好使其为对齐存放."对齐存放"是
ARM支持16bit和32bit的地址访问,即变量地址能够被2或4整除,这时性能比较好,也便于移植。结构体的对齐就是指的结构体内部的每个成员变量地址尽可能对齐到2或4字节位置,如定义为:
struct{
char ch1;
char ch2;
short ss;
int i;
}var;
字符变量ch1, ch2为字节对齐,短整型变量ss为半字对齐,整型变量i为字对齐,结构体内的变量比较紧凑,且已自然对齐,结构体变量var占用总空间为8个字节。如果改为这样:
struct{
char ch1;
short ss;
char ch2;
short ss;
int i;
}var;
var变量最终占用的空间为12个字节,存取这个结构体时比前面那个需要的时间要多,另外如果用pack(1)指定结构体字节对齐的话,后面的方式移植到其它系统可能会出现死机问题。