⑴ 公钥密码系统及RSA公钥算法
公钥密码系统及RSA公钥算法
本文简单介绍了公开密钥密码系统的思想和特点,并具体介绍了RSA算法的理论基础,工作原理和具体实现过程,并通过一个简单例子说明了该算法是如何实现。在本文的最后,概括说明了RSA算法目前存在的一些缺点和解决方法。
关键词:公钥密码体制 , 公钥 ,私钥 ,RSA
§1引言
随着计算机联网的逐步实现,Internet前景越来越美好,全球经济发展正在进入信息经济时代,知识经济初见端倪。计算机信息的保密问题显得越来越重要,无论是个人信息通信还是电子商务发展,都迫切需要保证Internet网上信息传输的安全,需要保证信息安全。信息安全技术是一门综合学科,它涉及信息论、计算机科学和密码学等多方面知识,它的主要任务是研究计算机系统和通信网络内信息的保护方法以实现系统内信息的安全、保密、真实和完整。其中,信息安全的核心是密码技术。密码技术是集数学、计算机科学、电子与通信等诸多学科于一身的交叉学科。它不仅能够保证机密性信息的加密,而且能够实现数字签名、身份验证、系统安全等功能。是现代化发展的重要科学之一。本文将对公钥密码系统及该系统中目前最广泛流行的RSA算法做一些简单介绍。
§2公钥密码系统
要说明公钥密码系统,首先来了解一下不同的加密算法:目前的加密算法按密钥方式可分为单钥密码算法和公钥密码算法。
2.1.单钥密码
又称对称式密码,是一种比较传统的加密方式,其加密运算、解密运算使用的是同样的密钥,信息的发送者和信息的接收者在进行信息的传输与处理时,必须共同持有该密码(称为对称密码)。因此,通信双方都必须获得这把钥匙,并保持钥匙的秘密。
单钥密码系统的安全性依赖于以下两个因素:第一,加密算法必须是足够强的,仅仅基于密文本身去解密信息在实践上是不可能的;第二,加密方法的安全性依赖于密钥的秘密性,而不是算法的秘密性,因此,我们没有必要确保算法的秘密性(事实上,现实中使用的很多单钥密码系统的算法都是公开的),但是我们一定要保证密钥的秘密性。
从单钥密码的这些特点我们容易看出它的主要问题有两点:第一,密钥量问题。在单钥密码系统中,每一对通信者就需要一对密钥,当用户增加时,必然会带来密钥量的成倍增长,因此在网络通信中,大量密钥的产生﹑存放和分配将是一个难以解决的问题。第二,密钥分发问题。单钥密码系统中,加密的安全性完全依赖于对密钥的保护,但是由于通信双方使用的是相同的密钥,人们又不得不相互交流密钥,所以为了保证安全,人们必须使用一些另外的安全信道来分发密钥,例如用专门的信使来传送密钥,这种做法的代价是相当大的,甚至可以说是非常不现实的,尤其在计算机网络环境下,人们使用网络传送加密的文件,却需要另外的安全信道来分发密钥,显而易见,这是非常不智是甚至是荒谬可笑的。
2.2公钥密码
正因为单钥密码系统存在如此难以解决的缺点,发展一种新的﹑更有效﹑更先进的密码体制显得更为迫切和必要。在这种情况下,出现了一种新的公钥密码体制,它突破性地解决了困扰着无数科学家的密钥分发问题,事实上,在这种体制中,人们甚至不用分发需要严格保密的密钥,这次突破同时也被认为是密码史上两千年来自单码替代密码发明以后最伟大的成就。
这一全新的思想是本世纪70年代,美国斯坦福大学的两名学者Diffie和Hellman提出的,该体制与单钥密码最大的不同是:
在公钥密码系统中,加密和解密使用的是不同的密钥(相对于对称密钥,人们把它叫做非对称密钥),这两个密钥之间存在着相互依存关系:即用其中任一个密钥加密的信息只能用另一个密钥进行解密。这使得通信双方无需事先交换密钥就可进行保密通信。其中加密密钥和算法是对外公开的,人人都可以通过这个密钥加密文件然后发给收信者,这个加密密钥又称为公钥;而收信者收到加密文件后,它可以使用他的解密密钥解密,这个密钥是由他自己私人掌管的,并不需要分发,因此又成称为私钥,这就解决了密钥分发的问题。
为了说明这一思想,我们可以考虑如下的类比:
两个在不安全信道中通信的人,假设为Alice(收信者)和Bob(发信者),他们希望能够安全的通信而不被他们的敌手Oscar破坏。Alice想到了一种办法,她使用了一种锁(相当于公钥),这种锁任何人只要轻轻一按就可以锁上,但是只有Alice的钥匙(相当于私钥)才能够打开。然后Alice对外发送无数把这样的锁,任何人比如Bob想给她寄信时,只需找到一个箱子,然后用一把Alice的锁将其锁上再寄给Alice,这时候任何人(包括Bob自己)除了拥有钥匙的Alice,都不能再打开箱子,这样即使Oscar能找到Alice的锁,即使Oscar能在通信过程中截获这个箱子,没有Alice的钥匙他也不可能打开箱子,而Alice的钥匙并不需要分发,这样Oscar也就无法得到这把“私人密钥”。
从以上的介绍可以看出,公钥密码体制的思想并不复杂,而实现它的关键问题是如何确定公钥和私钥及加/解密的算法,也就是说如何找到“Alice的锁和钥匙”的问题。我们假设在这种体制中, PK是公开信息,用作加密密钥,而SK需要由用户自己保密,用作解密密钥。加密算法E和解密算法D也都是公开的。虽然SK与PK是成对出现,但却不能根据PK计算出SK。它们须满足条件:
①加密密钥PK对明文X加密后,再用解密密钥SK解密,即可恢复出明文,或写为:DSK(EPK(X))=X
②加密密钥不能用来解密,即DPK(EPK(X))≠X
③在计算机上可以容易地产生成对的PK和SK。
④从已知的PK实际上不可能推导出SK。
⑤加密和解密的运算可以对调,即:EPK(DSK(X))=X
从上述条件可看出,公开密钥密码体制下,加密密钥不等于解密密钥。加密密钥可对外公开,使任何用户都可将传送给此用户的信息用公开密钥加密发送,而该用户唯一保存的私人密钥是保密的,也只有它能将密文复原、解密。虽然解密密钥理论上可由加密密钥推算出来,但这种算法设计在实际上是不可能的,或者虽然能够推算出,但要花费很长的时间而成为不可行的。所以将加密密钥公开也不会危害密钥的安全。
这种体制思想是简单的,但是,如何找到一个适合的算法来实现这个系统却是一个真正困扰密码学家们的难题,因为既然Pk和SK是一对存在着相互关系的密钥,那么从其中一个推导出另一个就是很有可能的,如果敌手Oscar能够从PK推导出SK,那么这个系统就不再安全了。因此如何找到一个合适的算法生成合适的Pk和SK,并且使得从PK不可能推导出SK,正是迫切需要密码学家们解决的一道难题。这个难题甚至使得公钥密码系统的发展停滞了很长一段时间。
为了解决这个问题,密码学家们考虑了数学上的陷门单向函数,下面,我们可以给出它的非正式定义:
Alice的公开加密函数应该是容易计算的,而计算其逆函数(即解密函数)应该是困难的(对于除Alice以外的人)。许多形式为Y=f(x)的函数,对于给定的自变量x值,很容易计算出函数Y的值;而由给定的Y值,在很多情况下依照函数关系f (x)计算x值十分困难。这样容易计算但难于求逆的函数,通常称为单向函数。在加密过程中,我们希望加密函数E为一个单项的单射函数,以便可以解密。虽然目前还没有一个函数能被证明是单向的,但是有很多单射函数被认为是单向的。
例如,有如下一个函数被认为是单向的,假定n为两个大素数p和q的乘积,b为一个正整数,那么定义f:
