当前位置:首页 » 编程语言 » c语言排序方法复杂度
扩展阅读
webinf下怎么引入js 2023-08-31 21:54:13
堡垒机怎么打开web 2023-08-31 21:54:11

c语言排序方法复杂度

发布时间: 2023-08-29 13:58:05

c语言排序

//总共给你整理了7种排序算法:希尔排序,链式基数排序,归并排序
//起泡排序,简单选择排序,树形选择排序,堆排序,先自己看看吧,
//看不懂可以再问身边的人或者查资料,既然可以上网,我相信你所在的地方信息流通方式应该还行,所有的程序全部在VC++6.0下编译通过
//希尔排序
#include<stdio.h>
typedef int InfoType; // 定义其它数据项的类型
#define EQ(a,b) ((a)==(b))
#define LT(a,b) ((a)<(b))
#define LQ(a,b) ((a)<=(b))
#define MAXSIZE 20 // 一个用作示例的小顺序表的最大长度
typedef int KeyType; // 定义关键字类型为整型
struct RedType // 记录类型
{
KeyType key; // 关键字项
InfoType otherinfo; // 其它数据项,具体类型在主程中定义
};

struct SqList // 顺序表类型
{
RedType r[MAXSIZE+1]; // r[0]闲置或用作哨兵单元
int length; // 顺序表长度
};
void ShellInsert(SqList &L,int dk)
{ // 对顺序表L作一趟希尔插入排序。本算法是和一趟直接插入排序相比,
// 作了以下修改:
// 1.前后记录位置的增量是dk,而不是1;
// 2.r[0]只是暂存单元,不是哨兵。当j<=0时,插入位置已找到。算法10.4
int i,j;
for(i=dk+1;i<=L.length;++i)
if LT(L.r[i].key,L.r[i-dk].key)
{ // 需将L.r[i]插入有序增量子表
L.r[0]=L.r[i]; // 暂存在L.r[0]
for(j=i-dk;j>0&<(L.r[0].key,L.r[j].key);j-=dk)
L.r[j+dk]=L.r[j]; // 记录后移,查找插入位置
L.r[j+dk]=L.r[0]; // 插入
}
}

void print(SqList L)
{
int i;
for(i=1;i<=L.length;i++)
printf("%d ",L.r[i].key);
printf("\n");
}

void print1(SqList L)
{
int i;
for(i=1;i<=L.length;i++)
printf("(%d,%d)",L.r[i].key,L.r[i].otherinfo);
printf("\n");
}

void ShellSort(SqList &L,int dlta[],int t)
{ // 按增量序列dlta[0..t-1]对顺序表L作希尔排序。算法10.5
int k;
for(k=0;k<t;++k)
{
ShellInsert(L,dlta[k]); // 一趟增量为dlta[k]的插入排序
printf("第%d趟排序结果: ",k+1);
print(L);
}
}

#define N 10
#define T 3
void main()
{
RedType d[N]={{49,1},{38,2},{65,3},{97,4},{76,5},{13,6},{27,7},{49,8},{55,9},{4,10}};
SqList l;
int dt[T]={5,3,1}; // 增量序列数组
for(int i=0;i<N;i++)
l.r[i+1]=d[i];
l.length=N;
printf("排序前: ");
print(l);
ShellSort(l,dt,T);
printf("排序后: ");
print1(l);
}

/*****************************************************************/
//链式基数排序
typedef int InfoType; // 定义其它数据项的类型
typedef int KeyType; // 定义RedType类型的关键字为整型
struct RedType // 记录类型(同c10-1.h)
{
KeyType key; // 关键字项
InfoType otherinfo; // 其它数据项
};
typedef char KeysType; // 定义关键字类型为字符型
#include<string.h>
#include<ctype.h>
#include<malloc.h> // malloc()等
#include<limits.h> // INT_MAX等
#include<stdio.h> // EOF(=^Z或F6),NULL
#include<stdlib.h> // atoi()
#include<io.h> // eof()
#include<math.h> // floor(),ceil(),abs()
#include<process.h> // exit()
#include<iostream.h> // cout,cin
// 函数结果状态代码
#define TRUE 1
#define FALSE 0
#define OK 1
#define ERROR 0
#define INFEASIBLE -1
typedef int Status; // Status是函数的类型,其值是函数结果状态代码,如OK等
typedef int Boolean; // Boolean是布尔类型,其值是TRUE或FALSE
#define MAX_NUM_OF_KEY 8 // 关键字项数的最大值
#define RADIX 10 // 关键字基数,此时是十进制整数的基数
#define MAX_SPACE 1000
struct SLCell // 静态链表的结点类型
{
KeysType keys[MAX_NUM_OF_KEY]; // 关键字
InfoType otheritems; // 其它数据项
int next;
};

