1. rsa密码体系是什么样的密码体系
RSA密码系统是较早提出的一种公开钥密码系统。1978年,美国麻省理工学院(MIT)的Rivest,Shamir和Adleman在题为《获得数字签名和公开钥密码系统的方法》的论文中提出了基于数论的非对称(公开钥)密码体制,称为RSA密码体制。RSA是建立在“大整数的素因子分解是困难问题”基础上的,是一种分组密码体制。
2. 密码学中的rsa算法是什么
密码学中的rsa算法是什么如下:
算法原理:
RSA公开密钥密码体制的原理是:根据数论,寻求两个大素数比较简单,而将它们的乘积进行因式分解却极其困难,因此可以将乘积公开作为加密密钥
RSA的难度与大数分解难度等价。因为没有证明破解RSA就一定需要做大数分解。假设存在一或胡种无须分解悄册大数的算法衫运拦,那它肯定可以修改成为大数分解算法,即RSA的重大缺陷是无法从理论上把握它的保密性能如何,而且密码学界多数人士倾向于因子分解不是NPC问题
3. RSA的全称(密码学)
由美国麻塌茄 省理族衫历工 学兆搜院三 位学者 Riv est、Sh amir 及
Adleman 研 究发 展出 一套 可实 际使用 的公 开金 钥密 码系 统,那 就是
RSA(Rivest-Shamir-Adleman)密码系统。
4. 什么是RSA
RSA公钥密码体制是以发明该体制的三位密码学家Rivest,Shamir和Adleman的名字命名的,目前成为商业化最成功的算法。
系统建立和密钥产生
选择两个大素数p和q,另n=pq,按照一定规则选择随机数e和d,使其满足ed mod (p-1)(q-1)=1。则公开(e, n)为用户公开密钥,保留d作为对应的用户私钥。
加密过程
如果想将明文消息M加密后发给该用户,则密文C的计算过程如下:C=Me mod n。
解密过程
当用户收到密文C后,计算Cd mod n=M 就恢复出密文了。
RSA公钥体制的安全是建立在大整数的素因子分解这一数学难题之上的。一旦人们发现一种分解大整数的有效方法,则RSA公钥密码体制的安全性随着崩溃。
RSA公钥密码体制可以很容易改造成为数字签名方案。假设一个用户(用户A)拥有RSA公私钥对,即拥有对应公钥(e, n)的私钥d。
产生签名
当用户A要对明文消息m进行数字签名时,计算s=md mod n,则s就是对消息m的数字签名。
验证签名
当一个用户(用户B)要对该用户A的数字签名进行验证时,用户B需要得到明文消息m和数字签名s,然后验证等式se mod n=m是否成立,如果成立,则验证通过,否则,不能接受s为m的合法数字签名。
注意数字签名不提供消息的机密性,因为签名者需要将签名消息m和签名s同时发给验证者。如果在此过程中不希望其他人能非法获取m的内容,需要再对m进行加密处理,这种情况不是简单的数字签名,而是加密与数字签名的结合。一种更有效的途径是使用签密算法(SignEncryption)。
(转载前请告知)
5. RSA是什么意思
RSA算法是一种非对称密码算法,所谓非对称,就是指该算法需要一对密钥,使用其中一个加密,则需要用另一个才能解密。
RSA的算法涉及三个参数,n、e1、e2。
其中,n是两个大质数p、q的积,n的二进制表示时所占用的位数,就是所谓的密钥长度。
e1和e2是一对相关的值,e1可以任意取,但要求e1与(p-1)*(q-1)互质;再选择e2,要求(e2*e1)mod((p-1)*(q-1))=1。
(n及e1),(n及e2)就是密钥对。
RSA加解密的算法完全相同,设A为明文,B为密文,则:A=B^e1 mod n;B=A^e2 mod n;
e1和e2可以互换使用,即:
A=B^e2 mod n;B=A^e1 mod n;
补充回答:
对明文进行加密,有两种情况需要这样作:
1、您向朋友传送加密数据,您希望只有您的朋友可以解密,这样的话,您需要首先获取您朋友的密钥对中公开的那一个密钥,e及n。然后用这个密钥进行加密,这样密文只有您的朋友可以解密,因为对应的私钥只有您朋友拥有。
2、您向朋友传送一段数据附加您的数字签名,您需要对您的数据进行MD5之类的运算以取得数据的"指纹",再对"指纹"进行加密,加密将使用您自己的密钥对中的不公开的私钥。您的朋友收到数据后,用同样的运算获得数据指纹,再用您的公钥对加密指纹进行解密,比较解密结果与他自己计算出来的指纹是否一致,即可确定数据是否的确是您发送的、以及在传输过程中是否被篡改。