f (x )= x b mod n
(如果gcd(b,φ(n))=1,那么事实上这就是我们以下要说的RSA加密函数)
如果我们要构造一个公钥密码体制,仅给出一个单向的单射函数是不够的。从Alice的观点来看,并不需要E是单向的,因为它需要用有效的方式解密所收到的信息。因此,Alice应该拥有一个陷门,其中包含容易求出E的你函数的秘密信息。也就是说,Alice可以有效解密,因为它有额外的秘密知识,即SK,能够提供给你解密函数D。因此,我们称一个函数为一个陷门单向函数,如果它是一个单向函数,并在具有特定陷门的知识后容易求出其逆。
考虑上面的函数f (x) = xb mod n。我们能够知道其逆函数f -1有类似的形式f (x ) = xa mod n,对于合适的取值a。陷门就是利用n的因子分解,有效的算出正确的指数a(对于给定的b)。
为方便起见,我们把特定的某类陷门单向函数计为?。那么随机选取一个函数f属于?,作为公开加密函数;其逆函数f-1是秘密解密函数。那么公钥密码体制就能够实现了。
根据以上关于陷门单向函数的思想,学者们提出了许多种公钥加密的方法,它们的安全性都是基于复杂的数学难题。根据所基于的数学难题,至少有以下三类系统目前被认为是安全和有效的:大整数因子分解系统(代表性的有RSA)、椭园曲线离散对数系统(ECC)和离散对数系统(代表性的有DSA)。
§3 RSA算法
3.1简介
当前最着名、应用最广泛的公钥系统RSA是在1978年,由美国麻省理工学院(MIT)的Rivest、Shamir和Adleman在题为《获得数字签名和公开钥密码系统的方法》的论文中提出的。它是一个基于数论的非对称(公开钥)密码体制,是一种分组密码体制。其名称来自于三个发明者的姓名首字母。它的安全性是基于大整数素因子分解的困难性,而大整数因子分解问题是数学上的着名难题,至今没有有效的方法予以解决,因此可以确保RSA算法的安全性。RSA系统是公钥系统的最具有典型意义的方法,大多数使用公钥密码进行加密和数字签名的产品和标准使用的都是RSA算法。
RSA算法是第一个既能用于数据加密也能用于数字签名的算法,因此它为公用网络上信息的加密和鉴别提供了一种基本的方法。它通常是先生成一对RSA密钥,其中之一是保密密钥,由用户保存;另一个为公开密钥,可对外公开,甚至可在网络服务器中注册,人们用公钥加密文件发送给个人,个人就可以用私钥解密接受。为提高保密强度,RSA密钥至少为500位长,一般推荐使用1024位。
该算法基于下面的两个事实,这些事实保证了RSA算法的安全有效性:
1)已有确定一个数是不是质数的快速算法;
2)尚未找到确定一个合数的质因子的快速算法。
3.2工作原理
1)任意选取两个不同的大质数p和q,计算乘积r=p*q;
2)任意选取一个大整数e,e与(p-1)*(q-1)互质,整数e用做加密密钥。注意:e的选取是很容易的,例如,所有大于p和q的质数都可用。
3)确定解密密钥d:d * e = 1 molo(p - 1)*(q - 1) 根据e、p和q可以容易地计算出d。
4)公开整数r和e,但是不公开d;
5)将明文P (假设P是一个小于r的整数)加密为密文C,计算方法为:
C = Pe molo r
6)将密文C解密为明文P,计算方法为:
P = Cd molo r
然而只根据r和e(不是p和q)要计算出d是不可能的。因此,任何人都可对明文进行加密,但只有授权用户(知道d)才可对密文解密。
3.3简单实例
为了说明该算法的工作过程,我们下面给出一个简单例子,显然我们在这只能取很小的数字,但是如上所述,为了保证安全,在实际应用上我们所用的数字要大的多得多。
例:选取p=3, q=5,则r=15,(p-1)*(q-1)=8。选取e=11(大于p和q的质数),通过d * 11 = 1 molo 8,计算出d =3。
假定明文为整数13。则密文C为
C = Pe molo r
= 1311 molo 15
= 1,792,160,394,037 molo 15
= 7
复原明文P为:
P = Cd molo r
= 73 molo 15
= 343 molo 15
= 13
因为e和d互逆,公开密钥加密方法也允许采用这样的方式对加密信息进行"签名",以便接收方能确定签名不是伪造的。
假设A和B希望通过公开密钥加密方法进行数据传输,A和B分别公开加密算法和相应的密钥,但不公开解密算法和相应的密钥。A和B的加密算法分别是ECA和ECB,解密算法分别是DCA和DCB,ECA和DCA互逆,ECB和DCB互逆。 若A要向B发送明文P,不是简单地发送ECB(P),而是先对P施以其解密算法DCA,再用加密算法ECB对结果加密后发送出去。
密文C为:
C = ECB(DCA(P))
B收到C后,先后施以其解密算法DCB和加密算法ECA,得到明文P:
ECA(DCB(C))
= ECA(DCB(ECB(DCA(P))))
= ECA(DCA(P))/*DCB和ECB相互抵消*/
=
P /*DCB和ECB相互抵消*/
这样B就确定报文确实是从A发出的,因为只有当加密过程利用了DCA算法,用ECA才能获得P,只有A才知道DCA算法,没 有人,即使是B也不能伪造A的签名。
3.4优缺点
3.4.1优点
RSA算法是第一个能同时用于加密和数字签名的算法,也易于理解和操作。RSA是被研究得最广泛的公钥算法,从提出到现在已近二十年,经历了各种攻击的考验,逐渐为人们接受,普遍认为是目前最优秀的公钥方案之一。该算法的加密密钥和加密算法分开,使得密钥分配更为方便。它特别符合计算机网络环境。对于网上的大量用户,可以将加密密钥用电话簿的方式印出。如果某用户想与另一用户进行保密通信,只需从公钥簿上查出对方的加密密钥,用它对所传送的信息加密发出即可。对方收到信息后,用仅为自己所知的解密密钥将信息脱密,了解报文的内容。由此可看出,RSA算法解决了大量网络用户密钥管理的难题,这是公钥密码系统相对于对称密码系统最突出的优点。
3.4.2缺点
1)产生密钥很麻烦,受到素数产生技术的限制,因而难以做到一次一密。
2)安全性, RSA的安全性依赖于大数的因子分解,但并没有从理论上证明破译RSA的难度与大数分解难度等价,而且密码学界多数人士倾向于因子分解不是NPC问题。目前,人们已能分解140多个十进制位的大素数,这就要求使用更长的密钥,速度更慢;另外,目前人们正在积极寻找攻击RSA的方法,如选择密文攻击,一般攻击者是将某一信息作一下伪装(Blind),让拥有私钥的实体签署。然后,经过计算就可得到它所想要的信息。实际上,攻击利用的都是同一个弱点,即存在这样一个事实:乘幂保留了输入的乘法结构:
( XM )d = Xd *Md mod n
前面已经提到,这个固有的问题来自于公钥密码系统的最有用的特征--每个人都能使用公钥。但从算法上无法解决这一问题,主要措施有两条:一条是采用好的公钥协议,保证工作过程中实体不对其他实体任意产生的信息解密,不对自己一无所知的信息签名;另一条是决不对陌生人送来的随机文档签名,签名时首先使用One-Way Hash Function对文档作HASH处理,或同时使用不同的签名算法。除了利用公共模数,人们还尝试一些利用解密指数或φ(n)等等攻击.