struct SLList // 静态链表类型
{
SLCell r[MAX_SPACE]; // 静态链表的可利用空间,r[0]为头结点
int keynum; // 记录的当前关键字个数
int recnum; // 静态链表的当前长度
};

typedef int ArrType[RADIX];
void InitList(SLList &L,RedType D[],int n)
{ // 初始化静态链表L(把数组D中的数据存于L中)
char c[MAX_NUM_OF_KEY],c1[MAX_NUM_OF_KEY];
int i,j,max=D[0].key; // max为关键字的最大值
for(i=1;i<n;i++)
if(max<D[i].key)
max=D[i].key;
L.keynum=int(ceil(log10(max)));
L.recnum=n;
for(i=1;i<=n;i++)
{
L.r[i].otheritems=D[i-1].otherinfo;
itoa(D[i-1].key,c,10); // 将10进制整型转化为字符型,存入c
for(j=strlen(c);j<L.keynum;j++) // 若c的长度<max的位数,在c前补'0'
{
strcpy(c1,"0");
strcat(c1,c);
strcpy(c,c1);
}
for(j=0;j<L.keynum;j++)
L.r[i].keys[j]=c[L.keynum-1-j];
}
}

int ord(char c)
{ // 返回k的映射(个位整数)
return c-'0';
}

void Distribute(SLCell r[],int i,ArrType f,ArrType e) // 算法10.15
{ // 静态键表L的r域中记录已按(keys[0],…,keys[i-1])有序。本算法按
// 第i个关键字keys[i]建立RADIX个子表,使同一子表中记录的keys[i]相同。
// f[0..RADIX-1]和e[0..RADIX-1]分别指向各子表中第一个和最后一个记录
int j,p;
for(j=0;j<RADIX;++j)
f[j]=0; // 各子表初始化为空表
for(p=r[0].next;p;p=r[p].next)
{
j=ord(r[p].keys[i]); // ord将记录中第i个关键字映射到[0..RADIX-1]
if(!f[j])
f[j]=p;
else
r[e[j]].next=p;
e[j]=p; // 将p所指的结点插入第j个子表中
}
}

int succ(int i)
{ // 求后继函数
return ++i;
}

void Collect(SLCell r[],ArrType f,ArrType e)
{ // 本算法按keys[i]自小至大地将f[0..RADIX-1]所指各子表依次链接成
// 一个链表,e[0..RADIX-1]为各子表的尾指针。算法10.16
int j,t;
for(j=0;!f[j];j=succ(j)); // 找第一个非空子表,succ为求后继函数
r[0].next=f[j];
t=e[j]; // r[0].next指向第一个非空子表中第一个结点
while(j<RADIX-1)
{
for(j=succ(j);j<RADIX-1&&!f[j];j=succ(j)); // 找下一个非空子表
if(f[j])
{ // 链接两个非空子表
r[t].next=f[j];
t=e[j];
}
}
r[t].next=0; // t指向最后一个非空子表中的最后一个结点
}

void printl(SLList L)
{ // 按链表输出静态链表
int i=L.r[0].next,j;
while(i)
{
for(j=L.keynum-1;j>=0;j--)
printf("%c",L.r[i].keys[j]);
printf(" ");
i=L.r[i].next;
}
}

