‘壹’ 反密码子是什么
反密码子:RNA链经过折叠,看上去像三叶草的叶形,其一端是携带氨基酸的部位,另一端有3个碱基。每个tRNA(transfer
RNA)的这3个碱基可以与mRNA上的密码子互补配对,因而叫反密码子。
tRNA分子二级结构的反密码环中部的三个相邻核苷酸组成反密码子。它们与结合在核糖体上的mRNA中的核苷酸(密码子)根据碱基配对原则互补成对,因此在蛋白质合成过程中,携带特定氨基酸的tRNA凭借自身的反密码子识别mRNA上的密码子,把所携带的氨基酸掺入到多肽链的一定位置上。
望采纳
‘贰’ 反密码子是脱氧核苷酸还是核糖核苷酸或者只是单纯的碱基
反密码子(anticodon):RNA链经过折叠,看上去像三叶草的叶形,其一端是携带氨基酸的部位,另一端有3个碱基。每个tRNA(transfer RNA)的这3个碱基可以与mRNA上的密码子互补配对,因而叫反密码子。所以是碱基
‘叁’ 反密码子
大于20小于61种
反密码子中的“摆动”(wobble),由于有61个有义密码子(sense codons),那么可能总共61个tRNA分子具有反密码子。但由于反密码子的摆动,整套61有义密码子,而反密码子明显只可能少于61个。原核和真核细胞都只合成约30种带有反密码子的tRNA。摆动假说(wobble hypothesis)是由Crick.F(1966年)提出的。即当tRNA的反密码子与mRNA的密码子配对时前两对严格遵守碱基互补配对法则,但第三对碱基有一定的自由度可以“摆动”。摆动假说也称为三中读二(2 out of 3 reading)。
反密码子第三个碱基的摆动是由于在tRNA的三维结构中,反密码子的5’端的碱基位于“堆积”的最下方,堆积力较小,不那么受到约束,所以可以摆动。
根据和反密码子的识别情况遗传密码本身可分成一些组。在八成员组成的密码子家族中,每个成员的四个密码子意思相同,那么第三个碱基U、C、A、G对氨基酸起不到特异的作用。在七个成员组成的密码子的意思相同。第三个碱基都是Py,含U或C。在五个成员组成的密码子家族中,每个成员的二个密码子都是相同的,第三碱基都是Pu,含A或G 。由一个成员组成的密码子家族中,有3个密码子的意思相同,第三个碱基含有U、C和A。
‘肆’ tRNA三叶草结构中各组成部分(D环,TΨC环,可变环,反密码子环,接受壁)的作用
作用如下:
D环:负责和氨基酰tRNA聚合酶结合。
TψC环:此臂负责和核糖体上的rRNA 识别结合。
可变环:从4 Nt到21 Nt不等,其功能是在tRNA的L型三维结构中负责连接两个区域(D环-反密码子环和TψC-受体臂)。
反密码子环:在氨基酸臂对面的单链环,负责识别反密码子。
接受臂:称为受体臂(acceptor arm)或称氨基酸臂 。此臂负责携带特异的氨基酸。
(4)什么是反密码子环扩展阅读:
转运RNA分子由一条长70~90个核苷酸并折叠成三叶草形的短链组成的。其中有两种不同的分子,苯丙氨酸tRNA(4tna)和天冬氨酸tRNA(2tra)。
tRNA链的两个末端在图上方指出的L形结构的末端互相接近。氨基酸在箭头示意的位置被连接。在这条链的中央形成了L形臂。三叶草结构的其余两环被包裹成肘状,在那里它们提供整个分子的结构。
四个常见RNA碱基---腺嘌呤,尿嘧啶,鸟嘌呤和胞嘧啶显然不能提供足够的空间以形成一个坚固的结构,因为这些碱基大部分被修饰过以延长它们的结构。有两个奇特的例子,看37号反密码子相邻的碱基,位于甲硫氨酸tRNA(1yfg)或苯丙氨酸tRNA(4tna和6tna)的起始部位。
‘伍’ tRNA 的 次级结构 是啥玩意
TψC环(TψCloop)。TψC环是第一个环,由7个不配对的大基组成,几乎总是含5'GTψC3'序列。该环涉及tRNA与核糖体表面的结合,有人认为GTψC序列可与5SrRNA的GAAC序列反应。
额外环或可变环(extrovariableloop)。这个环的碱基种类和数量高度可变,在3-18个不等,往往富有稀有碱基。
反密码子环(anticodonloop)。由7个不配对的碱基组成,处于中间位的3个碱基为反密码子。反密码子可与mRNA中的密码子结合。毗邻反密码子的3'端碱基往往为烷化修饰嘌呤,其5'端为U,即:-U-反密码子-修饰的嘌呤。
二氢尿嘧啶环(dihydr-Uloop或D-loop)由8-12个不配对的碱基组成,主要特征是含有(2+1或2-1)个修饰的碱基(D)。
上述的TψC环,反密码子环,和二氢尿嘧啶不分别连接在由4或5个碱基组成的螺旋区上,依次称为TψC茎,反密码子茎和二氢尿嘧啶茎。此外,前述的15-16个固定碱基几乎全部位于这些环上