3)速度太慢,由于RSA的分组长度太大,为保证安全性,n至少也要600 bitx以上,使运算代价很高,尤其是速度较慢,较对称密码算法慢几个数量级;且随着大数分解技术的发展,这个长度还在增加,不利于数据格式的标准化。目前,SET(Secure Electronic Transaction)协议中要求CA采用2048比特长的密钥,其他实体使用1024比特的密钥。为了速度问题,目前人们广泛使用单,公钥密码结合使用的方法,优缺点互补:单钥密码加密速度快,人们用它来加密较长的文件,然后用RSA来给文件密钥加密,极好的解决了单钥密码的密钥分发问题。
§4结束语
目前,日益激增的电子商务和其它因特网应用需求使公钥体系得以普及,这些需求量主要包括对服务器资源的访问控制和对电子商务交易的保护,以及权利保护、个人隐私、无线交易和内容完整性(如保证新闻报道或股票行情的真实性)等方面。公钥技术发展到今天,在市场上明显的发展趋势就是PKI与操作系统的集成,PKI是“Public
Key Infrastructure”的缩写,意为“公钥基础设施”。公钥体制广泛地用于CA认证、数字签名和密钥交换等领域。
公钥加密算法中使用最广的是RSA。RSA算法研制的最初理念与目标是努力使互联网安全可靠,旨在解决DES算法秘密密钥的利用公开信道传输分发的难题。而实际结果不但很好地解决了这个难题;还可利用RSA来完成对电文的数字签名以抗对电文的否认与抵赖;同时还可以利用数字签名较容易地发现攻击者对电文的非法篡改,以保护数据信息的完整性。目前为止,很多种加密技术采用了RSA算法,该算法也已经在互联网的许多方面得以广泛应用,包括在安全接口层(SSL)标准(该标准是网络浏览器建立安全的互联网连接时必须用到的)方面的应用。此外,RSA加密系统还可应用于智能IC卡和网络安全产品。
但目前RSA算法的专利期限即将结束,取而代之的是基于椭圆曲线的密码方案(ECC算法)。较之于RSA算法,ECC有其相对优点,这使得ECC的特性更适合当今电子商务需要快速反应的发展潮流。此外,一种全新的量子密码也正在发展中。
至于在实际应用中应该采用何种加密算法则要结合具体应用环境和系统,不能简单地根据其加密强度来做出判断。因为除了加密算法本身之外,密钥合理分配、加密效率与现有系统的结合性以及投入产出分析都应在实际环境中具体考虑。加密技术随着网络的发展更新,将有更安全更易于实现的算法不断产生,为信息安全提供更有力的保障。今后,加密技术会何去何从,我们将拭目以待。
参考文献:
[1] Douglas R.Stinson.《密码学原理与实践》.北京:电子工业出版社,2003,2:131-132
[2]西蒙.辛格.《密码故事》.海口:海南出版社,2001,1:271-272
[3]嬴政天下.加密算法之RSA算法.http://soft.winzheng.com/infoView/Article_296.htm,2003
[4]加密与数字签名.http://www.njt.cn/yumdq/dzsw/a2.htm
[5]黑客中级教程系列之十.http://www.qqorg.i-p.com/jiaocheng/10.html
⑵ 国密算法
国密即国家密码局认定的国产密码算法。主要有SM1,SM2,SM3,SM4。密钥长度和分组长度均为128位。
SM1 为对称加密。其加密强度与AES相当。该算法不公开,调用该算法时,需要通过加密芯片的接口进行调用。
SM2为非对称加密,基于ECC。该算法已公开。由于该算法基于ECC,故其签名速度与秘钥生成速度都快于RSA。ECC 256位(SM2采用的就是ECC 256位的一种)安全强度比RSA 2048位高,但运算速度快于RSA。
国家密码管理局公布的公钥算法,其加密强度为256位
SM3 消息摘要。可以用MD5作为对比理解。该算法已公开。校验结果为256位。
SM4 无线局域网标准的分组数据算法。对称加密,密钥长度和分组长度均为128位。
由于SM1、SM4加解密的分组大小为128bit,故对消息进行加解密时,若消息长度过长,需要进行分组,要消息长度不足,则要进行填充。
分组密码算法(DES和SM4)、将明文数据按固定长度进行分组,然后在同一密钥控制下逐组进行加密,
公钥密码算法(RSA和SM2)、公开加密算法本身和公开公钥,保存私钥
摘要算法(SM3 md5) 这个都比较熟悉,用于数字签名,消息认证,数据完整性,但是sm3安全度比md5高
总得来说国密算法的安全度比较高,2010年12月推出,也是国家安全战略,现在银行都要要求国际算法改造,要把国际算法都给去掉
C 语言实现
https://github.com/guan/GmSSL/
Go 语言
https://github.com/tjfoc/gmsm
https://github.com/ZZMarquis/gm
Java 语言
https://github.com/PopezLotado/SM2Java
Go语言实现,调用 gmsm
⑶ 公钥密码体制中使用的密钥个数为几个
只有一个。这个也称为对称加密。加密与解密使用一个相同的秘钥。与其对应的说非对称加密,加解密使用不同的秘钥。
⑷ 公钥 私钥各是什么格式的文件
公钥和私钥
1,公钥和私钥成对出现
2,公开的密钥叫公钥,只有自己知道的叫私钥
3,用公钥加密的数据只有对应的私钥可以解密
4,用私钥加密的数据只有对应的公钥可以解密
5,如果可以用公钥解密,则必然是对应的私钥加的密
6,如果可以用私钥解密,则必然是对应的公钥加的密
假设一下,我找了两个数字,一个是1,一个是2。我喜欢2这个数字,就保留起来,不告诉你们,然后我告诉大家,1是我的公钥。
我有一个文件,不能让别人看,我就用1加密了。别人找到了这个文件,但是他不知道2就是解密的私钥啊,所以他解不开,只有我可以用数字2,就是我的私钥,来解密。这样我就可以保护数据了。
我的好朋友x用我的公钥1加密了字符a,加密后成了b,放在网上。别人偷到了这个文件,但是别人解不开,因为别人不知道2就是我的私钥,只有我才能解密,解密后就得到a。这样,我们就可以传送加密的数据了。
现在我们知道用公钥加密,然后用私钥来解密,就可以解决安全传输的问题了。如果我用私钥加密一段数据(当然只有我可以用私钥加密,因为只有我知道2是我的私钥),结果所有的人都看到我的内容了,因为他们都知道我的公钥是1,那么这种加密有什么用处呢?