void RadixSort(SLList &L)
{ // L是采用静态链表表示的顺序表。对L作基数排序,使得L成为按关键字
// 自小到大的有序静态链表,L.r[0]为头结点。算法10.17
int i;
ArrType f,e;
for(i=0;i<L.recnum;++i)
L.r[i].next=i+1;
L.r[L.recnum].next=0; // 将L改造为静态链表
for(i=0;i<L.keynum;++i)
{ // 按最低位优先依次对各关键字进行分配和收集
Distribute(L.r,i,f,e); // 第i趟分配
Collect(L.r,f,e); // 第i趟收集
printf("第%d趟收集后:\n",i+1);
printl(L);
printf("\n");
}
}

void print(SLList L)
{ // 按数组序号输出静态链表
int i,j;
printf("keynum=%d recnum=%d\n",L.keynum,L.recnum);
for(i=1;i<=L.recnum;i++)
{
printf("keys=");
for(j=L.keynum-1;j>=0;j--)
printf("%c",L.r[i].keys[j]);
printf(" otheritems=%d next=%d\n",L.r[i].otheritems,L.r[i].next);
}
}

void Sort(SLList L,int adr[]) // 改此句(类型)
{ // 求得adr[1..L.length],adr[i]为静态链表L的第i个最小记录的序号
int i=1,p=L.r[0].next;
while(p)
{
adr[i++]=p;
p=L.r[p].next;
}
}

void Rearrange(SLList &L,int adr[]) // 改此句(类型)
{ // adr给出静态链表L的有序次序,即L.r[adr[i]]是第i小的记录。
// 本算法按adr重排L.r,使其有序。算法10.18(L的类型有变)
int i,j,k;
for(i=1;i<L.recnum;++i) // 改此句(类型)
if(adr[i]!=i)
{
j=i;
L.r[0]=L.r[i]; // 暂存记录L.r[i]
while(adr[j]!=i)
{ // 调整L.r[adr[j]]的记录到位直到adr[j]=i为止
k=adr[j];
L.r[j]=L.r[k];
adr[j]=j;
j=k; // 记录按序到位
}
L.r[j]=L.r[0];
adr[j]=j;
}
}

#define N 10
void main()
{
RedType d[N]={{278,1},{109,2},{63,3},{930,4},{589,5},{184,6},{505,7},{269,8},{8,9},{83,10}};
SLList l;
int *adr;
InitList(l,d,N);
printf("排序前(next域还没赋值):\n");
print(l);
RadixSort(l);
printf("排序后(静态链表):\n");
print(l);
adr=(int*)malloc((l.recnum)*sizeof(int));
Sort(l,adr);
Rearrange(l,adr);
printf("排序后(重排记录):\n");
print(l);
}
/*******************************************/
//归并排序
#include<stdio.h>
typedef int InfoType; // 定义其它数据项的类型
#define EQ(a,b) ((a)==(b))
#define LT(a,b) ((a)<(b))
#define LQ(a,b) ((a)<=(b))
#define MAXSIZE 20 // 一个用作示例的小顺序表的最大长度
typedef int KeyType; // 定义关键字类型为整型
struct RedType // 记录类型
{
KeyType key; // 关键字项
InfoType otherinfo; // 其它数据项,具体类型在主程中定义
};

struct SqList // 顺序表类型
{
RedType r[MAXSIZE+1]; // r[0]闲置或用作哨兵单元
int length; // 顺序表长度
};
void Merge(RedType SR[],RedType TR[],int i,int m,int n)
{ // 将有序的SR[i..m]和SR[m+1..n]归并为有序的TR[i..n] 算法10.12
int j,k,l;
for(j=m+1,k=i;i<=m&&j<=n;++k) // 将SR中记录由小到大地并入TR
if LQ(SR[i].key,SR[j].key)
TR[k]=SR[i++];
else
TR[k]=SR[j++];
if(i<=m)
for(l=0;l<=m-i;l++)
TR[k+l]=SR[i+l]; // 将剩余的SR[i..m]复制到TR
if(j<=n)
for(l=0;l<=n-j;l++)
TR[k+l]=SR[j+l]; // 将剩余的SR[j..n]复制到TR
}