‘陆’ trna的三叶草型结构中有那些环
D环,TΨC环,可变环,反密码子环等。
在蛋白质生物全面过程中,tRNA主要起转运氨基酸的作用。由于tRNA分子的同工性(iso acceptor),即一种以上的tRNA对一种氨基酸特异,所以细胞内tRNA的种类(80多种)比氨基酸的种类多。1958年Hoagland等人首先发现了在蛋白质生物合成过程中,一种可溶性RNA起介导作用时称为可溶性R…
(2)TψC环(TψCloop)。TψC环是第一个环,由7个不配对的大基组成,几乎总是含5"GTψC3"序列。该环涉及tRNA与核糖体表面的结合,有人认为GTψC序列可与5SrRNA的GAAC序列反应。
(3)额外环或可变环(extro variable loop)。这个环的碱基种类和数量高度可变,在3-18个不等,往往富有稀有碱基。
(4)反密码子环(anticodon loop)。由7个不配对的碱基组成,处于中间位的3个碱基为反密码子。反密码子可与mRNA中的密码子结合。毗邻反密码子的3"端碱基往往为烷化修饰嘌呤,其5"端为U,即:-U-反密码子-修饰的嘌呤。
(5)二氢尿嘧啶环(dihydr-Uloop或D-loop)由8-12个不配对的碱基组成,主要特征是含有(2+1或2-1)个修饰的碱基(D)。
(6)上述的TψC环,反密码子环,和二氢尿嘧啶不分别连接在由4或5个碱基组成的螺旋区上,依次称为TψC茎,反密码子茎和二氢尿嘧啶茎。此外,前述的15-16个固定碱基几乎全部位于这些环上
二、tRNA的三级结构
在70年代中期,一些实验室制备出了tRNA的纯结晶,人们才对tRNA的三维结构(three dimensional structure)进行了研究。现以酵母tRNAPhe为例,说明tRNA的三维结构的特征。
(1)tRNA的三维结构是和个"倒L形"。
(2)氨基酸接受臂CCA序列和反密码子处于倒L的两端,二者相距70A。
(3)D环和TψC环形成了倒L的角。
(4)许多三维结构的氢键形成涉及的都是固定碱基,说明tRNA具有相同的三维或三级结构。
(5)绝大多数形成的三级结构的氢键涉及的碱基种类不同于标准的A-U和G-C碱基对;少数三级结构反应涉及核糖体-磷酸骨架中的基团,包括核糖的2"OH基。以酵母tRNAPhe为例,三级结构氢键涉及的碱基对是:U8-A14,A9-A23,G15-C48,G18-ψ55,G19-C56,m2G10-G45,G22-m7G46,m2(2)G26-A44,Cm32-A39和T54-m1A58共10对碱基。
(6)几乎所有的碱基均是定向排列的,以致成摞(stacking),因此在它们疏水平面之间有最大反应。即使是明显不稳定的反密码子区亦通过成摞反应折叠得甚为牢固。由于三级结构中氢键的作用使得成摞是稳定tRNA构象的主要因素。
(7)只有少数几个三级结构氢键把的密码茎固定于分子的其它部位,因此反密码子区的相对方向,在蛋白质生物合成期间可以改变。
其它tRNA也有同样的三维结构,不同之处仅在倒L形的角有轻微改变,说明此拐角区也许是可伸屈的,以允许tRNA在执行不同功能时改变其功能。
‘柒’ tRNA的DHU环,TψC环与反密码环各有什么作用
左环是二氢尿嘧啶环(d环),它与氨基酰-trna合成酶的结合有关。右环是假尿嘧啶环(tψc环),它与核糖体的结合有关。在反密码子与假尿嘧啶环之间的是可变环,它的大小决定着trna分子大小。
转运RNA(Transfer RNA),又称传送核糖核酸、转移核糖核酸,通常简称为tRNA,是一种由76-90个核苷酸所组成的RNA,其3'端可以在氨酰-tRNA合成酶催化之下,接附特定种类的氨基酸。
结构
1、一级结构
自1965年R.W.霍利等首次测出酵母丙氨酸tRNA的一级结构即核苷酸排列顺序到1983年已有200多个tRNA(包括不同生物来源、不同器官、细胞器的同功受体tRNA以及校正tRNA)的一级结构被阐明。按照A-U、G-C以及G-U碱基配对原则。
2、二级结构
它由3个环,即D环〔因该处二氢尿苷酸(D)含量高〕、反密码环(该环中部为反密码子)和TΨC环〔因绝大多数tRNA在该处含胸苷酸(T)、假尿苷酸(Ψ)、胞苷酸(C)顺序〕,四个茎。
即D茎(与D环联接的茎)、反密码茎(与反密码环联接)、TΨC茎(与 TΨC环联接)和氨基酸接受茎〔也叫CCA茎,因所有tRNA的分子末端均含胞苷酸(C)、胞苷酸(C)、腺苷酸(A)顺序, CCA是连接氨基酸所不可缺少的〕,以及位于反密码茎与TΨC茎之间的可变臂构成。