但是我的好朋友x说有人冒充我给他发信。怎么办呢?我把我要发的信,内容是c,用我的私钥2,加密,加密后的内容是d,发给x,再告诉他解密看是不是c。他用我的公钥1解密,发现果然是c。这个时候,他会想到,能够用我的公钥解密的数据,必然是用我的私钥加的密。只有我知道我得私钥,因此他就可以确认确实是我发的东西。这样我们就能确认发送方身份了。这个过程叫做数字签名。当然具体的过程要稍微复杂一些。用私钥来加密数据,用途就是数字签名。
好,我们复习一下:
1,公钥私钥成对出现
2,私钥只有我知道
3,大家可以用我的公钥给我发加密的信了
4,大家用我的公钥解密信的内容,看看能不能解开,能解开,说明是经过我的私钥加密了,就可以确认确实是我发的了。
总结一下结论:
1,用公钥加密数据,用私钥来解密数据
2,用私钥加密数据(数字签名),用公钥来验证数字签名。
在实际的使用中,公钥不会单独出现,总是以数字证书的方式出现,这样是为了公钥的安全性和有效性。
数字证书的原理
数字证书采用公钥体制,即利用一对互相匹配的密钥进行加密、解密。每个用户自己设定一把特定的仅为本人所知的私有密钥(私钥),用它进行解密和签名;同时设定一把公共密钥(公钥)并由本人公开,为一组用户所共享,用于加密和验证签名。当发送一份保密文件时,发送方使用接收方的公钥对数据加密,而接收方则使用自己的私钥解密,这样信息就可以安全无误地到达目的地了。通过数字的手段保证加密过程是一个不可逆过程,即只有用私有密钥才能解密. 在公开密钥密码体制中,常用的一种是RSA体制。
用户也可以采用自己的私钥对信息加以处理,由于密钥仅为本人所有,这样就产生了别人无法生成的文件,也就形成了数字签名。采用数字签名,能够确认以下两点:
(1)保证信息是由签名者自己签名发送的,签名者不能否认或难以否认;
(2)保证信息自签发后到收到为止未曾作过任何修改,签发的文件是真实文件。
我的解释:
每个用户都有一对私钥和公钥。
私钥用来进行解密和签名,是给自己用的。
公钥由本人公开,用于加密和验证签名,是给别人用的。
当该用户发送文件时,用私钥签名,别人用他给的公钥解密,可以保证该信息是由他发送的。即数字签名。
当该用户接受文件时,别人用他的公钥加密,他用私钥解密,可以保证该信息只能由他接收到。可以避免被其他人看到。
数字证书
是数字形式的标识,与护照或驾驶员执照十分相似。数字证书是数字凭据,它提供有关实体标识的信息以及其他支持信息。数字证书是由成为证书颁发机构(CA)的权威机构颁发的。由于数字证书有证书权威机构颁发,因此由该权威机构担保证书信息的有效性。此外,数字证书只在特定的时间段内有效。
数字证书包含证书中所标识的实体的公钥(就是说你的证书里有你的公钥),由于证书将公钥与特定的个人匹配,并且该证书的真实性由颁发机构保证(就是说可以让大家相信你的证书是真的),因此,数字证书为如何找到用户的公钥并知道它是否有效这一问题提供了解决方案。
综上所述,公钥 私钥都是保存在数字证书之中的,并不以单独的文件格式存在.
⑸ 密码技术(十一)之密钥
——秘密的精华
在使用对称密码、公钥密码、消息认证码、数字签名等密码技术使用,都需要一个称为 密钥 的巨大数字。然而,数字本身的大小并不重要,重要的是 密钥空间的大小 ,也就是可能出现的密钥的总数量,因为密钥空间越大,进行暴力破解就越困难。密钥空间的大小是由 密钥长度 决定的。
对称密码DES的密钥的实质长度为56比特(7个字节)。
例如,
一个DES密钥用二进制可以表示为:
01010001 11101100 01001011 00010010 00111101 01000010 00000011
用十六进制则可以表示为:
51 EC 4B 12 3D 42 03
而用十进制则可以表示为:
2305928028626269955
在对称密码三重DES中,包括使用两个DES密钥的DES-EDE2和使用三个DES密钥的DES-EDE3这两种方式。
DES-EDE2的密钥长度实质长度为112比特(14字节),比如:
51 EC 4B 12 3D 42 03 30 04 D8 98 95 93 3F
DES-EDE3的密钥的实质长度为168比特(21字节),比如:
51 EC 4B 12 3D 42 03 30 04 D8 98 95 93 3F 24 9F 61 2A 2F D9 96
对称密码AES的密钥长度可以从128、192和256比特中进行选择,当密钥长度为256比特时,比如:
51 EC 4B 12 3D 42 03 30 04 D8 98 95 93 3F 24 9F 61 2A 2F D9 96
B9 42 DC FD A0 AE F4 5D 60 51 F1
密钥和明文是等价的 。假设明文具有100万的价值,那么用来加密这段明文的密钥也就是具有100万元的价值;如果明文值1亿元,密钥也就值1亿元;如果明文的内容是生死攸关的,那么密钥也同样是生死攸关的。
在对称密码中,加密和解密使用同一个密钥。由于发送者和接收者需要共享密钥,因此对称密码又称为共享密钥密码。对称密码中所使用的密钥必须对发送者和接收者以外的人保密,否则第三方就能够解密了。
在消息认证码中,发送者和接收者使用共享的密钥来进行认证。消息认证码只能由持有合法密钥的人计算出来。将消息认证码附加在通信报文后面,就可以识别通信内容是否被篡改或伪装,由于“持有合法的密钥”就是发送者和接收者合法身份的证明,因此消息认证码的密钥必须对发送者以外的人保密,否则就会产生篡改和伪装的风险。
在数字签名中,签名生成和验证使用不同的密钥,只有持有私钥的本人才能够生成签名,但由于验证签名使用的是公钥,因此任何人都能够验证签名。
对称密码和公钥密码的密钥都是用于确保机密性的密钥。如果不知道用于解密的合法密钥,就无法得知明文的内容。
相对地,消息认证码和数字签名所使用的密钥,则是用于认证的密钥。如果不知道合法的密钥,就无法篡改数据,也无法伪装本人的身份。
当我们访问以https://开头的网页时,Web服务器和浏览器之间会进行基于SSL/TLS的加密通信。在这样的通信中所使用的密钥是仅限于本次通信的一次密钥,下次通信时就不能使用了,想这样每次通信只能使用一次的密钥称为 会话密钥 。
由于会话密钥只在本次通信中有效,万一窃听者获取了本次通信的会话密钥,也只能破译本次通信的内容。
虽然每次通信都会更换会话密钥,但如果用来生成密钥的伪随机数生成器品质不好,窃听者就有可能预测出下次生成会话密钥,这样就会产生通信内容被破译的风险。
相对于每次通信更换的会话密钥,一直被重复使用的密钥称为 主密钥 。
一般来说,加密的对象是用户直接使用的信息,这样的情况下所使用的密钥称为CEK(Contents Encryting Key,内容加密密钥);相对地,用于加密密钥的密钥则称为KEK(Key Encryting Key,密钥加密密钥)。
在很多情况下,之前提到的会话密钥都是被作为CEK使用的,而主密钥则是被作为KEK使用的。
生成密钥的最好方法就是使用随机数,因为米哟啊需要具备不易被他人推测的性质。在可能的情况下最好使用能够生成密码学上的随机数的硬件设备,但一般我们都是使用伪随机数生成器这一专门为密码学用途设计的软件。
在生成密钥时,不能自己随便写出一些像“3F 23 52 28 E3....”这样的数字。因为尽管你想生成的是随机的数字,但无论如何都无法避免人为偏差,而这就会成为攻击者的目标。
尽管生成伪随机数的算法有很多种,但密码学用途伪随机生成器必须是专门针对密码学用途而设计的。例如,有一些伪随机数生成器可以用于游戏和模拟算法,尽管这些伪随机数生成器所生成的数列看起也是随机的,但只要不是专门为密码学用途设计的,就不能用来生成密钥,因为这些伪随机数生成器不具备不可预测性这一性质。