密钥的获得,通常由某个机构颁发(如CA中心),当然也可以由您自己创建密钥,但这样作,您的密钥并不具有权威性。
计算方面,按公式计算就行了,如果您的加密强度为1024位,则结果会在有效数据前面补0以补齐不足的位数。补入的0并不影响解密运算。
6. 什么是rsa密码
RSA公钥密码是1977年由Ron Rivest、Adi Shamirh和LenAdleman在MIT即美国麻省理工学院开发的。1978年首次公布,它是目前最有影响的公钥加密算法,它能够抵抗到目前为止已知的禅答所有密码攻击。目前它已被ISO推荐为公钥数据加密标准。RSA算法基于一个十分简单的数论事实:清袭槐两个大素数可以简单地相乘,但是乘积分解很困难。具体就答友是把原来的数据经过模幂运算之后转化到另外一个数,将转化后的数据当作私钥和密钥。
7. Rsa是什么意思
RSA加密算法是一种非对称加密算法。在公开密钥加密和电子商业中RSA被广泛使用。RSA是1977年由罗纳德·李维斯特(Ron Rivest)、阿迪·萨莫尔(Adi Shamir)和伦纳德·阿德曼(Leonard Adleman)一起提出的。当时他们三人都在麻省理工学院工作。RSA就是他们三人姓氏开汪轮轮头字母拼在一起组成的。
1973年,在英国政府通讯总部工作的数学家克利福德·柯克斯(Clifford Cocks)在一个内部文件中提出了一个相同的算法,但他的发现被列入机密,一直到1997年才被发表。
(7)rsa密码是什么体系扩展阅读
RSA的安全性依赖于大数分解,但是否等同于大数桐含分解一直未能得到理论上的证明,因为没有证明破解RSA就一定需要作大数分解。
假设存在一种无须分解大数的算法,那它肯定可以修改成为大数分解算法。 RSA 的一些变种算法已被证明等价于大数分解。不管怎样,分解n是最显然的攻击方法。人们已能分解多个十进制位的大素数。因此,困信模数n必须选大一些,因具体适用情况而定。
8. (多选)RSA属于哪些密码体制A非对称密码体制B序列密码体制C对称密码体制D传统密码体制E分组密码体制
A非对称密码体制,E分组密码体制。
n的欧拉函数=(5-1)*(7-1)=24
e和d的关系关于n的欧拉函数为逆元
也就是说 e*d=1(mod n的欧拉函数)
可以算出来5*5=1(mod 24) 也就是说d凑巧也为5
M=10的五次方(mod 35)
n的欧拉函数,永远算公钥和私钥也就是凯雀e和d
n用于加密解密
(8)rsa密码是什么体系扩展阅读:
RSA密码体制是根据PKC算法,该和携体制的理论基础是数论中的下述论断:要求得到两个大素数(如大到100位)的乘积在计算机上很容易实盯棚早现,但要分解两个大素数的乘积在计算机上几乎不可能实现,即为单向函数。
由于进行的都是大数计算,使得RSA最快的情况也比DES慢上好几倍,无论是软件还是硬件实现。速度一直是RSA的缺陷。一般来说只用于少量数据加密。RSA的速度比对应同样安全级别的对称密码算法要慢1000倍左右。
9. 在数据加密类型中RSA采用的是对称密钥体制吗
密码体制分类密码体制大体上分为三类:(1)“常规密码”,又称为“单钥密码”,“对称密码”。(2)“公开钥密码”,又称为“双钥密码”,“非对称密码”。(3) 基于身份的密码。对称密码体制是一种传统密码体制,握孝也称为私钥密码体制。在对称加密系统中,加密和解密采用相同的密钥。因为加解密密钥相同,需要通信的双方必须选择和保存他们共同的密钥,各方必须信任对方不会将密钥泄密出去,这样就可以实现数据的机密性和完整性。对于具有n个用户的网络,需要n(n-1)/2个密钥,在用户群不是很大的情况下,对称加密系统是有效的。但是对于大型网络,当用户群很大,分布很广时,密钥的分配和保存就成了问题。对机密信息进行加密和验证随报文一起发送报文摘要(或散列值)来实现。比较典型的算法有DES(Data Encryption Standard数据加密标准)算法及其变形Triple DES(三重DES),GDES(广义DES);欧洲的IDEA;日本的FEAL N、RC5等。DES标准由美国国家标准局提出,主要应用于银行业的电子资金转帐(EFT)领域。DES的密钥长度为56bit。Triple DES使用两个独立的56bit密钥对交换的信息进行3次加密,从而使其有效长度达到112bit。RC2和RC4方法是RSA数据安全公司的对称加密专利算法,它们采用可变密钥长度的算法。通过规定不同的密钥长度,,C2和RC4能够提高或降低安全的程度。对称密码算法的优点是计算开销小,加密速度快,是目前用于信息加密的主要算法。它的局限性在于它存在着通信的贸易双方之间确保密钥安全交换的问题。此外,某一贸易方有几个贸易关系,他就要维护几个专用密钥。碰判它也没法鉴别贸易发起方或贸易最终方,因为贸易的双方的密钥相同。另外,由于对称加密系统仅笑皮改能用于对数据进行加解密处理,提供数据的机密性,不能用于数字签名。因而人们迫切需要寻找新的密码体制。