void MSort(RedType SR[],RedType TR1[],int s, int t)
{ // 将SR[s..t]归并排序为TR1[s..t]。算法10.13
int m;
RedType TR2[MAXSIZE+1];
if(s==t)
TR1[s]=SR[s];
else
{
m=(s+t)/2; // 将SR[s..t]平分为SR[s..m]和SR[m+1..t]
MSort(SR,TR2,s,m); // 递归地将SR[s..m]归并为有序的TR2[s..m]
MSort(SR,TR2,m+1,t); // 递归地将SR[m+1..t]归并为有序的TR2[m+1..t]
Merge(TR2,TR1,s,m,t); // 将TR2[s..m]和TR2[m+1..t]归并到TR1[s..t]
}
}

void MergeSort(SqList &L)
{ // 对顺序表L作归并排序。算法10.14
MSort(L.r,L.r,1,L.length);
}

void print(SqList L)
{
int i;
for(i=1;i<=L.length;i++)
printf("(%d,%d)",L.r[i].key,L.r[i].otherinfo);
printf("\n");
}

#define N 7
void main()
{
RedType d[N]={{49,1},{38,2},{65,3},{97,4},{76,5},{13,6},{27,7}};
SqList l;
int i;
for(i=0;i<N;i++)
l.r[i+1]=d[i];
l.length=N;
printf("排序前:\n");
print(l);
MergeSort(l);
printf("排序后:\n");
print(l);
}
/**********************************************/
//起泡排序
#include<string.h>
#include<ctype.h>
#include<malloc.h> // malloc()等
#include<limits.h> // INT_MAX等
#include<stdio.h> // EOF(=^Z或F6),NULL
#include<stdlib.h> // atoi()
#include<io.h> // eof()
#include<math.h> // floor(),ceil(),abs()
#include<process.h> // exit()
#include<iostream.h> // cout,cin
// 函数结果状态代码
#define TRUE 1
#define FALSE 0
#define OK 1
#define ERROR 0
#define INFEASIBLE -1
typedef int Status;
typedef int Boolean;
#define N 8
void bubble_sort(int a[],int n)
{ // 将a中整数序列重新排列成自小至大有序的整数序列(起泡排序)
int i,j,t;
Status change;
for(i=n-1,change=TRUE;i>1&&change;--i)
{
change=FALSE;
for(j=0;j<i;++j)
if(a[j]>a[j+1])
{
t=a[j];
a[j]=a[j+1];
a[j+1]=t;
change=TRUE;
}
}
}

void print(int r[],int n)
{
int i;
for(i=0;i<n;i++)
printf("%d ",r[i]);
printf("\n");
}

void main()
{
int d[N]={49,38,65,97,76,13,27,49};
printf("排序前:\n");
print(d,N);
bubble_sort(d,N);
printf("排序后:\n");
print(d,N);
}
/****************************************************/
//简单选择排序
#include<stdio.h>
typedef int InfoType; // 定义其它数据项的类型
#define MAXSIZE 20 // 一个用作示例的小顺序表的最大长度
typedef int KeyType; // 定义关键字类型为整型
struct RedType // 记录类型
{
KeyType key; // 关键字项
InfoType otherinfo; // 其它数据项,具体类型在主程中定义
};

struct SqList // 顺序表类型
{
RedType r[MAXSIZE+1]; // r[0]闲置或用作哨兵单元
int length; // 顺序表长度
};
int SelectMinKey(SqList L,int i)
{ // 返回在L.r[i..L.length]中key最小的记录的序号
KeyType min;
int j,k;
k=i; // 设第i个为最小
min=L.r[i].key;
for(j=i+1;j<=L.length;j++)
if(L.r[j].key<min) // 找到更小的
{
k=j;
min=L.r[j].key;
}
return k;
}

void SelectSort(SqList &L)
{ // 对顺序表L作简单选择排序。算法10.9
int i,j;
RedType t;
for(i=1;i<L.length;++i)
{ // 选择第i小的记录,并交换到位
j=SelectMinKey(L,i); // 在L.r[i..L.length]中选择key最小的记录
if(i!=j)
{ // 与第i个记录交换
t=L.r[i];
L.r[i]=L.r[j];
L.r[j]=t;
}
}
}

void print(SqList L)
{
int i;
for(i=1;i<=L.length;i++)
printf("(%d,%d)",L.r[i].key,L.r[i].otherinfo);
printf("\n");
}

#define N 8
void main()
{
RedType d[N]={{49,1},{38,2},{65,3},{97,4},{76,5},{13,6},{27,7},{49,8}};
SqList l;
int i;
for(i=0;i<N;i++)
l.r[i+1]=d[i];
l.length=N;
printf("排序前:\n");
print(l);
SelectSort(l);
printf("排序后:\n");
print(l);
}
/************************************************/
//树形选择排序
#include<string.h>
#include<ctype.h>
#include<malloc.h> // malloc()等
#include<limits.h> // INT_MAX等
#include<stdio.h> // EOF(=^Z或F6),NULL
#include<stdlib.h> // atoi()
#include<io.h> // eof()
#include<math.h> // floor(),ceil(),abs()
#include<process.h> // exit()
#include<iostream.h> // cout,cin
// 函数结果状态代码
#define TRUE 1
#define FALSE 0
#define OK 1
#define ERROR 0
#define INFEASIBLE -1
typedef int Status; // Status是函数的类型,其值是函数结果状态代码,如OK等
typedef int Boolean; // Boolean是布尔类型,其值是TRUE或FALSE
typedef int InfoType; // 定义其它数据项的类型
#define MAXSIZE 20 // 一个用作示例的小顺序表的最大长度
typedef int KeyType; // 定义关键字类型为整型
struct RedType // 记录类型
{
KeyType key; // 关键字项
InfoType otherinfo; // 其它数据项,具体类型在主程中定义
};

struct SqList // 顺序表类型
{
RedType r[MAXSIZE+1]; // r[0]闲置或用作哨兵单元
int length; // 顺序表长度
};
void TreeSort(SqList &L)
{ // 树形选择排序
int i,j,j1,k,k1,l,n=L.length;
RedType *t;
l=(int)ceil(log(n)/log(2))+1; // 完全二叉树的层数
k=(int)pow(2,l)-1; // l层完全二叉树的结点总数
k1=(int)pow(2,l-1)-1; // l-1层完全二叉树的结点总数
t=(RedType*)malloc(k*sizeof(RedType)); // 二叉树采用顺序存储结构
for(i=1;i<=n;i++) // 将L.r赋给叶子结点
t[k1+i-1]=L.r[i];
for(i=k1+n;i<k;i++) // 给多余的叶子的关键字赋无穷大
t[i].key=INT_MAX;
j1=k1;
j=k;
while(j1)
{ // 给非叶子结点赋值
for(i=j1;i<j;i+=2)
t[i].key<t[i+1].key?(t[(i+1)/2-1]=t[i]):(t[(i+1)/2-1]=t[i+1]);
j=j1;
j1=(j1-1)/2;
}
for(i=0;i<n;i++)
{
L.r[i+1]=t[0]; // 将当前最小值赋给L.r[i]
j1=0;
for(j=1;j<l;j++) // 沿树根找结点t[0]在叶子中的序号j1
t[2*j1+1].key==t[j1].key?(j1=2*j1+1):(j1=2*j1+2);
t[j1].key=INT_MAX;
while(j1)
{
j1=(j1+1)/2-1; // 序号为j1的结点的双亲结点序号
t[2*j1+1].key<=t[2*j1+2].key?(t[j1]=t[2*j1+1]):(t[j1]=t[2*j1+2]);
}
}
free(t);
}

void print(SqList L)
{
int i;
for(i=1;i<=L.length;i++)
printf("(%d,%d)",L.r[i].key,L.r[i].otherinfo);
printf("\n");
}

#define N 8
void main()
{
RedType d[N]={{49,1},{38,2},{65,3},{97,4},{76,5},{13,6},{27,7},{49,8}};
SqList l;
int i;
for(i=0;i<N;i++)
l.r[i+1]=d[i];
l.length=N;
printf("排序前:\n");
print(l);
TreeSort(l);
printf("排序后:\n");
print(l);
}
/****************************/
//堆排序
#include<stdio.h>
typedef int InfoType; // 定义其它数据项的类型
#define EQ(a,b) ((a)==(b))
#define LT(a,b) ((a)<(b))
#define LQ(a,b) ((a)<=(b))
#define MAXSIZE 20 // 一个用作示例的小顺序表的最大长度
typedef int KeyType; // 定义关键字类型为整型
struct RedType // 记录类型
{
KeyType key; // 关键字项
InfoType otherinfo; // 其它数据项,具体类型在主程中定义
};

