A. C语言 递归 输出格雷码(Gray码)
你查网络:
一般的,普通二进制码与格雷码可以按以下方法互相转换:
二进制码->格雷码(编码):从最右边一位起,依次将每一位与左边一位异或(XOR),作为对应格雷码该位的值,最左边一位不变(相当于左边是0);
格雷码-〉二进制码(解码):从左边第二位起,将每位与左边一位解码后的值异或,作为该位解码后的值(最左边一位依然不变)
如果非要按递归来做,可以这样,如果要输出n位格雷码,那么递归层为N:0层负责第0位,1层负责第1位,2层负责第2位。。。。第n-1层负责第n-1位(也就是gray的最高位)这样就可以写出递归函数的轮廓了。
void gray(int n)
{
if(0==n)
{……;return;}
……
gray(n-1);//把处理第n-1位的任务交下一层处理
}
对于第0位来说,每4位为一个循环周期——01 10.
对于第1位来说,每8位为一个循环周期——0011 1100.
对于第2位来说,每16位为一个循环周期——00001111 11110000.
……
对于第N位来说,每2^(N+2)为一个循环周期。
看到这里你有什么启发?
所以我想你应该设置一个全局变量:int flag=1.
对于gray(i)函数来说,可以通过set=flag%(2^(i+2))来设置该第位(当2^i<set&&set<=3*2^i,就设第i位为1)
B. 格雷码有什么特点,用于什么场合,与二进制码之间如何进行转换
格雷码有什么特点?
--相邻两数的格雷码,仅有一位二进制码不同。
用于什么场合?
--自动控制、通讯、等,稳定性要求较高的场合。
与二进制码之间如何进行转换?
--使用“数字逻辑电路”,转换最快了。
C. 格雷码的转换方法
这种方法基于格雷码是反射码的事实,利用递归的如下规则来构造: 1位格雷码有两个码字 (n+1)位格雷码中的前2n个码字等于n位格雷码的码字,按顺序书写,加前缀0 (n+1)位格雷码中的后2n个码字等于n位格雷码的码字,按逆序书写,加前缀1 n+1位格雷码的集合 = n位格雷码集合(顺序)加前缀0 + n位格雷码集合(逆序)加前缀1 2位格雷码3位格雷码4位格雷码4位自然二进制码00
01
11
10 000
001
011
010
110
111
101
100 0000
0001
0011
0010
0110
0111
0101
0100
1100
1101
1111
1110
1010
1011
1001
1000 0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111 二进制码→格雷码(编码):
此方法从对应的n位二进制码字中直接得到n位格雷码码字,步骤如下: 对n位二进制的码字,从右到左,以0到n-1编号 如果二进制码字的第i位和i+1位相同,则对应的格雷码的第i位为0,否则为1(当i+1=n时,二进制码字的第n位被认为是0,即第n-1位不变) 公式表示:(G:格雷码,B:二进制码) 例如:二进制码0101,为4位数,所以其所转为之格雷码也必为4位数,因此可取转成之二进位码第五位为0,即0 b3 b2 b1 b0。
0 xor 0=0,所以g3=0
0 xor 1=1,所以g2=1
1 xor 0=1,所以g1=1
0 xor 1=1,所以g0=1
因此所转换为之格雷码为0111 格雷码→二进制码(解码):
从左边第二位起,将每位与左边一位解码后的值异或,作为该位解码后的值(最左边一位依然不变)。依次异或,直到最低位。依次异或转换后的值(二进制数)就是格雷码转换后二进制码的值。
公式表示:(G:格雷码,B:二进制码)
原码:p[n:0];格雷码:c[n:0](n∈N);编码:c=G(p);解码:p=F(c);
书写时按从左向右标号依次减小,即MSB->LSB,编解码也按此顺序进行 举例:
如果采集器器采到了格雷码:1010
就要将它变为自然二进制:
0 与第四位 1 进行异或结果为 1
上面结果1与第三位0异或结果为 1
上面结果1与第二位1异或结果为 0
上面结果0与第一位0异或结果为 0
因此最终结果为:1100 这就是二进制码即十进制 12
当然人看时只需对照表1一下子就知道是12 ...................c[n]=p[n],
解码: 利用卡诺图相邻两格只有一位变化以及卡诺图的变量取值以低阶格雷码的顺序排布的特征,可以递归得到高阶格雷码。由于此方法相对繁琐,使用较少。生成格雷码的步骤如下: 将卡诺图变量分为两组,变量数目相近(最好相等) 以逻辑变量高位在左低位在右建立卡诺图 从卡诺图的左上角以之字形到右上角最后到左下角遍历卡诺图,依次经过格子的变量取值即为典型格雷码的顺序 三位格雷码(三位格雷码由建立在二位基础上) AB╲ C 0 1 00 0→ 1↓ 01 ↓2 ←3 11 6→ 7↓ 10 4 ←5 格雷码次序:000起点→001→011→010→110→111→101→100终点
四位格雷码 AB╲CD 00 01 11 10 00 0→ 1→ 3→ 2↓ 01 ↓4 ←5 ←7 ←6 11 12→ 13→ 15→ 14↓ 10 8 ←9 ←11 ←10 格雷码次序:0000起点→0001→0011→0010→0110→0111→0101→0100→1100→1101→
1111→1110→1010→1011→1001→1000终点 用异或代替加减进行二进制竖式乘除,称为异或乘除,它的特点是无进退位。
如:10101除以11将变成1100余1。
二进制转格雷码:
只要异或乘以二分之三,即二进制的1.1,然后忽略小数部分;也可以理解成异或乘以三(即11),再右移一位。
格雷码转二进制:
异或除以三分之二,即除以1.1,忽略余数;或者左移一位,再异或除以三,忽略余数。
D. 格雷码如何转换成二进制
最左边一位依然不变依次异或,直到最低位。依次异或转换后的值就是格雷码转换后的二进制值。
在一组数的编码中,若任意两个相邻的代码只有一位二进制数不同,则称这种编码为格雷码(Gray Code),另外由于最大数与最小数之间也仅一位数不同,即“首尾相连”,因此又称循环码或反射码。
典型的二进制格雷码(Binary Gray Code)简称格雷码,因1953年公开的弗兰克·格雷(Frank Gray,18870913-19690523)专利“Pulse Code Communication”而得名,当初是为了通信,现在则常用于模拟-数字转换和位置-数字转换中。
法国电讯工程师波特(Jean-Maurice-Émile Baudot,18450911-19030328)在1880年曾用过的波特码相当于它的一种变形。1941年George Stibitz设计的一种8元二进制机械计数器正好符合格雷码计数器的计数规律。
二进制(binary),发现者莱布尼茨,是在数学和数字电路中以2为基数的记数系统,是以2为基数代表系统的二进位制。这一系统中,通常用两个不同的符号0(代表零)和1(代表一)来表示。
数字电子电路中,逻辑门的实现直接应用了二进制,现代的计算机和依赖计算机的设备里都使用二进制。每个数字称为一个比特(Bit,Binary digit的缩写)。
E. 格雷码10110转换为二进制是多少
与上图对应:格雷码10110转换为二进制为11011。