有时候我们也会使用人类的可以记住的口令(pasword或passphrase)来生成密钥。口令指的是一种由多个单词组成的较长的password。
严格来说,我们很少直接使用口令来作为密钥使用,一般都是将口令输入单向散列函数,然后将得到的散列值作为密钥使用。
在使用口令生成密钥时,为了防止字典攻击,需要在口令上附加一串称为盐(salt)的随机数,然后在将其输入单向散列函数。这种方法称为“基于口令的密码(Password Based Encryption,PBE)”。
在使用对称密码时,如何在发送者和接收者之间共享密钥是一个重要的问题,要解决密钥配送问题,可以采用事先共享密钥,使用密钥分配中心,使用公钥密码等方法,除了上述方法,之前还提到一种解决密钥配送的问题的方法称为Diffie-Hellman密钥交换。
有一种提供通信机密性的技术称为 密钥更新 (key updating),这种方法就是在使用共享密钥进行通信的过程中,定期更改密钥。当然,发送者和接收者必须同时用同样的方法来改变密钥才行。
在更新密钥时,发送者和接收者使用单向散列函数计算当前密钥的散列值,并将这个散列值用作新的密钥。简单说,就是 用当前密钥散列值作为下一个密钥 。
我们假设在通信过程中的某个时间点上,密钥被窃听者获取了,那么窃听者就可以用这个密钥将之后的通信内容全部解密。但是,窃听者却无法解密更新密钥这个时间点之前的内容,因为这需要用单向散列函数的输出反算出单向散列函数的输入。由于单向散列函数具有单向性,因此就保证了这样的反算是非常困难的。
这种防止破译过去的通信内容机制,称为 后向安全 (backward security)。
由于会话密钥在通信过程中仅限于一次,因此我们不需要保存这种秘密。然而,当密钥需要重复使用时,就必须要考虑保存密钥的问题了。
人类是 无法记住具有实用长度的密钥 的。例如,像下面这样一个AES的128比特的密钥,一般人是很难记住的。
51 EC 4B 12 3D 42 03 30 04 DB 98 95 93 3F 24 9F
就算勉强记住了,也只过不是记住一个密钥而已。但如果要记住多个像这样的密钥并且保证不忘记,实际上是非常困难的。
我们记不住密钥,但如果将密钥保存下来又可能会被窃取。这真是一个头疼的问题。这个问题很难得到彻底解决,但我们可以考虑一些合理的解决方法。
将密钥保存生文件,并将这个文件保存在保险柜等安全地方。但是放在保险柜里的话,出门就无法使用了。这种情况,出门时就需要随身携带密钥。而如果将密钥放在存储卡随身携带的话,就会产生存储卡丢失、被盗等风险。
万一密钥被盗,为了能够让攻击者花更多的时间才能真正使用这个密钥,我们可以使用将密钥加密后保存的方法,当然,要将密钥加密,必须需要另一个密钥。像这样用于密码加密的密钥,一般称为KEK。
对密钥进行加密的方法虽然没有完全解决机密性的问题,但在现实中却是一个非常有效地方法,因为这样做可以减少需要保管密钥的数量。
假设计算机上有100万个文件,分别使用不同的密钥进行加密生成100万个密文,结果我们手上就产生了100万个密钥,而要保管100万个密钥是很困难的。
于是,我们用一个密钥(KEK)将这100万个密钥进行加密,那么现在我们只要保管者一个KEK就可以了,这一个KEK的价值相当于签名的100万个密钥的价值的总和。
用1个密钥来代替多个密钥进行保管的方法,和认证机构的层级化非常相似。在后者中,我们不需要信任多个认证机构,而只需要信任一个根CA就可以了。同样的,我们也不需要确保多个密钥的机密性,而只需要确保一个KEK的机密性就可以了。
密钥的作废和生成是同等重要的,这是因为密钥和明文是等价的。
假设Alice向Bob发送了一封加密邮件。Bob在解密之后阅读了邮件的内容,这时本次通信所使用的密钥对于Alice和Bob来说就不需要了。不在需要的密钥必须妥善删除,因为如果被窃听者Eve获取,之前发送的加密邮件就会被解密。
如果密钥是计算机上的一个文件,那么仅仅删除这个文件是不足以删除密钥的,因为有一些技术能够让删除的文件“恢复”。此外,很多情况下文件的内容还会残留在计算机的内存中,因此必须将这些痕迹完全抹去。简而言之,要完全删除密钥,不但要用到密码软件,还需要在设计计算机系统时对信息安全进行充分的考虑
如果包含密钥的文件被误删或者保管密钥的笔记本电脑损坏了,会怎么样?
如果丢失了对称密钥密码的共享密钥,就无法解密密文了。如果丢失了消息认证码的密钥,就无法向通信对象证明自己的身份了。
公钥密码中,一般不太会发送丢失公钥的情况,因为公钥是完全公开的,很有可能在其他电脑上存在副本。
最大的问题是丢失公钥密码的私钥。如果丢失了公钥密码的私钥,就无法解密用公钥密码加密的密文了。此外,如果丢失了数字签名的私钥,就无法生成数字签名了。
Diffie-Hellman密钥交换(Diffie-Hellman key exchange)是1976年由Whitfield Diffie和Martin Hellman共同发明的一种算法。使用这种算法,通信双方仅通过交换一些可以公开的信息就能够生成共享秘密数字,而这一秘密数字就可以被用作对称密码的密钥。IPsec 中就使用了经过改良的Diffie-Hellman密钥交换。
2 Alice 生成一个随机数A
A是一个1 ~ P-2之间的整数。这个数是一个只有Alice知道的密码数字,没有必要告诉Bob,也不能让Eve知道。
Alice计算出的密钥=Bob计算出的密钥
在步骤1-7中,双方交换数字一共有4个,P、G、G A mod P 和 G B mod P。根据这4个数字计算出Alice和Bob的共享密钥是非常困难的。
如果Eve能欧知道A和B的任意一个数,那么计算G A*B 就很容易了,然而仅仅根据上面的4个数字很难求出A和B的。
根据G A mod P 计算出A的有效算法到现在还没有出现,这问题成为有限域(finite field) 的 离散对数问题 。
Diffie-Hellman密钥交换是利用了“离散对数问题”的复杂度来实现密钥的安全交换的,如果将“离散对数问题”改为“椭圆曲线上离散对数问题”,这样的算法就称为 椭圆曲线Diffie-Hellman 密钥交换。
椭圆曲线Diffie-Hellman密钥交换在总体流程上是不变的,只是所利用的数学问题不同而已。椭圆曲线Diffie-Hellman密钥交换能够用较短的密钥长度实现较高的安全性。
基于口令密码(password based encryption,PBE)就是一种根据口令生成密钥并用该密钥进行加密的方法。其中加密和解密使用同一个密钥。
PBE有很多种实现方法。例如RFC2898和RFC7292 等规范中所描述的PBE就通过Java的javax.crypto包等进行了实现。此外,在通过密码软件PGP保存密钥时,也会使用PBE。
PBE的意义可以按照下面的逻辑来理解。
想确保重要消息的机制性。
↓
将消息直接保存到磁盘上的话,可能被别人看到。
↓
用密钥(CEK)对消息进行加密吧。
↓
但是这次又需要确保密钥(CEK)的机密性了。
↓
将密钥(CEK)直接保存在磁盘上好像很危险。
↓
用另一个密钥(KEK)对密钥进行加密(CEK)吧。
↓
等等!这次又需要确保密钥(KEK)的机密性了。进入死循环了。
↓
既然如此,那就用口令来生成密钥(KEK)吧。
↓
但只用口令容易遭到字典攻击
↓
那么就用口令和盐共同生成密钥(KEK)吧。
↓
盐可以和加密后的密钥(CEK)一切保存在磁盘上,而密钥(KEK)可以直接丢弃。
↓
口令就记在自己的脑子里吧。
PBE加密包括下列3个步骤:
盐是由伪随机数生成器生成的随机数,在生成密钥(KEK)时会和口令一起被输入单向散列函数。
密钥(KEK)是根据秘密的口令生成的,加盐好像没有什么意义,那么盐到底起到什么作用呢?
盐是用来防御字典攻击的 。字典攻击是一种事先进行计算并准备好候选密钥列表的方法。
我们假设在生成KEK的时候没有加盐。那么主动攻击者Mallory就可以根据字典数据事先生成大量的候选KEK。
在这里,事先是很重要的一点。这意味着Mallory可以在窃取到加密会话的密钥之前,就准备好了大量的候选KEK。当Mallory窃取加密的会话密钥后,就需要尝试将它解密,这是准备好了大量事先生成的候选KEK,就能够大幅度缩短尝试的时间,这就是 字典攻击 (dictionary attack)。
如果在生成KEK时加盐,则盐的长度越大,候选KEK的数量也会随之增大,事先生成的的候选KEK就会变得非常困难。只要Mallory还没有得到盐,就无法生成候选KEK。这是因为加盐之后,候选KEK的数量会变得非常巨大。
具有充足长度的密钥是无法用人脑记忆的。口令也是一样,我们也无法记住具有充足比特数的口令。
在PBE中,我们通过口令生成密钥(KEK),在用这个密钥来加密会话密钥(CEK)。由于通过口令生成的密钥(KEK)强度不如由伪随机数生成器生成的会话密钥(CEK),这就好像是将一个牢固的保险柜的钥匙放在了一个不怎么牢固的保险柜保管,因此在使用基于口令的密钥时,需要将盐和加密后的CEK通过物理方法进行保护。例如将盐和加密后的CEK保存到存储卡随身携带。
在生成KEK时,通过多次使用单向散列函数就可以提高安全性。例如,将盐和口令输入单向散列函数,进行1000次的散列函数所得到的散列值作为KEK来使用,是一个不错的方法。
像这样将单向散列函数进行多次迭代的方法称为 拉伸 (stretching)。
该系列的主要内容来自《图解密码技术第三版》
我只是知识的搬运工
文章中的插图来源于原着
⑹ Hello,密码学:第三部分,公钥密码(非对称密码)算法
在 《Hello,密码学:第二部分,对称密码算法》 中讲述了对称密码的概念,以及DES和AES两种经典的对称密码算法原理。既然有对称密码的说法,自然也就有非对称密码,也叫做公钥密码算法。 对称密码和非对称密码两种算法的本质区别在于,加密密钥和解密密钥是否相同 :
公钥密码产生的初衷就是为了解决 密钥配送 的问题。
Alice 给远方的 Bob 写了一封情意慢慢的信,并使用强悍的 AES-256 进行了加密,但她很快就意识到,光加密内容不行,必须要想一个安全的方法将加密密钥告诉 Bob,如果将密钥也通过网络发送,很可能被技术高手+偷窥癖的 Eve 窃听到。
既要发送密钥,又不能发送密钥,这就是对称密码算法下的“密钥配送问题” 。
解决密钥配送问题可能有这样几种方法:
这种方法比较高效,但有局限性:
与方法一不同,密钥不再由通信个体来保存,而由密钥分配中心(KDC)负责统一的管理和分配。 双方需要加密通信时,由 KDC 生成一个用于本次通信的通信密钥交由双方,通信双方只要与 KDC 事先共享密钥即可 。这样就大大减少密钥的存储和管理问题。
因此,KDC 涉及两类密钥:
领略下 KDC 的过程:
KDC 通过中心化的手段,确实能够有效的解决方法一的密钥管理和分配问题,安全性也还不错。但也存在两个显着的问题:
使用公钥密码,加密密钥和解密密钥不同,只要拥有加密密钥,所有人都能进行加密,但只有拥有解密密钥的人才能进行解密。于是就出现了这个过程:
密钥配送的问题天然被解决了。当然,解密密钥丢失而导致信息泄密,这不属于密钥配送的问题。
下面,再详细看下这个过程。
公钥密码流程的核心,可以用如下四句话来概述:
既然加密密钥是公开的,因此也叫做 “公钥(Public Key)” 。
既然解密密钥是私有的,因此也叫做 “私钥(Private Key) 。
公钥和私钥是一一对应的,称为 “密钥对” ,他们好比相互纠缠的量子对, 彼此之间通过严密的数学计算关系进行关联 ,不能分别单独生成。
在公钥密码体系下,再看看 Alice 如何同 Bob 进行通信。
在公钥密码体系下,通信过程是由 Bob 开始启动的:
过程看起来非常简单,但为什么即使公钥被窃取也没有关系?这就涉及了上文提到的严密的数学计算关系了。如果上一篇文章对称密钥的 DES 和 AES 算法进行概述,下面一节也会对公钥体系的数学原理进行简要说明。
自从 Diffie 和 Hellman 在1976年提出公钥密码的设计思想后,1978年,Ron Rivest、Adi Shamir 和 Reonard Adleman 共同发表了一种公钥密码算法,就是大名鼎鼎的 RSA,这也是当今公钥密码算法事实上的标准。其实,公钥密码算法还包括ElGamal、Rabin、椭圆曲线等多种算法,这一节主要讲述 RSA 算法的基本数学原理。
一堆符号,解释下,E 代表 Encryption,D 代表 Decryption,N 代表 Number。
从公式种能够看出来,RSA的加解密数学公式非常简单(即非常美妙)。 RSA 最复杂的并非加解密运算,而是如何生成密钥对 ,这和对称密钥算法是不太一样的。 而所谓的严密的数学计算关系,就是指 E 和 D 不是随便选择的 。
密钥对的生成,是 RSA 最核心的问题,RSA 的美妙与奥秘也藏在这里面。
1. 求N
求 N 公式:N = p × q
其中, p 和 q 是两个质数 ,而且应该是很大又不是极大的质数。如果太小的话,密码就容易被破解;如果极大的话,计算时间就会很长。比如 512 比特的长度(155 位的十进制数字)就比较合适。
这样的质数是如何找出来的呢? 需要通过 “伪随机数生成器(PRNG)” 进行生成,然后再判断其是否为质数 。如果不是,就需要重新生成,重新判断。
2. 求L
求 L 公式:L = lcm(p-1, q-1)
lcm 代表 “最小公倍数(least common multiple)” 。注意,L 在加解密时都不需要, 仅出现在生成密钥对的过程中 。
3. 求E
E 要满足两个条件:
1)1 < E < L
2)gcd(E,L) = 1
gcd 代表 “最大公约数(greatest common divisor)” 。gcd(E,L) = 1 就代表 “E 和 L 的最大公约数为1,也就是说, E 和 L 互质 ”。
L 在第二步已经计算出来,而为了找到满足条件的 E, 第二次用到 “伪随机数生成器(PRNG)” ,在 1 和 L 之间生成 E 的候选,判断其是否满足 “gcd(E,L) = 1” 的条件。
经过前三步,已经能够得到密钥对种的 “公钥:{E, N}” 了。
4. 求D
D 要满足两个条件:
1)1 < D < L
2)E × D mod L = 1
只要 D 满足上面的两个条件,使用 {E, N} 进行加密的报文,就能够使用 {D, N} 进行解密。
至此,N、L、E、D 都已经计算出来,再整理一下
模拟实践的过程包括两部分,第一部分是生成密钥对,第二部分是对数据进行加解密。为了方便计算,都使用了较小的数字。
第一部分:生成密钥对
1. 求N
准备两个质数,p = 5,q = 7,N = 5 × 7 = 35
2. 求L
L = lcm(p-1, q-1) = lcm (4, 6) = 12
3. 求E
gcd(E, L) = 1,即 E 和 L 互质,而且 1 < E < L,满足条件的 E 有多个备选:5、7、11,选择最小的 5 即可。于是,公钥 = {E, N} = {5, 35}
4. 求D
E × D mod L = 1,即 5 × D mod 12 = 1,满足条件的 D 也有多个备选:5、17、41,选择 17 作为 D(如果选择 5 恰好公私钥一致了,这样不太直观),于是,私钥 = {D, N} = {17, 35}
至此,我们得到了公私钥对:
第二部分:模拟加解密
明文我们也使用一个比较小的数字 -- 4,利用 RSA 的加密公式:
密文 = 明文 ^ E mod N = 4 ^ 5 mod 35 = 9
明文 = 密文 ^ D mod N = 9 ^ 17 mod 35 = 4
从这个模拟的小例子能够看出,即使我们用了很小的数字,计算的中间结果也是超级大。如果再加上伪随机数生成器生成一个数字,判断其是否为质数等,这个过程想想脑仁儿就疼。还好,现代芯片技术,让计算机有了足够的运算速度。然而,相对于普通的逻辑运算,这类数学运算仍然是相当缓慢的。这也是一些非对称密码卡/套件中,很关键的性能规格就是密钥对的生成速度
公钥密码体系中,用公钥加密,用私钥解密,公钥公开,私钥隐藏。因此:
加密公式为:密文 = 明文 ^ E mod N
破译的过程就是对该公式进行逆运算。由于除了对明文进行幂次运算外, 还加上了“模运算” ,因此在数学上, 该逆运算就不再是简单的对数问题,而是求离散对数问题,目前已经在数学领域达成共识,尚未发现求离散对数的高效算法 。
暴力破解的本质就是逐个尝试。当前主流的 RSA 算法中,使用的 p 和 q 都是 1024 位以上,这样 N 的长度就是 2048 位以上。而 E 和 D 的长度和 N 差不多,因此要找出 D,就需要进行 2048 位以上的暴力破解。即使上文那个简单的例子,算出( 蒙出 ) “9 ^ D mod 35 = 4” 中的 D 也要好久吧。
因为 E 和 N 是已知的,而 D 和 E 在数学上又紧密相关(通过中间数 L),能否通过一种反向的算法来求解 D 呢?
从这个地方能够看出,p 和 q 是极为关键的,这两个数字不泄密,几乎无法通过公式反向计算出 D。也就是说, 对于 RSA 算法,质数 p 和 q 绝不能被黑客获取,否则等价于交出私钥 。
既然不能靠抢,N = p × q,N是已知的,能不能通过 “质因数分解” 来推导 p 和 q 呢?或者说, 一旦找到一种高效的 “质因数分解” 算法,就能够破解 RSA 算法了 。
幸运的是,这和上述的“离散对数求解”一样,当下在数学上还没有找到这种算法,当然,也无法证明“质因数分解”是否真的是一个困难问题 。因此只能靠硬算,只是当前的算力无法在可现实的时间内完成。 这也是很多人都提到过的,“量子时代来临,当前的加密体系就会崩溃”,从算力的角度看,或许如此吧 。
既不能抢,也不能算,能不能猜呢?也就是通过 “推测 p 和 q 进行破解” 。
p 和 q 是通过 PRNG(伪随机数生成器)生成的,于是,又一个关键因素,就是采用的 伪随机数生成器算法要足够随机 。
随机数对于密码学极为重要,后面会专门写一篇笔记 。
前三种攻击方式,都是基于 “硬碰硬” 的思路,而 “中间人攻击” 则换了一种迂回的思路,不去尝试破解密码算法,而是欺骗通信双方,从而获取明文。具体来说,就是: 主动攻击者 Mallory 混入发送者和接收者之间,面对发送者伪装成接收者,面对接收者伪装成发送者。
这个过程可以重复多次。需要注意的是,中间人攻击方式不仅能够针对 RSA,还可以针对任何公钥密码。能够看到,整个过程中,公钥密码并没有被破译,密码体系也在正常运转,但机密性却出现了问题,即 Alice 和 Bob 之间失去了机密性,却在 Alice 和 Mallory 以及 Mallory 和 Bob 之间保持了机密性。即使公钥密码强度再强大 N 倍也无济于事。也就是说,仅仅依靠密码算法本身,无法防御中间人攻击 。
而能够抵御中间人攻击的,就需要用到密码工具箱的另一种武器 -- 认证 。在下面一篇笔记中,就将涉及这个话题。
好了,以上就是公钥密码的基本知识了。
公钥密码体系能够完美的解决对称密码体系中 “密钥配送” 这个关键问题,但是抛开 “中间人攻击” 问题不谈,公钥密码自己也有个严重的问题:
公钥密码处理速度远远低于对称密码。不仅体现在密钥对的生成上,也体现在加解密运算处理上。
因此,在实际应用场景下,往往会将对称密码和公钥密码的优势相结合,构建一个 “混合密码体系” 。简单来说: 首先用相对高效的对称密码对消息进行加密,保证消息的机密性;然后用公钥密码加密对称密码的密钥,保证密钥的机密性。
下面是混合密码体系的加解密流程图。整个体系分为左右两个部分:左半部分加密会话密钥的过程,右半部分是加密原始消息的过程。原始消息一般较长,使用对称密码算法会比较高效;会话密钥一般比较短(十几个到几十个字节),即使公钥密码算法运算效率较低,对会话密钥的加解密处理也不会非常耗时。
着名的密码软件 PGP、SSL/TLS、视频监控公共联网安全建设规范(GB35114) 等应用,都运用了混合密码系统。
好了,以上就是公钥密码算法的全部内容了,拖更了很久,以后还要更加勤奋一些。
为了避免被傻啦吧唧的审核机器人处理,后面就不再附漂亮姑娘的照片(也是为了你们的健康),改成我的摄影作品,希望不要对收视率产生影响,虽然很多小伙儿就是冲着姑娘来的。
就从喀纳斯之旅开始吧。
⑺ 公钥长度不满足是什么意思
干货:三种公钥密码
公钥密码概述