struct SqList // 顺序表类型
{
RedType r[MAXSIZE+1]; // r[0]闲置或用作哨兵单元
int length; // 顺序表长度
};

typedef SqList HeapType; // 堆采用顺序表存储表示
void HeapAdjust(HeapType &H,int s,int m) // 算法10.10
{ // 已知H.r[s..m]中记录的关键字除H.r[s].key之外均满足堆的定义,本函数
// 调整H.r[s]的关键字,使H.r[s..m]成为一个大顶堆(对其中记录的关键字而言)
RedType rc;
int j;
rc=H.r[s];
for(j=2*s;j<=m;j*=2)
{ // 沿key较大的孩子结点向下筛选
if(j<m&<(H.r[j].key,H.r[j+1].key))
++j; // j为key较大的记录的下标
if(!LT(rc.key,H.r[j].key))
break; // rc应插入在位置s上
H.r[s]=H.r[j];
s=j;
}
H.r[s]=rc; // 插入
}

void HeapSort(HeapType &H)
{ // 对顺序表H进行堆排序。算法10.11
RedType t;
int i;
for(i=H.length/2;i>0;--i) // 把H.r[1..H.length]建成大顶堆
HeapAdjust(H,i,H.length);
for(i=H.length;i>1;--i)
{ // 将堆顶记录和当前未经排序子序列H.r[1..i]中最后一个记录相互交换
t=H.r[1];
H.r[1]=H.r[i];
H.r[i]=t;
HeapAdjust(H,1,i-1); // 将H.r[1..i-1]重新调整为大顶堆
}
}

void print(HeapType H)
{
int i;
for(i=1;i<=H.length;i++)
printf("(%d,%d)",H.r[i].key,H.r[i].otherinfo);
printf("\n");
}

#define N 8
void main()
{
RedType d[N]={{49,1},{38,2},{65,3},{97,4},{76,5},{13,6},{27,7},{49,8}};
HeapType h;
int i;
for(i=0;i<N;i++)
h.r[i+1]=d[i];
h.length=N;
printf("排序前:\n");
print(h);
HeapSort(h);
printf("排序后:\n");
print(h);
}

㈡ C语言数组排序方法

选择排序的原理是,每次从待排序数字中挑选出最大(最小)数字,放在有序序列的末尾。实际操作中,只需要在这个数组中将挑出来的数字与前面的数字交换即可。例如:4
1 5
2 3找到最小的1,1和4交换1
4 5
2
3找到最小的2,2和4交换1
2
5
4
3找到最小的3,3和5交换1
2
3
4
5找到最小的4,4和4交换(不交换也可)可见,选择排序需要一个双重循环来完成,因此它的复杂度是O(n^2)在数据量比较大时,不建议使用这种排序方法。 其他排序方法有很多,你甚至可以自己根据不同数据规模设计不同的排序方法。比较常见的有冒泡排序,插入排序(这两种和选择排序一样,都是O(n^2)),二分法插入排序(降低了一些复杂度,但是涉及到大规模数据移动,效率依然不高),快速排序(平均复杂度O(nlogn),但是不稳定,最坏情况O(n^2)),随机化快速排序(很大程度上避免了最坏情况的出现),堆排序(O(nlogn),编程复杂度高),基数排序(理论复杂度O(n),实际要比这个慢。甚至能应付字符串排序,但是编程复杂度高,牵扯到其他数据结构),桶排序(O(n),编程简单,效率高,但是应付的数据范围不能太大,受到内存大小的限制)。 平时比较常用的就是快速排序,程序简单,效率也可以接受。 这是我了解的一些东西,希望对你有帮助。

㈢ 关于c语言排序问题

#include
<stdio.h>
#include
<stdlib.h>
main()
{

int
a,b,c,t;

scanf("%d%d%d",&a,&b,&c);

if(a>b)

{t=a;a=b;b=t;}

if(a>c)

{t=a;a=c;c=t;}

if(b>c)

{t=b;b=c;c=t;}

printf("%d%d%d",a,b,c);

system("pause");

}

㈣ C语言排序有哪些方法 详细点

排序方法吗应该和语言没有太紧密的关系,关键看数据类型和结构,一般常用的排序方法有:
1 插入排序——细分的话还可有(1)直接插入排序(2)折半插入排序(3)希尔排序(4)2-路插入排序(5)表插入排序 等
2 比较排序——如冒泡排序,快速排序 等
3 选择排序——如简单选择排序,树形选择排序,堆排序 等
4 归并排序——简单的如 2-路归并排序 等
5 基数排序
等等
一般情况下,如果数据不大,只是简单的自己练习或简单的几个十几个或几十个数据的话,效率分不出多少来,常用冒泡,直接插入,简单选择这几种简单的时间复杂度为O(n2)的排序方法就可以。这里举一个简单的小例子——比较排序中的——冒泡排序 如下:

//其中a[]是用于排序的数组变量的首地址,也即数组名,a[0]不放数据,
//用于交换时的辅助存储空间,数据从a[1]开始存放,n表示存放的数据个数
void bubble_sort(int a[], int n){
int i = 0, j = 0, change = 0;//change用于记录当前次比较是否进行了交换
for(i = n - 1, change = 1; i >= 1 && change; i--){//如果change是0,即已经排好序不用再进行比较了
change = 0;//将当前次的change赋值为0,记录不交换即下次不用比较了
for(j = 1; j <= i; j++){//内循环依次将相邻的两个记录进行比较
if(a[j] > a[j+1]){//小的前移,最大的移动到本次的最后一项去
a[0] = a[j+1];
a[j+1] = a[j];
a[j] = a[0];
change = 1;//进行了交换的标记
}
}
}
}

㈤ 请问c语言里面,最快的稳定排序法是什么

归并排序
建立在归并操作上的一种有效的排序算法,该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为二路归并。
该算法时间复杂度为稳定的O(nlog(n)).

㈥ 快速排序算法c语言

排序算法是《数据结构与算法》中最基本的算法之一。

排序算法可以分为内部排序和外部排序,内部排序是数据记录在内存中进行排序,而外部排序是因排序的数据很大,一次不能容纳全部的排序记录,在排序过程中需要访问外存。常见的内部排序算法有:插入排序、希尔排序、选择排序、冒泡排序、归并排序、快速排序、堆排序、基数排序等。用一张图概括:

点击以下图片查看大图:

关于时间复杂度

平方阶 (O(n2)) 排序 各类简单排序:直接插入、直接选择和冒泡排序。

线性对数阶 (O(nlog2n)) 排序 快速排序、堆排序和归并排序;

O(n1+§)) 排序,§ 是介于 0 和 1 之间的常数。 希尔排序

线性阶 (O(n)) 排序 基数排序,此外还有桶、箱排序。

关于稳定性

稳定的排序算法:冒泡排序、插入排序、归并排序和基数排序。

不是稳定的排序算法:选择排序、快速排序、希尔排序、堆排序。

名词解释:

n:数据规模 k:"桶"的个数 In-place:占用常数内存,不占用额外内存 Out-place:占用额外内存 稳定性:排序后 2 个相等键值的顺序和排序之前它们的顺序相同

包含以下内容:

1、冒泡排序 2、选择排序 3、插入排序数搭 4、希尔排序 5、归并排序 6、快速排序 7、堆排序 8、计数排序 9、桶排序 10、基数排序

排序算法包含的相关内容具体如下:

冒泡排序算法

冒泡排序(Bubble Sort)也是一种简单直观的排序算法。它重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该薯亩拿数列已经排序完成。这个算法的名字由来是因为越小的元素会经由交换慢慢"浮"到数列的顶端。

选择排序算法

选择排序是一种简单直观的排序算法,无耐差论什么数据进去都是 O(n?) 的时间复杂度。所以用到它的时候,数据规模越小越好。唯一的好处可能就是不占用额外的内存空间。