10. 公钥密码→RSA详解
在对称密码中,由于加密和解密的密钥是相同的,因此必须向接收者配送密钥。用于解密的密钥必须被配送给接收者,这一问题称为 密钥配送问题 ,如果使用公钥密码,则无需向接收者配送用于解密的密钥,这样就解决了密钥配送问题。可以说公钥密码是密码学历史上最伟大的发明。
解决密钥配送问题的方法
在人数很多的情况下,通信所需要的密钥数量会增大,例如:1000名员工中每一个人都可以和另外999个进行通信,则每个人需要999个通信密钥,整个密钥数量:
1000 x 999 ÷ 2 = 499500
很不现实,因此此方法有一定的局限性
在Diffic-Hellman密钥交换中,进行加密通信的双方需要交换一些信息,而这些信息即便被窃听者窃听到也没有问题(后续文章会进行详解)。
在对称密码中,加密密钥和解密密钥是相同的,但公钥密码中,加密密钥和解密密钥却是不同的。只要拥有加密密钥,任何人都可以加密,但没有解密密钥是无法解密的。
公钥密码中,密钥分为加密密钥(公钥)和解密密钥(私钥)两种。
公钥和私钥是一一对应的,一对公钥和私钥统称为密钥对,由公钥进行加密的密文,必须使用与该公钥配对的私钥才能够解密。密钥对中的两个密钥之间具有非常密切的关系——数学上的关系——因此公钥和私钥是不能分别单独生成的。
发送者:Alice 接收者:Bob 窃听者:Eve
通信过程是由接收者Bob来启动的
公钥密码解决了密钥配送的问题,但依然面临着下面的问题
RSA是目前使用最广泛的公钥密码算法,名字是由它的三位开发者,即Ron Rivest、Adi Shamir和Leonard Adleman的姓氏的首字母组成的(Rivest-Shamir-Adleman)。RSA可以被使用公钥密码和数字签名(此文只针对公钥密码进行探讨,数字签名后续文章敬请期待)1983年在美国取得了专利,但现在该专利已经过期。
在RSA中,明文、密钥和密文都是数字,RSA加密过程可以用下列公式来表达
密文 = 明文 E mod N
简单的来说,RSA的密文是对代表明文的数字的 E 次方求mod N 的结果,换句话说:将明文和自己做 E 次乘法,然后将结果除以 N 求余数,这个余数就是密文。
RSA解密过程可以用下列公式来表达
明文 = 密文 D mod N
对表示密文的数字的 D 次方求mod N 就可以得到明文,换句话说:将密文和自己做 D 次乘法,在对其结果除以 N 求余数,就可以得到明文
此时使用的数字 N 和加密时使用的数字 N 是相同的,数 D 和数 N 组合起来就是RSA的解密密钥,因此 D 和 N 的组合就是私钥 。只要知道 D 和 N 两个数的人才能够完成解密的运算
根据加密和解密的公式可以看出,需要用到三个数—— E 、 D 和 N 求这三个数就是 生成密钥对 ,RSA密钥对的生成步骤如下:
准备两个很大的质数 p 和 q ,将这两个数相乘,结果就是 N
N = p x q
L 是 p-1 和 q-1 的最小公倍数,如果用lcm( X , Y )来表示 “ X 和 Y 的最小公倍数” 则L可以写成下列形式
L = lcm ( p - 1, q - 1)
E 是一个比1大、比 L 小的数。 E 和 L 的最大公约数必须为1,如果用gcd( X , Y )来表示 X 和 Y 的最大公约数,则 E 和 L 之间存在下列关系:
1 < E < L
gcd( E , L ) = 1 (是为了保证一定存在解密时需要使用的数 D )
1 < D < L
E x D mod L = 1
p = 17
q = 19
N = p x q = 17 x 19 = 323
L = lcm ( p - 1, q - 1) = lcm (16,18) = 144
gcd( E , L ) = 1
满足条件的 E 有很多:5,7,11,13,17,19,23,25,29,31...