世界上几乎每天都有新的密码算法诞生,同时,也有旧的密码算法被废弃。事实上,大部分密码算法的诞生并未给密码学家们带来震撼,甚至在密码界连一点细微的涟漪都没有激起。然而,RSA公钥密码算法自1977年问世以来,成为了密码学史上划时代的革命事件,给密码学家们带来了惊喜,其最大的贡献在于它解决了传统对称密码算法难以解决的两个问题:一是签名认证,另一个是密钥交换(协商)。公钥密码算法的设计比对称密码算法的设计具有更大的挑战性。目前所使用的公钥密码算法的安全性基础主要是数学中的难题。
公钥密码算法也常称为非对称密码算法。其最大特点是其密钥是成对出现的,其密钥对由公钥和私钥组成。公钥和私钥是不相同的,已知私钥可推导出公钥,但已知公钥不能推导出私钥。公钥可对外公开,私钥由用户自己秘密保存。
公钥密码算法有两种基本应用模式:一是加密模式,即以用户公钥作为加密密钥,以用户私钥作为解密密钥,实现多个用户的加密信息只能由一个用户解读;二是认证模式,即以用户私钥进行数字签名,以用户公钥验证签名,实现一个用户的签名可以由多个用户验证。用于加解密中的密钥对,称为加密密钥对。用于签名验证中的密钥对称为签名密钥对。
目前的公钥密码主要有RSA、ECC、IBC三类,针对RSA我国没有相应的标准算法出台,而针对ECC和IBC,我国分别有相应的SM2、SM9标准算法发布。
RSA
1977年,麻省理工学院的三位数学家Rivest、Shamir、Adleman创建了一个比较完善的公钥密码算法,就是着名的RSA算法。RSA算法在过去一直是最受欢迎的公钥密码算法,其算法比较简单,加密解密都只是一个模幂运算,速度快,效率高。在相当长的一段时间内,RSA在公钥密码算法中占据着主导地位,并得到了广泛的应用。
也许因为RSA密码的特殊地位和重要应用,国际上破解RSA的研究工作从来没有间断并在不断推进。目前RSA 1024已失去其安全性,将被淘汰。目前看来,RSA 2048(及以上)是安全的,而RSA算法复杂度随着模长的增加,运算量成指数级上升,同时也相应增加了密钥存储量。
2011年,国家密码管理局下发通知,停止审批RSA密码应用新建项目。
ECC(SM2)
1985年, Miller和 Koblitz分别独立提出了椭圆曲线密码(ECC)。和RSA相比,ECC算法的数学理论比较复杂,单位安全强度相对较高。ECC安全性建立在离散对数求取困难性基础上,它的破译或求解难度基本上是完全指数级的,而破解RSA的难度是亚指数级的。ECC公钥密码是单位比特强度最大的公钥密码,256比特的ECC公钥密码的安全强度比2048比特的RSA公钥密码强度还要强。要达到同样的安全强度,ECC所需的密钥长度远比RSA低。
2012年,国家密码管理局发布ECC国密标准算法SM2。
IBC (SM9)
基于标识的密码(Identity-Based Cryptography)简称IBC,是与RSA、ECC相比具有其独特性的又一种公钥密码。这种独特性表现在其公钥是用户的身份标识,而不是随机数(乱码)。
IBC这个概念最初出现于1984年Shamir(RSA密码创始人之一)的论文中,IBC密码系统公钥和私钥采用一种不同于RSA和ECC的特殊方法产生,即公钥是用户的身份标识,而私钥通过绑定身份标识与系统主密钥(master key)生成。
Miller在1985年创建椭圆曲线密码(ECC)后不久,在其一篇未发表的手稿中首次给出了计算双线性对的多项式时间算法。但因为当时双线性对在公钥密码中尚未取得有效应用,因此没有引起研究者的关注。当双线性对在公钥密码学中获得诸多应用后,其计算的重要性也日趋显着,时隔19年之后,Miller于2004年重新整理了当年的手稿,详尽地论述了双线性对的计算。双线性对的有效计算奠定了IBC密码算法基础。
2016年,国家密码管理局于发布IBC国密标准算法即SM9。
三种公钥密码应用比较
RSA与ECC/SM2公钥密码是基于数字证书的公钥密码,IBC/SM9是无证书的基于标识的公钥密码。
基于数字证书的公钥密码是目前广泛使用的公钥密码,由可信的权威机构(CA)为每个用户签发公钥证书。
CA拥有用户的身份和公钥后,CA需要验证用户的有效性和合法性,如果验证通过,CA为其颁发证书,而这个证书包含CA的私钥对用户公钥和身份等信息的签名。如果想要验证用户的公钥,需通过CA的公钥验证用户的证书。
IBC作为PKI体系的发展和补充,既保证了签名的安全特性,又满足了各种应用更灵活的安全需求。IBC应用于PKI中是无证书的(certificateless),由于标识本身就是实体的公钥,这类系统就不再依赖证书,在某种程度上简化了PKI的应用。
在IBC中,可信第三方是密钥生成中心KGC(key generation center),类似于PKI中的CA,一旦用户的身份标识确定,KGC仅仅只需要验证该用户是否拥有该身份标识。如果验证成功,则KGC为用户创建其私钥,这个私钥是根据用户身份标识和KGC的根私钥生成的。
IBC密码的应用比传统公钥密码的应用在某种程度上更加简单,但是,其代价是IBC密码的设计与计算却比其他公钥密码复杂得多。在IBC算法中,除了RSA和ECC中所具有的运算外,还增加了复杂的双线性对(bilinear)计算。因此,IBC密码算法运行速度远不如RSA和ECC
⑻ 什么是公钥密码体制
自从1976年公钥密码的思想提出以来,国际上已经提出了许多种公钥密码体制。用抽象的观点来看,公钥密码就是一种陷门单向函数。
我们说一个函数f是单向函数,即若对它的定义域中的任意x都易于计算f(x),而对f的值域中的几乎所有的y,即使当f为已知时要计算f-l(y)在计算上也是不可行的。若当给定某些辅助信息(陷门信息)时则易于计算f-l(y),就称单向函数f是一个陷门单向函数。公钥密码体制就是基于这一原理而设计的,将辅助信息(陷门信息)作为秘密密钥。这类密码的安全强度取决于它所依据的问题的计算复杂度。
目前比较流行的公钥密码体制主要有两类:一类是基于大整数因子分解问题的,其中最典型的代表是RSA体制。另一类是基于离散对数问题的,如ElGamal公钥密码体制和影响比较大的椭圆曲线公钥密码体制。
公钥密码
一般要求:
1、加密解密算法相同,但使用不同的密钥
2、发送方拥有加密或解密密钥,而接收方拥有另一个密钥
安全性要求:
1、两个密钥之一必须保密
2、无解密密钥,解密不可行
3、知道算法和其中一个密钥以及若干密文不能确定另一个密钥