插入排序算法

插入排序的代码实现虽然没有冒泡排序和选择排序那么简单粗暴,但它的原理应该是最容易理解的了,因为只要打过扑克牌的人都应该能够秒懂。插入排序是一种最简单直观的排序算法,它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。

希尔排序算法

希尔排序,也称递减增量排序算法,是插入排序的一种更高效的改进版本。但希尔排序是非稳定排序算法。

归并排序算法

归并排序(Merge sort)是建立在归并操作上的一种有效的排序算法。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。

快速排序算法

快速排序是由东尼·霍尔所发展的一种排序算法。在平均状况下,排序 n 个项目要 Ο(nlogn) 次比较。在最坏状况下则需要 Ο(n2) 次比较,但这种状况并不常见。事实上,快速排序通常明显比其他 Ο(nlogn) 算法更快,因为它的内部循环(inner loop)可以在大部分的架构上很有效率地被实现出来。

堆排序算法

堆排序(Heapsort)是指利用堆这种数据结构所设计的一种排序算法。堆积是一个近似完全二叉树的结构,并同时满足堆积的性质:即子结点的键值或索引总是小于(或者大于)它的父节点。堆排序可以说是一种利用堆的概念来排序的选择排序。

计数排序算法

计数排序的核心在于将输入的数据值转化为键存储在额外开辟的数组空间中。作为一种线性时间复杂度的排序,计数排序要求输入的数据必须是有确定范围的整数。

桶排序算法

桶排序是计数排序的升级版。它利用了函数的映射关系,高效与否的关键就在于这个映射函数的确定。

基数排序算法

基数排序是一种非比较型整数排序算法,其原理是将整数按位数切割成不同的数字,然后按每个位数分别比较。由于整数也可以表达字符串(比如名字或日期)和特定格式的浮点数,所以基数排序也不是只能使用于整数。

㈦ C语言有简单,时间复杂度低,稳定的排序方法吗

有冒泡法选择法,但这两个时间复杂度不低。还有三张方法,这里有三种,你看看吧。
(3)“快速法”
快速法定义了三个参数,(数组首地址*a,要排序数组起始元素下标i,要排序数组结束元素下标j). 它首先选一个数组元素(一般为a[(i+j)/2],即中间元素)作为参照,把比它小的元素放到它的左边,比它大的放在右边。然后运用递归,在将它左,右两个子数组排序,最后完成整个数组的排序。下面分析其代码:
void quick(int *a,int i,int j)
{
int m,n,temp;
int k;
m=i;
n=j;
k=a[(i+j)/2]; /*选取的参照*/
do {
while(a[m]<k&&m<j) m++; /* 从左到右找比k大的元素*/
while(a[n]>k&&n>i) n--; /* 从右到左找比k小的元素*/
if(m<=n) { /*若找到且满足条件,则交换*/
temp=a[m];
a[m]=a[n];
a[n]=temp;
m++;
n--;
}
}while(m<=n);
if(m<j) quick(a,m,j); /*运用递归*/
if(n>i) quick(a,i,n);
}
(4)“插入法”
插入法是一种比较直观的排序方法。它首先把数组头两个元素排好序,再依次把后面的元素插入适当的位置。把数组元素插完也就完成了排序。
void insert(int *a,int n)
{
int i,j,temp;
for(i=1;i<n;i++) {
temp=a[i]; /*temp为要插入的元素*/
j=i-1;
while(j>=0&&temp<a[j]) { /*从a[i-1]开始找比a[i]小的数,同时把数组元素向后移*/
a[j+1]=a[j];
j--;
}
a[j+1]=temp; /*插入*/
}
}
(5)“shell法”
shell法是一个叫 shell 的美国人与1969年发明的。它首先把相距k(k>=1)的那几个元素排好序,再缩小k值(一般取其一半),再排序,直到k=1时完成排序。下面让我们来分析其代码:
void shell(int *a,int n)
{
int i,j,k,x;
k=n/2; /*间距值*/
while(k>=1) {
for(i=k;i<n;i++) {
x=a[i];
j=i-k;
while(j>=0&&x<a[j]) {
a[j+k]=a[j];
j-=k;
}
a[j+k]=x;
}
k/=2; /*缩小间距值*/
}
}