这里选择5来作为 E ,到这里我们已经知道 E = 5 N = 323 这就是公钥
E x D mod L = 1
D = 29 可以满足上面的条件,因此:
公钥: E = 5 N = 323
私钥: D = 29 N = 323
要加密的明文必须是小于 N 的数,这是因为在加密运算中需要求 mod N 假设加密的明文是123
明文 E mod N = 123 5 mod 323 = 225(密文)
对密文225进行解密
密文 D mod N = 225 29 mod 323 = 225 10 x 225 10 x 225 9 mod 323 = (225 10 mod 323) x (225 10 mod 323) x (225 9 mod 323) = 16 x 16 x 191 mod 323 = 48896 mod 323 = 123(明文)
如果没有mod N 的话,即:
明文 = 密文 D mod N
通过密文求明文的难度不大,因为这可以看作是一个求对数的问题。
但是,加上mod N 之后,求明文就变成了求离散对数的问题,这是非常困难的,因为人类还没有发现求离散对数的高效算法。
只要知道 D ,就能够对密文进行解密,逐一尝试 D 来暴力破译RSA,暴力破解的难度会随着D的长度增加而加大,当 D 足够长时,就不能再现实的时间内通过暴力破解找出数 D
目前,RSA中所使用的 p 和 q 的长度都是1024比特以上, N 的长度为2048比特以上,由于 E 和 D 的长度可以和N差不多,因此要找出 D ,就需要进行2048比特以上的暴力破解。这样的长度下暴力破解找出 D 是极其困难的
E x D mod L = 1 L = lcm ( p - 1, q - 1)
由 E 计算 D 需要使用 p 和 q ,但是密码破译者并不知道 p 和 q
对于RSA来说,有一点非常重要,那就是 质数 p 和 q 不能被密码破译这知道 。把 p 和 q 交给密码破译者与把私钥交给密码破译者是等价的。
p 和 q 不能被密码破译者知道,但是 N = p x q 而且 N 是公开的, p 和 q 都是质数,因此由 N 求 p 和 q 只能通过 将 N 进行质因数分解 ,所以说:
一旦发现了对大整数进行质因数分解的高效算法,RSA就能够被破译
这种方法虽然不能破译RSA,但却是一种针对机密性的有效攻击。
所谓中间人攻击,就是主动攻击者Mallory混入发送者和接收者的中间,对发送者伪装成接收者,对接收者伪装成发送者的攻击,在这里,Mallory就是“中间人”
这种攻击不仅针对RSA,而是可以针对任何公钥密码。在这个过程中,公钥密码并没有被破译,所有的密码算法也都正常工作并确保了机密性。然而,所谓的机密性并非在Alice和Bob之间,而是在Alice和Mallory之间,以及Mallory和Bob之间成立的。 仅靠公钥密码本身,是无法防御中间人攻击的。
要防御中间人攻击,还需要一种手段来确认所收到的公钥是否真的属于Bob,这种手段称为认证。在这种情况下,我们可以使用公钥的 证书 (后面会陆续更新文章来进行探讨)
网络上很多服务器在收到格式不正确的数据时都会向通信对象返回错误消息,并提示“这里的数据有问题”,然而,这种看似很贴心的设计却会让攻击者有机可乘。 攻击者可以向服务器反复发送自己生成的伪造密文,然后分析返回的错误消息和响应时间获得一些关于密钥和明文的信息。
为了抵御这种攻击,可以对密文进行“认证”,RSA-OAEP(最优非对称加密填充)正是基于这种思路设计的一种RSA改良算法。
RSA-OAEP在加密时会在明文前面填充一些认证信息,包括明文的散列值以及一定数量的0,然后用RSA进行加密,在解密的过程中,如果解密后的数据的开头没有找到正确的认证信息,则可以判定有问题,并返回固定的错误消息(重点是,不能将具体的错误内容告知开发者)
RSA-OAEP在实际应用中,还会通过随机数使得每次生成的密文呈现不同的排列方式,从而进一步提高安全性。
随着计算机技术的进步等,以前被认为是安全的密码会被破译,这一现象称为 密码劣化 ,针对这一点: